用双棱镜测光波波长实验报告

合集下载

双棱镜干涉测钠光波长实验报告明细流程步骤

双棱镜干涉测钠光波长实验报告明细流程步骤

双棱镜干涉测钠光波长实验报告明细流程步骤
1. 实验目的:通过双棱镜干涉测量钠光的波长,并掌握双棱镜干涉的基本原理和实验技巧。

2. 实验器材:光源、单色仪、双棱镜、厚度计、显微镜等。

3. 实验原理:
(1)光的干涉现象:光波的相互作用形成衍射和干涉现象,其中干涉现象的实质是光波的相位差引起的。

(2)双棱镜干涉:通过将光线分离成两条光线,再重合使二者产生干涉现象。

具有正交性的两束光的相位差与参考光屏幕上的亮纹位置有关,因此可以通过双棱镜干涉来测量光波的波长。

(3)钠光的光谱特性:钠光是光谱中最稳定的光线,其波长为589.0nm。

(1)调节光源:调节光源使光线垂直于光学轴线,以免在观测过程中出现偏差。

(2)调节单色仪:将单色光导入光学轴线上,调整单色仪光点到光学轴线上。

(3)调节双棱镜:将双棱镜放置在光路上,调整两个镜头之间的距离,保证两束光线重合。

(4)观察干涉花样:调整双棱镜的位置,观察干涉花样,确定亮纹位置。

(5)测量端点距离:用厚度计测量两条光线的端点距离,记为d。

(6)计算波长:根据原理,波长λ=2d×tanθ/2,其中θ为两束光线的夹角。

(7)重复测量:重复上述步骤,进行多次测量,取平均值作为最终测量结果。

5. 实验结果分析:根据实际测量数据,计算出钠光的波长值为589.5nm,误差为
0.5nm,符合实验要求。

同时,通过实验,掌握了双棱镜干涉测量光波长的基本原理与技巧,对于光学测量技术具有较高的实用价值。

用菲涅尔双棱镜测量光的波长

用菲涅尔双棱镜测量光的波长

一、引言法国科学家菲涅尔用几个自己设计的新实验,在当时令人信服地证明了光的干涉现象的存在,这些实验之一就有他在1826年进行的双棱镜实验。

与杨氏双缝干涉借助衍射形成分波面干涉不同,它利用棱镜形成“双缝”,并用毫米级的精度测量出纳米级的精度,它的物理思想、实验方法和测量技巧至今仍值得我们学习,并且对于以后微观物理学方面的实验仍然具有巨大的作用。

在本实验中通过用菲涅尔双棱镜对纳光波长的测量,要求我们掌握光的干涉有关原理及光学测量的基本技巧,特别要学习在光学实验中计算测量结果不确定度的各种方法。

二、实验原理1)菲涅尔双棱镜实际上是一个顶角A极大的等腰三棱镜,如下图所示,当S点处的单色点光源从BC面入射时,通过ABD的光向下偏折,通过ACD的光向上偏折,形成如图所示的交叠区,并产生S1、S2两个虚的点光源,于是在交叠区两个虚光源发出的相干光发生干涉;干涉条纹间距为X=Dλ/d (1);其中d是两个虚光源之间的间距;D是光源到观察屏的距离;λ是光的波长。

用测微目镜的分划板作为观察屏可直接读出条纹间距X的值,D可直接由导轨上的直尺读出。

观察屏 S点光源通过双棱镜的折射2)虚光源间距的测量:使用二次成像法,光路图如下图所示:在双棱镜与测微目镜之间加一个焦距为f的凸透镜L,当D>4f时,可以移动L在测微目镜中观察到两虚光源的放大像和缩小像,读出虚光源像的间距d1,d2;有几何光学可知:d=(d 1d 2) 1/2;带入即可求出虚光源间距d 的值。

(由于制图不太准,图上显示的两个焦距f 略有差异,实际是相同的)3) 实验时我们利用以上原理来对未知量条纹间距X ,及虚光源间距d ;并且将点光源换成线光源使衍射条纹由点变线,增强了条纹的亮度,方便读数测量。

三、实验装置及实验过程实验装置双棱镜、测微目镜、光具座、线光源和透镜; 右图为测微目镜的结构图:使用时调节目镜与分划板之间的距离使之能清晰地看到分划板的准线及刻度线;而后调节测微目镜与待测实像的距离使像清晰无视差并且便于测量。

用菲涅尔双棱镜测量光波波长

用菲涅尔双棱镜测量光波波长
用菲涅尔双棱镜测量光波波长
一、实验目的 二、实验原理 三、实验仪器
用菲涅尔双棱镜测光波波长
【实验目的】
1. 观察双棱镜产生的干涉现象 2. 掌握获得双光束干涉的一种方法, 进一步理
解产生干涉的条件 3. 学会用双棱镜测定光波波长
返回
【简要原理】
相干光是产生光的干涉现象的必要条件。常用的获得相干光的 方法有双缝、 双面镜、 双棱镜及洛埃镜等, 它们都是属于双缝干 涉实验的同一类型。 利用相干光产生的干涉图样, 可以测定单色 光的波长。 本实验是用双棱镜测定钠光的波长。
d x
D
式中 D 为狭缝到观测屏的距离,d 为两虚光源 S1 和 S2 的距
离,x 为条纹间距。 测得 D 、d 及 x , 即可求的波长 .
返回Байду номын сангаас
【仪器用具】
光具座、双棱镜、可调狭缝、会聚透镜、测微目镜、钠光灯
可调狭缝
会聚透镜
测微目镜
钠光灯
双棱镜
光具座
电源
返回
单色光从狭缝 S 射出, 经双棱镜折射后分为两束光,它们好像 是分别从虚光源 S1 和 S2发出的, 它们是相干光。 于是在两束相干 光重叠的区域内产生干涉现象,如图。在该区域内放置的观察屏上 可以观察到明暗交替的等间距的干涉条纹,条纹的取向与狭缝平行。
M P S1
S
S2
N
D
E F
下一页
光波的波长由下式确定:

利用双棱镜测定光波波长

利用双棱镜测定光波波长

利用双棱镜测定光波波长【实验目的】1.掌握利用分割波前实现双光束干涉的方法;2. 观察光场空间相干性;3.用菲涅耳双棱镜测量钠光光波波长。

【仪器及用具】钠光灯、双棱镜、光具座、凸透镜、测微目镜、单缝、辅助棒。

【实验原理】一般情况下两个独立的光源(除激光光源外)不可能产生干涉。

要观察干涉现象必须用光学方法将一个原始光点(振源)分成两个位相差不变的辐射中心,即造成“相干光源”。

分割的方法有两种,即波前分割法和振辐分割法,波前分割的装置有双面镜,双棱镜等,。

本实验采用菲涅耳双棱镜进行波前分割,从而获得相干光,实现光的干涉。

Q-钠光灯 1L -透镜 S-单缝 B-双棱镜 2L -辅助成像透镜 M-测微目 图18-1用菲涅耳双棱镜测量钠光波长实验装置实验装置如图18-1所示。

,各器件均安置在光具座上,Q 为钠光灯;S 为宽度及取向可调单缝;透镜1L 将光源Q 发出的光会聚于单缝S 上,以提高照明单缝上的光强度;B 为双棱镜;1L 为辅助成像透镜,用来测量两虚光源1S 、2S 之间的距离d ;M 为测微目镜。

菲涅耳双棱镜是由两块底边相接、折射棱角 小于1°的直角棱镜组成的。

从单缝发出的光经双棱镜折射后,形成两束犹如从虚光源发出的频率相同、振动方向相同、并且在相遇点有恒定相位差的相干光束,它们在空间传播时,有一部分彼此重叠而形成干涉场。

如图18-2所示.图18-2设由双棱镜B 所产生的两相干虚光源1S 、2S 间距为d ,观察屏P 到1S 、2S 平面的距离为D 。

若P 上的0P 点到1S 和2S 的距离相等,则1S 和2S 发出的光波到0P 的光程也相等,因而在0P 点相互加强而形成中央明条纹(零级干涉条纹)。

设1S 和2S 到屏上任一点k P 的光程差为D ,k P 与的距0P 离为k X ,则当d <<D 和k X <<D 时,可得到kX d D∆=(18-1) 当光程差为∆波长的整数倍,即(K =0、1、2、···)时,得到明条纹。

用双棱镜干涉测光波波长分析报告

用双棱镜干涉测光波波长分析报告

用双棱镜干涉测光波波长【实验目的】1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长.【仪器和用具】光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏.【实验原理】如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉,菲涅耳利用图1所示的装置,获得了双光束的干涉现象,图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使成S 为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源1S 和2S 发出的一样,满足相干光源条件,因此在两束光的交叠区域21P P 内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗相间的、等间距干涉条纹.图1双棱镜干涉实验光路 图2 双棱镜结构设两虚光源1S 和2S 之间的距离为d ,虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为D ,且D d <<,干涉条纹间距为x ∆,则实验所用光源的波长λ为x Dd∆=λ (1) 因此,只要测出d 、D 和x ∆,就可用(1)式计算出光波波长.【实验内容】1.调节共轴(1)按图1所示次序,将单色光源0S ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行.(2)点亮光源0S ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区21P P (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加区是否逐渐向左、右(或上、下)偏移?根据观测到的现象,作出判断,进行必要的调节使之共轴.2.调节干涉条纹(1)减小狭缝S 的宽度,绕系统的光轴缓慢地向左或右旋转双棱镜A B ,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可观察到清晰的干涉条纹.(2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S 的缝宽,以保持干涉条纹有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,1S 和2S 间距也将减小,这对d 的测量不利.)3.测量与计算(1)用测微目镜测量干涉条纹的间距如,为了提高测量精度,可测出n 条(10~20条)干涉条纹的间距x ,除以n ,即得x ∆.测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,然后旋转测微螺旋,使叉丝移过n 个条纹,读出两次读数,重复测量几次,求出x ∆.(2)用光具座支架中心间距测量狭缝至观察屏的距离D.由于狭缝平面与其支架中心不重合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免导致测量结果的系统误差,测量几次,求出D .(3)用透镜两次成像法测两虚光源的间距d .参见图3,保持狭缝S 与双棱镜AB 的位置不变,即与测量干涉条纹间距x ∆时的相同(问:为什么不许动?),在双棱镜与测微目镜之间放置一已知焦距为f '的会聚透镜L ',移动测微目镜使它到狭缝S 的距离f D '>'4,然后维持恒定,沿光具座前后移动透镜L ',就可以在L '的两个不同位置上从测微目镜中看到两虚光源1S 和2S 经透镜所成的实像1S '和2S ',其中一组为放大的实像,另一组为缩小的实像.分别测得两放大像的间距1d ,和两缩小像的间距2d ,则按下式即可求得两虚光源的间距d .多测几次,取平均值d .21d d d =(2)图3 用透镜两次成像法测两虚光源的间距d(4)用所测得的x ∆、D 、d 值,代入式(1),求出光源的波长λ.(5)计算波长测量值的标准不确定度.4.注意事项(1)使用测微目镜时,首先要确定测微目镜读数装置的分格精度,要注意防止回程差,旋转读数鼓轮时动作要平稳、缓慢,测量装置要保持稳定.(2)在测量D 值时,因为狭缝平面和测微目镜的分划板平面均不和光具座滑块的读数准线(支架中心)共面,必须引入相应的修正,否则将引起较大的系统误差.(3)测量1d 、2d 时,由于透镜像差的影响,将引入较大误差,可在透镜L '上加一直径约lcm 的圆孔光阑(用黑纸)以增加1d 、2d 测量的精确度.(可对比一下加或不加光阑的测量结果.)【思考题】1.双棱镜和光源之间为什么要放一狭缝?为何缝要很窄且严格平行于双棱镜脊才可以得到清晰的干涉条纹?2.试证明公式21d d d =.附:测量钠光波长数据记录与处理D = (mm) x ∆= (mm)x D d ∆=λ=Dd d x 21∆不确定度计算举例:用双棱镜测量光源的波长(λ)实验,测量公式为:Dn x d d 121∆=λ 式中1d 为两虚光源经透镜1L 所成二亮线(光源实像)的间距,2d 为透镜移至2L 二亮线的间距,D 为虚光源到其实像的距离。

实验十九用双棱镜测定光波波长一、实验目的要求

实验十九用双棱镜测定光波波长一、实验目的要求

实验十九用双棱镜测定光波波长一、实验目的要求1.观察双棱镜产生的光的干涉现象,掌握获得双光束干涉的一种方法,进一步理解产生干涉的基本条件。

2.掌握在光具座上对光具组进行调整的技术。

.学会利用双棱镜粗略地测定光波的波长。

二、仪器用具双棱镜、可调狭缝、辅助透镜、测微目镜、光具座、单色光源、米尺三、实验原理两个独立的光源不能产生干涉,必需用光学的方法,将一个原始光源(振源)分成两个位相差不变的幅射中心,即造成“相干光源”。

单色光源M发出的光从S狭缝射出,经过双棱镜的折射产生两个虚像S1、S2它们是相干光源,故在两束光相互交叠的区域P1P2内,光强分布不均匀。

在某些地方表示为减弱,结果屏幕上形成明暗交替的等宽线形条纹。

设d为两虚光源S1和S2之间的距离,D为虚光源所在平面至观察屏幕P的距离,且d《D,干涉条纹宽度∆X,则实验所用光波滤入可由下式表示:上式表明只要测出d、D和∆X,就可以求出光波波长。

四、实验步骤1.将单色光源M,狭缝S,双棱镜B与测微目镜P按图三所示次序放置在光具座上,用目视法粗略地调整它们的中心高度,使其共轴。

2.点亮光源,使M发出的光照亮狭缝S,并使双棱镜底面与光束垂直,调节光源或狭缝,使狭缝射出的光能对称地照射在双棱镜钝角棱的两侧。

3.调节测微目镜,使从目镜中能观察到清晰的干涉条纹。

4.用测微目镜测量干涉条纹的宽度∆X,因为任意两纹之间距相等,可先使目镜叉丝对准某亮纹中心读出测量值,然后旋转测微螺旋,使叉丝移过3个条纹,再读出测量值,这两次读数之差,除以3,即为条纹宽度,重复测量2次,求取平均值。

5.用米尺测出由狭缝到测微目镜叉丝平面的距离D 。

6.用透镜两次成法测两虚光源之间距d 。

在测微目镜和狭缝固定的情况下(D>4f /)前后移动透镜,分别测得到两次清晰成像,测量此实像的间距d 1和d 2值,代人,求出d 值。

7.将所测得的∆X 、d 、D 代入求出光波波长。

实验记录:测量次数12X1和X2,测3个条纹X1X2X1X2∆X=(X2-X1)/3∆X D77.8cm d1和d2d1d2λ=波长标准值λ标=5893Å五、问题,思考题1:双棱镜是怎样实现双光束干涉的?是否在空间任何位置都能观察到双棱镜产生的干涉条纹?干涉条纹的宽度,数目曲哪些因素决定?2:分析本实验中产生误差的原因。

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告【实验目的】1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解.2.学会用双棱镜测定钠光的波长.【实验仪器】光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏.【实验原理】如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉.菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L会聚于狭缝S,使S成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗相间的、等间距干涉条纹.图1 图2设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ∆,则实验所用光源的波长λ为x d d∆'=λ因此,只要测出d '、d 和x ∆,就可用公式计算出光波波长.【实验内容】1.调节共轴(1)按图1所示次序,将单色光源M,会聚透镜L,狭缝S,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行.(2)点亮光源M,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加区是否逐渐向左、右(或上、下)偏移?根据观测到的现象,作出判断,进行必要的调节使之共轴.2.调节干涉条纹(1)减小狭缝S 的宽度,绕系统的光轴缓慢地向左或右旋转双棱镜AB,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可观察到清晰的干涉条纹.(2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S的缝宽,以保持干涉条纹有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,S1、S 2间距也将减小,这对d '的测量不利.)3.测量与计算(1)用测微目镜测量干涉条纹的间距x ∆.为了提高测量精度,可测出n 条(10~20条) 干涉条纹的间距x ,除以n,即得x ∆.测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,然后旋转测微螺旋,使叉丝移过n 个条纹,读出两次读数.重复测量几次,求出x ∆. (2)用光具座支架中心间距测量狭缝至观察屏的距离d .由于狭缝平面与其支架中心不重合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免导致测量结果的系统误差.测量几次,求出d .(3)用透镜两次成像法测两虚光源的间距d '.参见图3,保持狭缝S 与双棱镜AB 的位置不变,即与测量干涉条纹间距x ∆时的相同(问:为什么不许动?),在双棱镜与测微目镜之间放置一已知焦距为f '的会聚透镜L ',移动测微目镜使它到狭缝S 的距离f d '>4,然后维持恒定.沿光具座前后移动透镜L ',就可以在L '的两个不同位置上从测微目镜中看到两虚光源S1和S 2经透镜所成的实像1S '和2S ',其中一组为放大的实像,另一组为缩小的的间距1d 和两缩小实像.分别测得两放大像像的间距2d ,则按下式即可求得两虚光源取平均值d '. 的间距d '.多测几次,21d d d ='图3(4)用所测得的x ∆、d '、d 值,代入式(7—1),求出光源的波长λ.(5)计算波长测量值的标准不确定度.【注意事项】(1)使用测微目镜时,首先要确定测微目镜读数装置的分格精度,要注意防止回程差,旋转读数鼓轮时动作要平稳、缓慢,测量装置要保持稳定.(2)在测量d 值时,因为狭缝平面和测微目镜的分划板平面均不和光具座滑块的读数准线(支架中心)共面,必须引人相应的修正(例如,GP 一78型光具座,狭缝平面位置的修正量为42。

双棱镜测光波波长

双棱镜测光波波长

双棱镜测光波波长采用分波阵面的方法,可以获得相干光源,双棱镜颇具有代表性。

虽然在激光出现之后,设法获得相干光源的工作已不如早期那样的重要,但双棱镜干涉在实验构思及装置调整等问题上仍然具有重要意义。

【实验目的】1.观察双棱镜干涉现象;2.用双棱镜测量光波波长;3.学习光具座的调节,熟悉基本光学仪器的使用。

【实验原理】图1 双棱镜干涉原理图双棱镜可看作是由两个折射棱角α很小(小于1°)的直角棱镜底边相接而成。

借助于双棱镜可使从光源S发出的光的波阵面沿两个不同方向传播。

相当于虚光源S1发出的两束相干光。

在两束光交迭空间的任何位置上将有干涉发生,在该区域及S2内可以接受并观察到干涉条纹。

双棱镜干涉条纹间距的计算方法,与扬氏双缝干涉的计算方法相同。

在图2中,若S1和S2之间的距离为d,S至观察屏的距离为D,P0为屏上与S1及S2等距离的点,在该点处两束光波的光程差为零,因而两光波相互加强而成零级的亮条纹。

在P0点的两边还排列着明暗相间的干涉条纹。

图2 几何关系图设S 1和S 2到屏上距P 0点的距离为x k 的P k 点的光程差为δ,当D >>d 、D >>x 时,有d Dx δk=(1)根据相干条件,当光程差δ满足:)2(2λδk ±=时,即在λk dD x ±=(k=0、1、2…)处,产生亮条纹;)2)(12(λδ−±=k 时,即在λ)12(−±=k dD x (k=1、2…)处,产生暗条纹。

这样,两相邻亮条纹的距离为:λdDx x x k k =−=∆+1 (2) 如果测得D ,d 及∆x 便可由(2)式求出λ值。

【实验步骤】1、实验仪器的调整:如图3调节光源,聚光镜,狭缝,双棱镜,辅助透镜,望远镜的同轴等高。

具体步骤如下:①取下所有元件,调节钠灯,聚光镜和望远镜的同轴等高,要求在三者靠近时通过调节聚光镜的高低使得在望远镜中看到均匀明亮的视场,在三者相离比较远时调节望远镜的倾斜使得光斑出于望远镜视场中央。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东第二师范学院学生实验报告
内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验结果与分析、实验心得
一、实验目的
1、进一步掌握同轴等高光路的调节方法。

1.观察双棱镜产生的双光束干涉现象,进一步认清光的波动特性。

2.通过观察双棱镜产生的双光束干涉现象,理解产生干涉的条件。

二、实验使用仪器与材料
双棱镜、可调狭缝、凸透镜、观察屏、光具座、测微目镜。

三、实验步骤
1、调节等高共轴
实验在光具座上进行。

为使钠光灯S、狭缝M、双棱镜B、凸透镜L、测微目镜 P 五器件等高共轴,要在光具座上对它们逐一进行调整。

1)调狭缝使之与光源贴近、对正(不要动钠光灯)让钠光均匀照亮整个狭缝,两者中心等高,狭缝垂直
于导轨。

2)调凸透镜。

让透镜的主光轴与狭缝中心共轴,透镜主光轴平行于光具座的棱脊。

具体步骤为:在狭缝
后放上透镜,透镜后放上一观察屏。

目测粗调透镜与狭缝等高,观测屏与狭缝之间的距离大于f4,
透镜在狭缝与观测屏之间沿光轴移动,观察屏上先后两次出现狭缝的像,一次成大像,一次成小像。

比较两次成像中心点的高低,若大像的中心点比小像高,则说明透镜位置偏高,应下降,反之,则
说明透镜位置偏低,应上升。

此即所谓“大像追小像”。

反复调节透镜的高低左右,直到大、小像中
心点重合为止。

3)调双棱镜。

在狭缝与透镜之间放入双棱镜,止目测粗调二者等高。

这时屏上出现两条平行亮线(狭缝
像),如两亮线一高一低,表示双棱镜棱脊与狭缝不平行,则要旋转双棱镜使两亮线等高(有的双棱
镜固定不可调,则旋转狭缝);如两亮线一粗亮,一细暗,表示棱镜的棱脊未通过透镜光轴,则应平
移双棱镜,使两亮线等宽等亮。

4)调测微目镜。

拿走观测屏,以测微目镜占领其位置。

调测微目镜高低左右,使之与透镜等高共轴,让
狭缝像位于视场中央,在视场中央找到等高、平行、等亮度的狭缝像。

2、调出清晰的干涉条纹
拿走凸透镜,在测微目镜的视场中寻找干涉条纹,此时只能看见一片黄光,这是因为狭缝过宽或双棱镜棱脊尚未与狭缝平行。

只要慢慢减小狭缝宽度,测微目镜的分划板上将出现一条竖直亮带(两边较暗);
轻轻改变狭缝的取向,就可以在亮带区域出现清晰的干涉条纹。

以上两步操作一定要轻缓。

调出条纹后,改变测微目镜与单缝的距离,改变双棱镜与狭缝的间距,观察条纹的疏密变化规律国,并寻找最佳测量状态。

3、测量
(1)测x。

将单缝、双棱镜、测微目镜一一锁定,然后用测微目镜测读并记录第1~6、7~12条亮纹的位置读数(光程差为5),反复测量5组数据。

测量中注意:调分划板上的竖线与与干涉条纹平行,测量时,鼓轮只能向一个方向旋转,防止产生回程差。

(2)测D。

在导轨上读出测微目镜与狭缝的位置读数,并记录数据,D=狭缝位置读数减去测微目镜位置读数,只测一次。

(注意测微目镜的修正值,实验室已给出)
(3)测d。

两虚光源1S和2S的间距由间接测量求得,测量方法有两种,共轭法和放大法。

本实验采用放大法。

图4 放大法测d光路图
如图4所示放开并移动测微目镜,(千成别动狭缝和双棱镜),重新将凸透镜置入测微目镜和双棱镜之间,改变透镜的位置,使本不可测量的虚光源间距d成实像在测微目镜叉丝平面P上。

在目镜中看到清晰狭缝像:两条亮线,中夹黑色矩块。

用测微目镜测出两条亮线的位置读数,读数之差的绝对值即为d。

重复测量5次。

在导轨上读出测微目镜、透镜、狭缝的位置读数,由此算出物距u与像距v,则两虚光源间距:
四、实验数据整理与归纳
D=54.95cm
表1 测干涉条纹间距Δx
序数读数(×10-3m)序数读数(×10-3m)5条条纹间距(×10-3m)
K1 1.730 K1+5 4.587 2.857
K2 1.271 K2+5 4.161 2.890
K3 1.868 K3+5 4.670 2.802
K4 1.315 K4+5 4.135 2.820
K5 2.075 K5+5 4.816 2.741
平均 2.822。

相关文档
最新文档