过程控制课程设计--加热器温度控制

合集下载

过程控制与自动化仪表课程设计

过程控制与自动化仪表课程设计

过程控制与自动化仪表课程设计前言过程控制与自动化仪表课程是工程领域中非常重要的基础课程之一,它涉及到工程研发、生产运营以及企业管理等多个方面。

本文将介绍一种基于实践的课程设计方法,旨在让学生深入掌握过程控制与自动化仪表的基础知识。

设计目标•确定学生对过程控制与自动化仪表的基本概念和技术掌握程度。

•培养学生的设计和实验能力,让他们能够运用所学知识分别设计并完成过程控制实验和自动化仪表实验。

•提高学生的团队合作和沟通能力,通过设计项目的过程,激发学生的创新潜力。

设计内容过程控制实验设计实验一:温度控制系统设计在该实验中,学生需要设计一个基于PID控制算法的温度控制系统。

通过调整控制器的参数,让温度快速稳定在设定值附近,并且能够在温度变化时快速响应和自适应调整。

实验二:流量控制系统设计在该实验中,学生需要设计一个基于比例控制算法的流量控制系统。

通过调整控制器的参数,让流量在设定值附近稳定,并且能够在流量变化时快速响应和自适应调整。

自动化仪表实验设计实验三:温度传感器的实现在该实验中,学生需要实现一个基于热电偶的温度传感器。

通过校准测试,让学生了解测量误差来源和校准方法。

实验四:流量计的实现在该实验中,学生需要实现一个流量计,通过实验测试让学生了解其特性和测量误差来源。

设计方法阶段一:学习基础概念和技术在本阶段,学生需要学习过程控制和自动化仪表的基础概念和技术,包括控制系统、PID控制器、量程、精度等方面的知识。

阶段二:组建设计小组在本阶段,每个小组需要选择一个相对复杂的课程设计内容,进行深入的研究和讨论,拟定初步设计方案。

阶段三:设计与实现在本阶段,学生需要分成小组,负责具体的实验设计与实现。

在设计的过程中,需要充分考虑过程控制和自动化仪表的基本原理和设计要求。

在实现的过程中,需要用到软件工具和实验平台。

阶段四:实验测试与评价在本阶段,学生需要对实验设计进行测试,并记录数据处理结果。

测试过程中需要考虑实验中的各种随机与不确定因素。

水温控制电路课程设计

水温控制电路课程设计

水温控制电路课程设计一、课程目标知识目标:1. 学生能理解并掌握水温控制电路的基本原理,包括温度传感器、比较器、继电器等元件的工作原理及相互关系。

2. 学生能够运用所学的电路知识,分析并设计简单的水温控制电路。

3. 学生了解并掌握水温控制电路在实际应用中的注意事项及安全操作要求。

技能目标:1. 学生能够正确使用万用表、示波器等工具,进行水温控制电路的搭建、调试和故障排查。

2. 学生通过实际操作,提高动手能力和团队协作能力,培养工程实践思维。

情感态度价值观目标:1. 学生在学习过程中,培养对电子技术的兴趣,增强探索精神和创新意识。

2. 学生能够关注水温控制电路在生活中的应用,认识到科技与生活的紧密联系,提高社会责任感和环保意识。

3. 学生通过课程学习,树立正确的价值观,认识到知识的力量,激发学习的内驱力。

课程性质:本课程属于电子技术实践课程,以理论为基础,实践为核心,注重培养学生的动手能力和创新能力。

学生特点:本课程针对初中年级学生,他们对电子技术有一定的好奇心,但知识水平和实践经验有限。

教学要求:结合学生特点,课程设计应注重理论联系实际,循序渐进,注重启发式教学,引导学生主动探究和实践。

通过课程学习,使学生达到上述课程目标,为后续相关课程打下坚实基础。

二、教学内容本课程教学内容主要包括以下几部分:1. 水温控制电路原理介绍:- 温度传感器工作原理及其选用- 比较器的作用和种类- 继电器的工作原理和应用2. 水温控制电路设计与搭建:- 电路图设计方法- 元器件选型和参数计算- 电路搭建与调试3. 水温控制电路实际应用案例分析:- 家用热水器水温控制电路分析- 工业设备中水温控制电路应用案例4. 安全操作与注意事项:- 电路搭建过程中的安全常识- 常见故障分析与排查方法教学大纲安排如下:第一课时:水温控制电路原理介绍1.1 温度传感器工作原理及其选用1.2 比较器的作用和种类1.3 继电器的工作原理和应用第二课时:水温控制电路设计与搭建2.1 电路图设计方法2.2 元器件选型和参数计算2.3 电路搭建与调试第三课时:水温控制电路实际应用案例分析3.1 家用热水器水温控制电路分析3.2 工业设备中水温控制电路应用案例第四课时:安全操作与注意事项4.1 电路搭建过程中的安全常识4.2 常见故障分析与排查方法教学内容与课本紧密关联,按照教学大纲逐步推进,确保学生能够掌握水温控制电路的相关知识和技能。

plc水温控制课程设计

plc水温控制课程设计

plc水温控制课程设计一、课程目标知识目标:1. 学生能够理解PLC(可编程逻辑控制器)的基本原理和工作流程;2. 学生能够掌握水温控制系统的组成及各部分功能;3. 学生能够运用PLC编程实现对水温的精确控制。

技能目标:1. 学生能够运用所学知识设计简单的水温控制程序;2. 学生能够使用相关工具和仪器进行水温控制系统的调试与优化;3. 学生能够分析并解决实际水温控制过程中出现的问题。

情感态度价值观目标:1. 学生培养对自动化技术的兴趣,提高学习积极性;2. 学生通过团队协作完成课程任务,培养合作精神和沟通能力;3. 学生认识到水温控制在实际生活中的重要性,增强环保意识。

课程性质:本课程属于应用实践性课程,结合理论知识与实际操作,培养学生的动手能力和实际应用能力。

学生特点:学生为具有一定电子、电气基础知识的初中生,对新鲜事物充满好奇,喜欢动手操作。

教学要求:教师需引导学生将所学理论知识应用于实际操作中,注重培养学生的实际操作能力和问题解决能力,将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. 理论知识:- PLC基本原理与结构;- 水温控制系统的组成,包括传感器、执行器、控制器等;- PLC编程基础,如逻辑运算、梯形图编程等;- 水温控制算法,如PID控制原理。

2. 实践操作:- 水温控制系统的搭建,包括电路连接、设备调试等;- PLC编程软件的使用,编写并下载水温控制程序;- 水温控制系统的测试与优化,如调整参数、改进控制效果等。

3. 教学大纲:- 第一课时:PLC基本原理与结构介绍,水温控制系统的概念;- 第二课时:水温控制系统的组成,各部分功能及相互关系;- 第三课时:PLC编程基础,编写简单的水温控制程序;- 第四课时:水温控制算法,PID控制原理及其应用;- 第五课时:实践操作,水温控制系统的搭建与调试;- 第六课时:总结与评价,分析课程实施过程中的优点与不足。

教材章节关联:本教学内容与教材中关于PLC应用、水温控制系统设计等相关章节紧密关联,结合教材内容,确保学生所学知识的科学性和系统性。

《过程控制工程》课程设计参考题目

《过程控制工程》课程设计参考题目

《过程控制工程》课程设计参考题目14级过程控制课程设计题目1班课程设计参考题目:一、温度控制(单回路、串级、前馈—反馈、比值控制)(40)1、换热器出口温度单回路控制方案设计2、乳化物干燥器温度单回路控制方案设计3、精馏塔提馏段温度单回路控制方案设计4、管式加热炉出口温度单回路控制方案设计5、夹套式反应器温度单回路控制控制方案设计6、燃烧式工业窑炉温度单回路控制方案设计7、精馏塔精馏段温度单回路控制方案设计8、流化床反应器温度单回路控制方案设计9、管式热裂解反应器出口温度单回路控制方案设计10、发酵罐温度单回路控制方案设计11、换热器出口温度串级控制方案设计12、乳化物干燥器温度串级控制方案设计13、精馏塔提馏段温度串级控制方案设计14、管式加热炉出口温度串级控制方案设计15、夹套式反应器温度串级控制控制方案设计16、燃烧式工业窑炉温度串级控制方案设计17、精馏塔精馏段温度串级控制方案设计18、流化床反应器温度串级控制方案设计19、发酵罐温度串级控制方案设计20、管式热裂解反应器出口温度串级控制方案设计21、换热器出口温度前馈—反馈控制方案设计22、乳化物干燥器温度前馈—反馈控制方案设计23、精馏塔提馏段温度前馈—反馈控制方案设计24、管式加热炉出口温度前馈—反馈控制方案设计25、夹套式反应器温度前馈—反馈控制控制方案设计26、燃烧式工业窑炉温度前馈—反馈控制方案设计27、精馏塔精馏段温度前馈—反馈控制方案设计28、流化床反应器温度前馈—反馈控制方案设计29、发酵罐温度前馈—反馈控制方案设计30、管式热裂解反应器出口温度前馈—反馈控制方案设计31、换热器出口温度比值控制方案设计32、乳化物干燥器温度比值控制方案设计33、精馏塔提馏段温度比值控制方案设计34、管式加热炉出口温度比值控制方案设计35、夹套式反应器温度比值控制方案设计36、燃烧式工业窑炉温度比值控制方案设计37、精馏塔精馏段温度比值控制方案设计38、流化床反应器温度比值控制方案设计39、发酵罐温度比值控制方案设计40、管式热裂解反应器原料油与蒸汽流量比值控制方案设计41、锅炉出口蒸汽压力单回路控制方案设计42、锅炉出口蒸汽压力串级控制方案设计43、锅炉出口蒸汽压力前馈—反馈控制方案设计44、锅炉出口蒸汽压力比值控制方案设计45、炉膛负压单回路控制方案设计46、炉膛负压前馈—反馈控制方案设计47、离心泵压力定值控制方案设计2班课程设计参考题目:1、换热器出口温度单回路控制方案设计2、乳化物干燥器温度单回路控制方案设计3、精馏塔提馏段温度单回路控制方案设计4、管式加热炉出口温度单回路控制方案设计5、夹套式反应器温度单回路控制控制方案设计6、燃烧式工业窑炉温度单回路控制方案设计7、精馏塔精馏段温度单回路控制方案设计8、流化床反应器温度单回路控制方案设计9、管式热裂解反应器出口温度单回路控制方案设计10、发酵罐温度单回路控制方案设计11、换热器出口温度串级控制方案设计12、乳化物干燥器温度串级控制方案设计13、精馏塔提馏段温度串级控制方案设计14、管式加热炉出口温度串级控制方案设计15、夹套式反应器温度串级控制控制方案设计16、燃烧式工业窑炉温度串级控制方案设计17、精馏塔精馏段温度串级控制方案设计18、流化床反应器温度串级控制方案设计19、发酵罐温度串级控制方案设计20、管式热裂解反应器出口温度串级控制方案设计21、换热器出口温度前馈—反馈控制方案设计22、乳化物干燥器温度前馈—反馈控制方案设计23、精馏塔提馏段温度前馈—反馈控制方案设计24、管式加热炉出口温度前馈—反馈控制方案设计25、夹套式反应器温度前馈—反馈控制控制方案设计26、燃烧式工业窑炉温度前馈—反馈控制方案设计27、精馏塔精馏段温度前馈—反馈控制方案设计28、流化床反应器温度前馈—反馈控制方案设计29、发酵罐温度前馈—反馈控制方案设计30、管式热裂解反应器出口温度前馈—反馈控制方案设计31、换热器出口温度比值控制方案设计32、乳化物干燥器温度比值控制方案设计33、精馏塔提馏段温度比值控制方案设计34、管式加热炉出口温度比值控制方案设计35、夹套式反应器温度比值控制方案设计36、燃烧式工业窑炉温度比值控制方案设计37、精馏塔精馏段温度比值控制方案设计38、流化床反应器温度比值控制方案设计39、发酵罐温度比值控制方案设计40、管式热裂解反应器原料油与蒸汽流量比值控制方案设计41、锅炉出口蒸汽压力单回路控制方案设计42、锅炉出口蒸汽压力串级控制方案设计43、锅炉出口蒸汽压力前馈—反馈控制方案设计44、锅炉出口蒸汽压力比值控制方案设计45、炉膛负压单回路控制方案设计46、炉膛负压前馈—反馈控制方案设计47、离心泵压力定值控制方案设计课程设计教材及主要参考资料:1、戴连奎,《过程控制工程》,化学工业出版社,20122、杜维,《过程检测技术及仪表》,化学工业出版社,20013、姜培正,《过程流体机械》,化学工业出版社,20024、王毅,《过程装备控制技术与应用》,化学工业出版社,20015、厉玉鸣,《化工仪表及自动化》,化学工业出版社,2006一、课程设计教学目的及基本要求:1.课程设计的教学目的培养学生将理论知识应用到解决实际问题的能力,通过该课程的学生,可以很好地训练学生的实际动手能力和解决工程问题的能力,为学生从学校到工厂和技术部门提供前期的训练。

温度控制系统课程设计

温度控制系统课程设计

温度控制系统课程设计一、引言温度控制系统是一种常见的自动化控制系统,广泛应用于工业生产、农业生产、医疗保健等领域。

本课程设计旨在通过设计一个基于单片机的温度控制系统,让学生了解自动化控制系统的基本原理和实现方法。

二、设计目标本课程设计的主要目标是设计一个基于单片机的温度控制系统,具体包括以下方面:1. 实现温度测量功能:通过传感器获取环境温度,并将数据转换为数字信号,供单片机处理。

2. 实现温度调节功能:根据设定温度和当前环境温度,通过单片机输出PWM信号调节加热器功率,从而实现对环境温度的调节。

3. 实现显示功能:将当前环境温度和设定温度以数字形式显示在LCD 屏幕上。

4. 实现报警功能:当环境温度超过设定范围时,通过蜂鸣器发出警报提示操作者。

三、硬件系统设计1. 硬件平台选择本课程设计采用STM32F103C8T6单片机作为控制核心,具有较高的性价比和丰富的外设资源,适合用于中小规模的自动化控制系统。

2. 温度传感器选择本课程设计采用DS18B20数字温度传感器,具有精度高、响应速度快、可靠性强等优点,适合用于工业自动化控制系统。

3. LCD显示屏选择本课程设计采用1602A型液晶显示屏,具有低功耗、易于控制等优点,适合用于小型自动化控制系统。

4. 其他外设选择本课程设计还需要使用继电器、蜂鸣器、电阻等外设实现各项功能。

四、软件系统设计1. 系统架构设计本课程设计采用分层结构设计,将整个软件系统分为数据采集层、控制层和用户界面层三个部分。

其中数据采集层负责获取环境温度数据;控制层根据设定温度和当前环境温度输出PWM信号调节加热器功率;用户界面层负责显示当前环境温度和设定温度,并实现报警功能。

2. 数据采集层设计数据采集层主要负责获取环境温度数据,并将其转换为数字信号供单片机处理。

本课程设计采用DS18B20数字温度传感器实现温度测量功能,具体实现步骤如下:(1)初始化DS18B20传感器。

(2)发送读取温度命令。

PLC考题——加热器温度控制(较难)

PLC考题——加热器温度控制(较难)

PLC考题——加热器温度控制回路组态一、温度控制回路的建立某天然气脱碳装置加热器使用热媒油进行加热,在加热器的进口有一个阀FV101,受加热器罐体的温度(TT101/TT102)和阀后流量(FT101)的串级控制。

加热器温度不允许超高。

流程简图如下:二、控制功能要求1、2个温度变送器TT101、TT102(AI1、AI2)的量程范围为0~200℃;2个温度变送器温度差在20℃时,认为两个温度变送器有效,采用平均值作为计算(平均值计算时L11亮,低值计算时L11灭);如果温度差超过20℃,则认为低值有效,则选用低值计算;2、流量变送器(AI3)的流程范围为0-30m3/h,流量测量值进行累积计算,使用AO2来显示分钟累积值;手动按下START按钮(P4),开始累积(累积时灯L24亮);再按一下按钮,累积暂停(L24灭);再按一下按钮,累积继续;1秒内连续按下2次按钮,累积归零(归零时灯L14亮)。

此时,再按按钮,累积又开始。

3、流量控制阀(AO1)应该按照工艺要求选择阀门类型;流量控制器和温度控制器的作用形式应该正确;4、温度变送器TT103联合TT101和TT102的计算值做关断逻辑表决:当未进行旁通时,温度高于180度,执行2OO2的逻辑(2OO2逻辑灯L5亮);当TT103旁通时(S1拨上),取用1OO1的表决逻辑(L15亮);当计算值旁通时(S2拨上),取用1OO1的表决逻辑(L25亮)。

然而,当温度高已经触发,则旁通失效。

关断时,关断灯L1亮;5、一旦关断,控制阀应该关闭(关闭时,L5亮),流量累积暂停(L24灭);当关断信号恢复,按下复位按钮(P3),则控制阀直接打开50%,然后阀门受自动系统控制,流量累积继续。

6、关断阀可以手动控制:S3拨上为手动,无关断信号时,通过按下P1(L2常亮,L4灭),开阀命令,按下P2(L4常亮,L2灭),关阀命令;有关断时,不允许打开,直到关断信号消除;按下P1后,开始计时,如果在5秒内阀门还没有动作,产生阀门未动作报警(L12灯亮);如果已经动作,但是在10秒内,没有开到位,则产生阀门未开到位报警(L3灯亮);开到位则L22灯亮。

温度控制系统(课程设计)

温度控制系统(课程设计)

长安大学《单片机原理及接口技术》课程设计(简易温度控制系统)专业:电气工程及其自动化学号: 2804060132姓名:任晴利指导老师:段晨东时间: 2008.12.22~2009.01.03目录目录。

题目。

摘要。

需求分析。

方案比较。

硬件设计。

硬件电路设计。

总体电路设计。

软件设计。

调试及结果分析。

附录1 电路程序。

附录2 电路总图。

题目:简易温度控制系统一.任务设计并制作一个简易的单片机温度自动控制系统(见图一)。

控制对象为自定。

图一 恒温箱控制系统二.要求设计要求如下(1)温度设定范围为40℃~90℃,最小区分度为1℃(2)用十进制数码显示实际温度。

(3)被控对象温度采用发光二极管以光柱形式和数码形式显示。

(4)温度控制的静态误差≤2℃。

扩充功能:控制温度可以在一定范围内设定,并能实现自动调整,以保持设定的温度基本保持不变(测量温度时只要求在现场任意设置一个检测点)。

恒温箱 执行器 可编程 控制器 显示器 变送器 设置键盘 电源 220V AC 温度传感器摘要本系统以A T89S52单片机芯片为核心,组成温度测量和控制系统,采用DS18B20数字温度传感器对温度进行实时采样,并将测量结果用数码管实显示,可以运用键盘按钮对温度进行设定,并且驱动加热器或制冷器将温度调整到设定温度,其功能完善,人机界面良好,可靠性高,AbstractThe system to single-chip AT89S52 chip as the core, the composition of the control of temperature control system of the adoption of digital temperature sensor DS18B20 temperature sampling, real-time display with digital temperature control, you can use the keyboard for temperature regulation, the use of heater and cooler temperature adjustments to improve its functions, a good man-machine interface, high reliability一、需求分析根据题目的具体要求,经过阅读思考,可对题目的具体任务、功能、技术指标等作如下分析。

过程控制课程设计

过程控制课程设计

过程控制课程设计设计目的该课程设计旨在通过学生对过程控制的理解和操作,培养学生的控制思维和控制技能,进一步提高学生的实验能力和动手能力。

学生在课程设计中将学习到以下内容:•理解基本的控制理论和方法;•学会使用常见的控制器和传感器;•掌握实验过程中的问题分析与解决能力;•熟悉控制系统的建模和仿真;•了解实际工业控制应用。

设计内容该课程设计的主要内容为:使用Arduino单片机,设计一个智能温度控制系统。

设计要求1.通过调节加热器的开关,使得温度设置值与实际温度值尽可能相等;2.使用温度传感器采集实时温度,并使用数码管显示实时温度;3.设计一个PID控制器,实现自动调节;4.设计一个可调节的电位器,用于调节PID控制器的P、I、D三个参数。

设计步骤步骤1:硬件接口设计由于该课程设计需要使用Arduino单片机,因此需要进行硬件接口设计。

需要设计的接口有:•数码管模块接口;•温度传感器模块接口;•电位器模块接口;•加热器模块接口。

步骤2:控制系统建模和仿真在该设计中,需要通过建模和仿真来了解控制系统的各个部分。

需要进行的仿真工作包括:•建立温度传感器的数学模型;•建立加热器动态响应模型;•建立PID控制器模型。

步骤3:软件部分设计在实际操作中,需要使用软件来调节控制参数和显示实时温度。

需要进行的软件部分设计包括:•设计数字温度读取程序,实现从温度传感器传入数值;•设计PID控制器程序,实现调节控制器参数;•设计加热器控制程序,实现控制加热器的开关;•设计数码管显示程序,实现温度的实时显示。

步骤4:实验验证在完成硬件接口设计和软件部分设计后,需要进行实验验证。

在实验中需要进行以下操作:•设置温度值;•调节PID控制器参数;•查看实时温度数值;•记录和分析实验结果。

设计效果该课程设计通过实际的过程控制系统设计和实验,对学生进行了一次综合实践培训,有效地提高了学生对过程控制的理解和应用能力。

同时,该设计涉及到了硬件设计和软件开发两个方面,对学生的动手能力和编程能力也有很好的锻炼和提高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书设计依据、要求及主要内容:一、设计任务加热器出口温度在阶跃扰动DC作用下,其输出响应数据如下:t/s012345678y 4.0 4.0 4.2 4.5 4.8 5.1 5.4 5.7 5.8t/s91011y 5.85 5.9 6.0 6.0试根据实验数据设计一个超调量的无差控制系统。

具体要求如下:(1)根据实验数据选择一定的辨识方法建立对象的数学模型;(2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等);(3)根据设计方案选择相应的控制仪表;(4)对设计的控制系统进行仿真,整定运行参数。

二、设计要求采用MATLAB仿真;需要做出以下结果:(1)超调量(2)峰值时间(3)过渡过程时间(4)余差(5)第一个波峰值(6)第二个波峰值(7)衰减比(8)衰减率(9)振荡频率(10)全部P、I、D的参数(11)PID的模型(12)设计思路三、设计报告课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。

四、参考资料[1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004[2] 邵裕森.过程控制工程.北京:机械工业出版社2000[3] 过程控制教材目录一 设计内容1.1总体思路1.2.设计要求二 数学模型的建立2.1 PID参数K、T、Τ的确定2.2传递函数的确定三 控制系统的设计3.1原系统方框图3.2 PID温度控制器原理3.3 控制规律与控制变量的确定3.4 过程控制系统设备的选择四 系统仿真及其分析4.1仿真波形图4.2系统的性能指标五 课程设计心得体会六 参考文献一 设计内容1.1总体思路在课程设计过程中,可初步体验过程控制系统的设计过程、设计要求、完成的工作内容和具体的设计方法,了解必须提交的各项工程文件,也达到巩固、充实和综合运用所学知识解决实际问题的目的。

同时也使学生加深理解所学的理解知识,提供运用所学知识的能力,按照给定的设计资料和设计要求,使学生掌握电气控制系统设计的基本技能,增强独立分析与解决问题的能力。

根据任务书中要求,对表格中数据进行分析计算,得到相应的传递函数,用MATLAN进行仿真实验,最后得到相应的符合要求的PID参数。

对修正后的波形进行仿真,得到任务书中要求的未知量。

1.2.设计要求试根据实验数据设计一个超调量的无差控制系统。

具体要求如下:1、根据实验数据选择一定的辨识方法建立对象的数学模型;2、根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等);3、根据设计方案选择相应的控制仪表;4、对设计的控制系统进行仿真,整定运行参数。

二 数学模型的建立2.1 PID参数K、T、τ的确定静态放大系数t=[0 1 2 3 4 5 6 7 8 9 10 11];h=[4.0 4.0 4.2 4.5 4.8 5.1 5.4 5.7 5.8 5.85 5.9 6.0 ]; plot(t,h);图1 传递函数响应曲线图2 取y(t)=0.39是的响应曲线图3 取y(t)=0.63时的响应曲线取t1=3.9,t2=6.3故Y1=4.77,Y2=5.49由MATLAB仿真可得t1=3.9,t2=6.3T=2(t2 - t1)=4.8=2t1 - t2 =1.5(0.2<0.31<1)=4.17=2.12.2传递函数的确定其中所以该系统的数学模型为:三 控制系统的设计3.1原系统方框图图4 系统方框图3.2 PID温度控制器原理电脑控制温度控制器:采用PID模糊控制技术,用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。

采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。

传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。

PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。

然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。

当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。

当需要控温的关键很多时,就会手忙脚乱。

这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。

图5 加热器控制系统方框图图6 PID系统控制方框图3.3 控制规律与控制变量的确定在此可根据的值来选择控制规律,当a=0.2时应选用比例或比例积分控制规律;当0.2<a<1时,应选用比例-积分-微分控制规律;当a>1时应采用串级控制或前馈控制。

而该系统的a属于第二种情况,所以应当选用比例-积分-微分控制规律。

具有比例-积分-微分控制规律的控制器,称为PID控制器。

这种组合具有三种基本规律各自的特点,其运动方程为:相应的传递函数是:在现实情况下,可直接选择测量的参数作为被控参数,这里选择出口处的水温作为被控变量。

同时可以选择燃料的多少作为控制出口温度的控制变量。

3.4 过程控制系统设备的选择测量与变送是控制系统设计中的一个重要组成部分,是系统产生控制作用的依据,要使系统良好运行,测量值必须迅速可靠地反映被控变量的真是变化情况,测量与变送设备主要根据被检测参数的性质与系统设计的总体考虑来决定。

本处选择热网加热器,热网加热器其结构采用:卧式、固定管板式结构。

依据其介质特性,采用二管程、单壳程。

加热蒸汽走壳程,循环水走管程。

管板与壳体、管箱均采用焊接结构,管箱上设有人孔,便于换热管的维护清理和更换。

热网加热器有以下性能特点:由于本热网特殊结构和加工工艺,同时强化汽水两侧,传热系数高。

(凝结水导流装置、管内增加水流速形成紊流)、水侧阻力小、耐高压、高温、不易泄露、较宽的负荷范围热工性能变化不大等特点其中优化的结构设计应该如下:(1)为减小热应力,换热器壳体采用大筒体间和小筒体用两个半波膨胀节相连,这样既满足了蒸汽进口的流通面积要求同时也消除了管束与壳体的膨胀差应力。

(2)在蒸汽进口设置蒸汽分散组件,在特大蒸汽流量状态下,具有蒸汽分散作用,使进入管束的蒸汽流速迅速降低到10m/s以下,大大缓解了特大流量对管束的冲刷;该组件在蒸汽进口处设置较大的弧形有锈钢防冲板,对开车阶段开启蒸汽阀门瞬间对管束的冲击或正常操作阶段进入壳程的蒸汽流对管束的冲击具有阻挡和分流的作用,延长了管束使用寿命。

(3)为了减小热网加热器在运行中管束的震动,采取减小管束无撑跨距。

管板与换热管采用强度焊加贴胀的方式以消除间隙并防止间隙腐蚀。

(4)为防止蒸汽冷凝液在换热管外表面形成大量水膜及底部换热管被上部换热管冷凝液所浇淋,特设置蒸汽分区导流装置,减少了冷凝水大量的附着在换热管表面。

(5)由于本热网加热器直径较大,按常规的布管方式则管束心部的换热管对于蒸汽凝结换热来讲,将很难参与换热,这样就影响了换热效果。

为此本热网加热器在布管上均匀地增设了蒸汽通道,使加热蒸汽能顺利地进入到管束心部,使所有的换热管都充分地参与换热。

(6)为保证较低的疏水温度,避免蒸汽进入凝结水管道,确保水泵不发生气蚀现象,使疏水更加稳定、可靠,特设置疏水井,便于水位调节。

(7)为防止管程循环水由于误关阀门,而蒸汽继续通入使循环水受热膨胀,造成设备损坏,管侧设置安全阀,使循环水受热膨胀时通过安全阀释放压力,保护设备。

为防止由于换热管的破裂而使循环水进入壳程蒸汽侧,使壳程水位急剧升高,当水位高于设定水位时,平衡容器会与紧急疏水阀一起将过量的水泄掉,保护设备。

当出现特别情况时,壳程会灌满水,相应压力会高到危及设备的安全,此时安全阀自动打开,与紧急疏水阀一起泄水,确保热网加热器的安全。

四 系统仿真及其分析4.1仿真波形图图7原系统的仿真图图8 校正后的仿真图4.2系统的性能指标超调量:=峰值时间:=16s过度过程时间:=30s余差p=1.5012-1.50=0.0012第一个波峰值:1.75,第二个波峰值:1.52衰减比:75:52衰减率:0.04振荡频率:5.8调节后全部PID参数:=1PID的模型:此设计采用比例-积分控制规律五 课程设计心得体会在设计的过程中,我遇到一些麻烦,比如说怎样来实现电动机回路的自动通断调节、怎样来实现时钟的调整等等,这些问题都令我十分棘手。

通过去图书馆查阅相关资料和上网搜索各硬件的原理以及应用,我最终都一一解决了这些问题。

由于我们是三个同学做同一个题目,在设计过程中,我们遇到困难的时候也经常相互讨论,相互请教,最终一起解决问题,在此也感谢我的“战友”们。

总的来说,此次课程设计的过程比较轻松,从拿到问题到彻底解决问题,这是一个令人振奋并享受的过程。

经过去图书馆大量的查阅书籍,我也学到了很多在课本上没有的知识,收获颇丰。

这段过程让我懂得了一个道理,那就是学生要学的绝对不该仅仅是课本上的东西,有些东西只有走进图书馆,你才可能学习到。

也只有这样,我们才能成为一个见多识广、渊博的人。

六 参考文献[1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004[2] 邵裕森.过程控制工程.北京:机械工业出版社2000[3] 于海生.微型计算机控制技术.清华大学出版社,2004[4] 戴焯. 传感与检测技术. 武汉理工大学出版社,2006。

相关文档
最新文档