整体的思想方法

合集下载

小学数学思想方法

小学数学思想方法

小学数学思想方法一、整体观念思想方法整体观念是指将问题看作一个整体,并从整体中进行思考和分析。

在学习数学知识和解决数学问题时,学生应该培养整体观念,即从整体去理解和把握问题。

比如,在学习分数的概念时,学生可以通过将一块糖分成几份来理解分数的含义,而不仅仅是记住分数的定义。

二、归纳和演绎思想方法归纳是从具体的事例中总结出一般规律,而演绎是根据一般规律推出具体的结论。

在学习数学知识时,学生应该培养归纳和演绎的思维方法,即从具体例子中归纳出一般规律,然后用这个规律去解决其他类似的问题。

比如,在学习加法运算时,学生可以通过多个具体的例子来总结出加法的规律,再用这个规律去解决其他的加法问题。

三、抽象思维方法抽象是指将事物的共同属性提炼出来,形成概念或规律。

在学习数学知识时,学生应该培养抽象思维方法,即将具体的问题抽象化为数学符号或概念,用符号或概念来表示并解决问题。

比如,在学习几何图形时,学生可以将具体的图形抽象成几何图形的概念,并用几何图形的属性来解决相关问题。

四、逻辑思维方法逻辑思维是指根据前提和推理规则,进行合乎逻辑的推理和判断。

在学习数学知识和解决数学问题时,学生应该培养逻辑思维方法,即根据已知条件和数学规则,进行逻辑推理和判断,得出正确的结论。

比如,在解决代数方程的问题时,学生可以根据方程的性质和运算规则,进行逻辑推理,得出方程的解。

五、实践思维方法实践思维是指通过实际操作和体验,来加深对数学知识的理解和掌握。

在学习数学知识时,学生应该注重实践思维,即通过实际的物体、实际的活动和实际的问题来引导学生进行数学思维和解决问题。

比如,在学习分数的概念时,学生可以通过将物体切割成几份,比较几份的大小,加深对分数大小关系的理解。

小学数学思想方法是数学学习的基础,也是培养学生数学思维能力和解决问题能力的关键。

学生在学习数学时,应该注重培养这些思想方法,并灵活运用到解决问题中,从而提高学习效果。

通过培养这些思想方法,可以使学生更好地理解和掌握数学知识,提高数学水平。

六年级数学思维训练第5讲 整体的思想

六年级数学思维训练第5讲 整体的思想

整体的思想思想再现例题精讲整体化的思想就是把握题目中的条件和结论的关系,从全局出发,从整体特征思考并求解问题,从而促使问题解决的思想方法。

整体的思想主要有:整体运算;整体赋值;整体代入;整体抵消;化整为零等。

【例1】 如图所示,在长方形内有四条线段,把长方形分成若干块。

已知有三块面积分别是13,35,49.那么图中阴影部分的面积是 。

(全国小学数学奥林匹克竞赛预赛试题)【例2】 一个整数的个位右边写一个3就得到比原整数多一倍的新整数。

若新整数正好是原整数的首位加3所得整数的3倍,则原整数最小是。

(我爱数学夏令营竞赛试题)BE 第五讲【例3】连个互不相等的三位数写在一起就成了一个六位数,若这个六位数恰等于那两个三位数乘积的整数倍,则这个整数位数是。

(我爱数学夏令营竞赛试题)【例4】将六个自然数14,20,33,117,143,175分组,如果要求每组中的任意两个数都互质,则至少需要将这些数分成多少组?(全国华罗庚金杯少年数学邀请赛决赛试题)【例5】为反序的两个自然数的积是92565,求这两个互为反序的自然数。

(全国华罗庚金杯少年数学邀请赛试题)【例6】算式中,所有分母都是四位数。

请在每个方格中填入一个数字,使等式成立。

(全国华罗庚金杯少年数学邀请赛试题)【例7】如图,从图1那样的等边三角形开始,将三角形的每条边三等分,然后以中间的线段为边向外作新的等边三角形,如图2,得到一个“雪花六角形”。

接着将“雪花六角形”的12条边的每一条三等分,仍以中间的线段为边向外作新的等边三角形,如图3,得到一个新的“雪花形”。

问:图3的面积与图1的面积的比是多少?(全国华罗庚金杯少年数学邀请赛试题)【例8】如图1,一张面积为7.17平方厘米的平行四边形纸片WXYZ放在另一张平行四边形纸片EFGH上面,得到A,C,B,D四个交点,并且AB∥EF,CD∥WX。

问纸片EFGH的面积是多少平方厘米?说明理由。

(全国华罗庚金杯少年数学邀请赛试题)【例9】如图1,正六边形ABCDEF的面积是6平方厘米。

巧用整体的思想方法解题

巧用整体的思想方法解题
分析 观 察 到 : +( 1一
解 得

点评
一 “ 孕≤ 孚, ≤
一 ≤o+ 华 . 半 c c≤ S。
利 用整 体代 换 构 建 不 等式 也 是 求 解此
戈 y 1 Y +( 一 )= )= +( 一 )= 1
1 及乘积式 , 联想 到可用面积 公 式证 明. 证 明 构 造 如 图 5所 示 的正 三角形 , 则
+2 一 斫 b
——— :
— 一
, 需求 测只 则只
4 整体 展开
出 n+ b与 n 6即可. 联想 到韦达定 理 中根与 系数 易 的关 系 , 问题 即可迎 刃 而解. 解
因此
例 4 有一 个各条 棱长 均为 。的正 四棱 锥 , 现 用 一张 正方形 包装 纸 将 其完 全 包 住 , 能 剪裁 , 不 但 可 以折 叠 , 求包 装纸 的最小 边长.
径.
都有 不 同层次 的渗透 .
2 解 题 方法指 导
( ) 用整体 的思想 方 法解 题 , 有 强烈 的整 1运 要 体意识 , 认 真 分 析 问题 的 条 件 或 结 论 的 表 达 形 要
式、 内部 结 构特征 , 不拘 泥 于常规 , 着 眼于 问题 的 不 各 个组 成部 分 , 整体上 观察 、 析 , 整体结 构及 从 分 从 原 有 问题 的改造 与转化 人手 , 找解 题 的途径 . 寻
PA C -B 的体积 为
A. O 4 B. 0 8 C.1 0 6 D. 4 20


分析
若按常规 方 法利用 体积公 式求解 , 则底
图 3
面积 可用海伦 公式求 出 , 但顶 点到底 面 的高无 法作 出. 换个 角度思 考 , 意 到 三棱 锥 的有 3对边 两 两 注

整体思想的知识点总结

整体思想的知识点总结

整体思想的知识点总结整体思想是指一种综合、系统的思维方式,将事物的各个方面统一起来,把握其发展的整体规律。

它贯穿于不同学科的研究中,对于我们认识世界、解决问题具有重要意义。

下面将从整体思想的概念、特点、应用以及发展趋势等方面进行总结。

一、整体思想的概念整体思想可以追溯到古代哲学思想,如我国的“天人合一”思想、古希腊的“形而上学”思想等,它们都强调事物之间的内在联系和综合性。

整体思想认为一切事物都是相互联系、相互作用的,不能单独看待。

在现代,整体思想逐渐成为一种重要的科学思维方式,深受各个学科的关注。

二、整体思想的特点1. 综合性:整体思想要求将事物的各个方面、各个环节统一起来,形成一个系统的整体。

它不以局部、部分为研究对象,而是关注事物的全貌。

2. 统一性:整体思想强调事物之间的内在联系和相互作用,通过理解这种联系来认识事物的本质。

它关注事物之间的整体关系,而非孤立的描述。

3. 动态性:整体思想认为事物发展变化的过程是连续的、不断的,存在内在的规律性。

它强调把握事物发展的全过程,而非简单地看待静止的状态。

4. 相对性:整体思想把握事物的相对性和相对发展规律,不排斥局部性和特殊性。

它认为在统一整体中,事物的差异是相对的,应当予以尊重。

三、整体思想的应用1. 跨学科研究:整体思想可以帮助不同学科之间建立联系、共同研究问题。

它能够超越学科边界,形成多学科交叉的研究领域,从而促进学科发展的融合和创新。

2. 组织管理:整体思想可以帮助组织管理者把握全局,有效协调各个部门之间的工作。

它能够促进组织的协同运行,提高管理效率和效果。

3. 生态保护:整体思想可以引导我们关注生态系统的整体平衡和可持续发展。

它鼓励人们从生态的角度思考问题,采取综合性的措施保护环境,实现人与自然的和谐共生。

四、整体思想的发展趋势1. 全球化视野:整体思想的应用范围将越来越广泛,跨越国家和地区的界限,形成全球化的视野。

人们将更加重视全球性问题,进行全球范围内的整体思考和解决。

什么是整体思想?难不难?如何才能学好此类数学思想方法?

什么是整体思想?难不难?如何才能学好此类数学思想方法?

什么是整体思想?难不难?如何才能学好此类数学思想方法?在数学学习过程中,我们除了要学习大量的数学知识和方法技巧之外,更要掌握好一些重要数学思想方法,如整体思想。

数学思想方法大家接触过很多,如函数思想、方程思想、数形结合思想、分类讨论思想等,不同的思想方法有不同的应用法则,或不同的数学思想方法可以一起“共用”,共同解决问题等。

像数形结合这些思想方法是大家接触较多的,而对于整体思想的了解和应用,相对会少一些,因此为了能更好帮助大家提高对整体思想的了解,今天我们就一起来讲讲此类思想方法的“用法”。

什么是整体思想呢?整体思想就是在解决数学问题时,将要解决的问题看作一个整体,通过对问题的整体形式、整体结构、已知条件和所求综合考虑后得出结论。

更加直白的讲整体思想就是指从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。

我们先一起来看一道具体的例子:分解因式(x2+5x-3)(x2+5x+1)-21解:设x2+5x-3=t,则x2+5x+1=t+4原式=t(t+4)-21=t2+4t-21=(t+7)(t-3)再将x2+5x-3=t代入上式原式=(x2+5x-3+7)(x2+5x-3-3)=(x2+5x+4)(x2+5x-6)=(x+1)(x+4)(x+6)(x-1)题干分析:若把两个二次三项式(x2+5x-3)与(x2+5x+1)相乘,则将得到一个四次多项式,这时再分解因式就十分困难。

但若把(x2+5x-3)(或x2+5x)视为一个整体,即把(x2+5x-3)看成一个新变元t,原式就变形为关于t的二次多项式,问题就容易解决了。

解题反思:由这道典型例题我们可以看出,对某些多项式的因式分解,如果前一项的两个因式中只是常数项不同,则可将它们中的相同部分看成一个整体,用换元法可以降次,简化解题过程。

数学解题中的思想方法——整体思维和发散思维

数学解题中的思想方法——整体思维和发散思维

数学解题中的思想方法——整体思维和发散思维知识技能梳理:1、整体思维:整体思维方法在解题中,不是着限于问题的各个组成部分,而是将要解决的问题看作为一个整体。

具体方法:(1)整体代入,直奔终点;(2)整体把握,各个击破;(3)整体补形,变换角度。

2、发散思维:发散思维具有多向性、变异性、独特性的特点。

在内容上具有变通性和开放性,形式多样。

解题中涉及的主要发散思维模式,其涵义概括如下:题型发散——保持原命题发散的特点,变换题型和命题形式;解法发散——从不同角度、不同侧面解答问题;综合发散——将分析、归纳、综合等多种思维方法进行综合应用,解决较复杂的问题,使知识系统化,强调灵活应用。

发散思维还有逆向思维、迁移思维、分解思维、构造思维等等。

典型例题剖析:例1、设{ EMBED Equation.KSEE3 \* MERGEFORMAT |{}n a 是由正数组成的等比数列,是其前项和,证明:答案:略例2、如图,是直三棱柱,过点的平面和平面的交线记作。

(1)判定直线和的位置关系,并证明;(2)若,求顶点到直线的距离。

答案:(1);(2)例3、过抛物线顶点,任作互相垂直的两条弦交此抛物线于两点,求证:此两点连线的中点轨迹仍为一抛物线。

答案:略例4、已知复数,若是常数,,求满足的点的轨迹方程。

答案:当时,轨迹为椭圆,方程为;当时,轨迹为线段,方程是例5、如果正实数满足,求的最大值。

答案:A 1B 1C 1 A BC例6、对于函数,若存在,使成立,则称为的不动点。

已知函数(1)当时,求函数的不动点;(2)若对任意实数,函数恒有两个相异的不动点,求的取值范围。

答案:(1);(2)例7、如图,且有一般地,求:(1)向量对应的复数,;(2)向量对应的复数;(3) 答案:(1)(2)(3)自我测试作业:1、设复数满足等式,且,又已知复数使得为实数,问复数在复平面上的对应的点的集合是什么图形?并说明理由。

答案:以为圆心,1为半径的圆,除两点。

整体的思想方法

整体的思想方法

整体的思想方法一、知识要点概述解数学题时,人们往往习惯于从问题的局部出发,将问题分解成若干个简单的子问题,然后再各个击破、分而治之.但思考方法并非对所有题目都适用,它常常导致某些题解题过程繁杂、运算量大,甚至半途而废.其实,有很多数学问题,如果我们有意识地放大考察问题的“视角”,往往能发现问题中隐含的某个“整体”,利用这个“整体”对问题实施调节与转化,常常能使问题快速获解.一般地,我们把这种从整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题思想方法,称为整体思想方法.在数学思想中整体思想是最基本、最常用的数学思想。

它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。

运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。

它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。

高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。

二、解题方法指导1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。

2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。

3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。

三、整体的思想方法主要表现形式1、整体补形【例1】甲烷分子(CH4)由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都相等的四面体,其中四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中心,它与每个氢原子的距离都相等.若视氢原子、碳原子为一个点,四面体的棱长为a,求碳原子到各个氢原子的距离.S思路:透过局部→整体补形→构建方程解:显然,四面体的四个顶点在以中心(碳原子)为球心,中心到各顶点(氢原子)的距离为半径的球面上.如图,将此四面体ABCD 补成正方体BD’,其中A’,B’,D’也在球面上.设碳原子到每个氢原子的距离为x ,则2x= BD’,B D’、AB (a )、AA’之间的关系是a=AB=2AA’,2x=BD’=3AA’,因此,2x=,23a ⋅a x 46=∴.即碳原子到各个氢原子的距离为a 46. 评注:这里,我们将一个正四面体补成一个正方体,则正四面体的中心与各顶点的距离与正四面体棱长通过正方体的棱长搭桥立即建立联系,局部问题便在正方体这个整体内快速获解,体现了整体补形较高的思维价值.在立几中,我们常常将四面体补成正四面体或平行六四面体、正四面体补成正方体、过同一个顶点的三条棱两两垂直的三棱锥(或四面体)补成长方体、四棱锥补成平行六面体,等等.近几年的高考题或高考模拟题中,经常出现这类问题,试题常常以选择题、填空题的形式出现,具有一定的创新性.复习中大家要注意总结这种问题的补形规律,力争在高考中速战速决.【例2】、如图2,已知三棱锥子P —ABC ,10,PA BC PB AC PC AB ======P —ABC的体积为( )。

初中数学解题方法第章整体思想PPT教学课件(推荐)

初中数学解题方法第章整体思想PPT教学课件(推荐)
初中数学解题方法
第八章 整体思想
所谓整体思想,就是从全局入手,找出问题的 共同特征,聚零为整,把握问题的共性联系或结构 的思想方法。
把注意力和着眼点放在问题的整体结构改造 上,从整体上把握问题的内容和解决的方向和策略, 这样往往能使问题的解答简洁、明快,运用整体思 想解题,能使不少复杂的问题简单化,抽象的问题 具体化。
第一节 整体代入法
例题 1
例题 2
例题 3
例题 4
例题 5
第二节 方程中的整体思想
例题1
例题 2
例题 3
例题 4
例题 5
例题 6第三节 几何ຫໍສະໝຸດ 的整体思想例题1例题2
例题3
例题4
例题 5
例题 6
2
1、考前物质准备 考试前一天要整理好学习生活用具。首 先是准 考证; 其次是 钢笔、 铅笔、 圆规、 直尺、 量角器 、三角 板、橡 皮等; 再次是 必要的 如手绢 、清凉 油和生 活用品 。 2、考前心理准备 成绩优秀的考生应记住:“没有常胜 将军”、 “不以 一次成 败论英 雄”;成 绩不太 好的考 生要有 “破釜 沉舟”的 决心。 3、高考当天早晨,应有良好的心理暗示 如“我很放松,今天一定能正常发挥”、“ 今天我 很冷静 ,会考 好的”等 。 4、注意早餐 早晨一定要吃丰盛的早饭,但不能过于 油腻。 5、浏览笔记、公式、定理和知识结构 主要是浏览一下重要的概念、公式 和定理 ,或记 一些必 须强记 的数据 。 6、进考室前10分钟 在考室外最好是一人平静地度过,可 就近找 个地方 坐一会 儿,或 看一下 笔记, 再次浏 览知识 结构。设 法 避 开 聊 天 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整体的思想方法一、知识要点概述解数学题时,人们往往习惯于从问题的局部出发,将问题分解成若干个简单的子问题,然后再各个击破、分而治之.但思考方法并非对所有题目都适用,它常常导致某些题解题过程繁杂、运算量大,甚至半途而废.其实,有很多数学问题,如果我们有意识地放大考察问题的“视角”,往往能发现问题中隐含的某个“整体”,利用这个“整体”对问题实施调节与转化,常常能使问题快速获解.一般地,我们把这种从整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题思想方法,称为整体思想方法.在数学思想中整体思想是最基本、最常用的数学思想。

它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。

运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。

它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。

高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。

二、解题方法指导1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。

2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。

3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。

三、整体的思想方法主要表现形式1、整体补形【例1】甲烷分子(CH4)由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都相等的四面体,其中四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中心,它与每个氢原子的距离都相等.若视氢原子、碳原子为一个点,四面体的棱长为a,求碳原子到各个氢原子的距离.思路:透过局部→整体补形→构建方程图1 AB C A’ B’ D’DCSD 解:显然,四面体的四个顶点在以中心(碳原子)为球心,中心到各顶点(氢原子)的距离为半径的球面上.如图,将此四面体ABCD 补成正方体BD’,其中A’,B’,D’也在球面上.设碳原子到每个氢原子的距离为x ,则2x= BD’,BD ’、AB (a )、AA’之间的关系是a=AB=2AA’,2x=BD’=3AA’,因此,2x=,23a ⋅a x 46=∴.即碳原子到各个氢原子的距离为a 46. 评注:这里,我们将一个正四面体补成一个正方体,则正四面体的中心与各顶点的距离与正四面体棱长通过正方体的棱长搭桥立即建立联系,局部问题便在正方体这个整体内快速获解,体现了整体补形较高的思维价值.在立几中,我们常常将四面体补成正四面体或平行六四面体、正四面体补成正方体、过同一个顶点的三条棱两两垂直的三棱锥(或四面体)补成长方体、四棱锥补成平行六面体,等等.近几年的高考题或高考模拟题中,经常出现这类问题,试题常常以选择题、填空题的形式出现,具有一定的创新性.复习中大家要注意总结这种问题的补形规律,力争在高考中速战速决.【例2】、如图2,已知三棱锥子P —ABC ,234,10,241PA BC PB AC PC AB ======,则三棱锥子P —ABC 的体积为( )。

4080160240AB C D分析:若按常规方法利用体积公式求解,底面积可用海伦公式求出,但顶点到底面的高无法作出,自然无法求出。

若能换个角度来思考,注意到三棱锥的有三对边两两相等,若能把它放在一个特定的长方体中,则问题不难解决。

解析:如图3所示,把三棱锥P —ABC 补成一个长方体AEBG —FPDC ,易知三棱锥P —ABC 的各边分别是长方体的面对角线。

PE=x,EB=y,EA=z 不妨令,则由已知有:2222221001366,8,10164x y x z x y z y z ⎧+=⎪+=⇒===⎨⎪+=⎩,从而知 416810468101606P ABC AEBG FPDC P AEB C ABG B PDC A FPC AEBG FPDC P AEB V V V V V V V V --------=----=-=⨯⨯-⨯⨯⨯⨯=2、整体展开【例3】有一个各条棱长均为a 的正四棱锥,现用一张正方形包装纸将其完全包住,不能剪裁,但可以折叠,求包装纸的最小边长.思路:整体展开→化归平几→面积覆盖图5S 3S 1S 2S 4D AB C 图4解:将图4中的正四棱锥整体展开,变为图5中的平面图形,问题则转化为求一个最小的正方形将图5完全覆盖.顺次连结图5中的S 1,S 2,S 3,S 4,易证S 1S 2S 3S 4,为正方形,且为将图5完全包住的最小的正方形.于是其边长为:aa a a a a 26223132150cos 20222+=⋅+=⋅+=-+. 故包装纸的最小边长为a 262+.评注:为研究立体图形的某些特性,如表面积问题、沿表面行走路径最短问题、包装问题、剪裁问题、制作 问题等等,我们常常视立体图图5形为一个整体,将其展开,变为平面图形,通过对平面图形的研究达到解决立几问题的目的.近几年的高考,加大了对这种解题思想方法的考查力度,试题常常以现实生活为背景,设计新颖,能有效考查学生的空间想象能力和综合能力.对此大家应引起重视.3、整体补式【例4】、求sin 2200+cos 2500+sin200cos500的解。

解:令A= sin 2200+cos 2500+sin200cos500B= cos 2200+ sin 2500+ cos 200 sin 50则A+B=2+sin700………①A-B= -070sin 21- ………② ①+②得A=43,故原式=434、整体构形【例5】、已知 x,y,z ),1,0(∈求证:x(1-y)+y(1-z)+z(1-x)<1分析:观察到:x+(1-x)=y+(1-y)=z+(1-z)=1及乘积式,联想到用面积公式。

证明:如图6,构造正三角形,则S △ABD +S △EFC +S △BDF =21x(1-y)sin600+ 21y(1-z) )sin600+ 21z(1-x) )sin600<S △ABC =21×1×1×sin600<1,故x(1-y)+y(1-z)+z(1-x)<1。

5、整体代换【例6】、已知22sin sin =+y x ,求cosx+cosy 的取值范围。

解:设u=cosx+cosy ,将已知式与待求式两边平方得:y y x x 22sin sin sin 2sin 21++=,(1) 图6y y x x u 222cos cos cos 2cos ++=。

(2)(1)+(2)得:)cos(22212y x u -+=+,即23)cos(22-=-u y x ,因为2)cos(22≤-≤-y x ,所以22322≤-≤-u ,解得214214≤≤-u 。

所以214cos cos 214≤+≤-y x 。

点评:利用整体代换构建不等式也是求解此类问题的最基本的方法。

【例7】在数列{a n }中,S n 为其前n 项和,若a 1=23,a 2=2且S n+1-3S n +2S n -1+1=0(n ≥2),试判断{a n -1}(n ∈N*)是不是等比数列,为什么?思路:透过局部→重新组合→整体代换解:将已知等式重新组合,得(S n+1-S n )-2(S n -S n -1)+1=0 又因为a n+1=S n+1-Sn ,a n =S n -S n -1(n ≥2), ∴a n+1-2a n +1=0,即a n+1-1=2(a n -1), ∴111--+n n a a =2(n ≥2)(*)当n=1时,2123121112=--=--a a ,因此(*)式对n ∈N*成立.故{a n -1}(n ∈N*)是等比数列.评注:这里,如果将S n+1、S n 与S n -1均用求和公式代入,将会十分繁难,而从S n+1-3S n +2S n-1+1=0整体着眼,实施整体代换,解题过程十分简捷、明快.整体代换在解题中往往能起到化难为易、化繁为简的作用,高考中以简化数列、解几运算居多.6、整体换元【例8】、已知xy y x ,y x R y x ++=+∈+求1,,22的最大值 解析:由,y x R y x 1,,22=+∈+首先想到用三角换元即令)2,0(.......sin cos πθθθ∈⎩⎨⎧==y x ,则θθθθcos sin cos sin ++=++xy y x ,直接求解较困难,于是又令21cos sin cos sin 21)]2,1((cos sin 22-=⇒+=⇒∈=+t t t t θθθθθθ,从而有.2212221)1(21212121cos sin cos sin 222+++===∴-+=-+=-+=++=++的最大值为时即易知当xy y ,x y x t t t t t t xy y x θθθθ点评:本题利用整体换元成功地实现了二元函数问题一元化转化的目的,这是求解二元函数最值问题的最常用的思想方法。

7、整体设元【例9】、已知密码3•BCPQR=4•PQRABC 其中每个字母都表示一个十进制数字,试将这个密码译成数字形式。

解析:此题有6个未知数,若依次求解,无法达到目的确良,注意到ABCPQR 与PQRABC 之间的轮换关系,可将ABC 与PQR 视为两个整体,分别设ABC=x,PQR=y,则3(1000x+y )=4(1000y+x)∴428x=571y ∵x,y 为三位数且428与571互奇,∴x=571,y=428∴所求密码为3•571428=4•428571.【例10】已知tan αtan β=3, tan 2βα-=2,求cos(α+β)的值.思路:转换思维→整体设元→构建方程解:∵tan2βα-=2, ∴cos(α-β)=2tan 12tan 122βαβα-+--=-53. 设x ⋅=⋅βαβαsin sin ,cos cos )=53-=+y x ① 又xy =3 ②, ①、②联立解得,于是cos(α+β)=x -y=103. 评注:本题条件分散、联系隐蔽,企图由三角恒等变形求解难以达到目标.从待求cos(α+β)与能求cos (α-β)中发现cosαcosβ和sinαsinβ两个整体,而这两个整体又恰好含在tanαtanβ中.因此,通过引进两个新元x , y ,迅速构建出以x , y 为未知数的方程组,使问题顺利获解.其中,整体换元是解题关键性的一步.整体换元是一种重要的解题方法,几乎每年的高考都要从不同的角度对其进行考查.8、整体运算【11】、椭圆内12322=+y x 有一点P (1,1),一直线经过点P 与椭圆交于P 1,P 2两点,弦P 1P 2被点P 平分,求直线P 1P 2的方程。

相关文档
最新文档