高一数学二倍角公式讲解
北师大版数学高一-3.3素材 二倍角公式常用方法例析

二倍角解方攻略二倍角的三角函数是和、差角的三角函数的特例,其求值,化简,证明的出发点是统一角,统一函数和降低次数。
在变形过程中,要注意角与角之间的和、差、倍关系和特殊角之间的关系等。
同时还要观察式子的特征,适当选用公式进行化简。
这里对几种常用方法举例解析,供同学们参考。
一、逆用公式法: 例1 求sin10°sin30°sin50°sin70°的值。
分析:注意到sin10°sin50°sin70°=cos80°cos40°cos20°,分子分母可同时乘以2sin20°,逆用正弦的二倍角公式求解,也可用变形式作商相消。
解法1 (连续逆用法)sin10°sin30°sin50°sin70°= 12 cos80°cos40°cos20°=14sin20° ·cos80°cos40°·(2sin20°cos20°) =18sin20°·cos80°·(2sin40°cos40°) = 116sin20° ·(2sin80°cos80°) = sin160°16sin20° = 116解法2 (作商法)sin10°sin30°sin50°sin70°= 12cos80°cos40°cos20°= 12 · sin160°2sin80° · sin80°2sin40° · sin40°2sin20° = sin160°16sin20° = 116 评注:①解法1是根据其特点采用同乘同除一个三角函数式,使其构成使用二倍角公式sin2α=2sin αcos α的形式,从而达到求值的目的。
高一数学二倍角的三角函数

当 = 时
二倍角公式:
sin 2 2 sin cos
ks5u精品课件
3.若
x 2 sin 1 2 ,则 f x 2 tan x x x sin cos 2 2
2
2
8 f _______ 12
x 1 2 sin 2 2 tan x 2 cos x f ( x ) 2 tan x 2 x x sin x 2 sin cos 2 2
S 2
2
cos 2 cos sin
2
C 2
2 tan tan 2 2 1 tan
k ,且 k ,k Z 2 2 4
ks5u精品课件
T2
二倍角公式
sin 2 2 sin cos
cos2 cos sin 1 2sin 2cos 1
例2.不查表求值: (1)2 cos105 cos15 ;
5 5 2 (2) sin 15 ; 18 9
sin (4)
tan15 (3) 2 ; 1 tan 15
例3.求证:
24
cos
24
cos
12
.
sin 1 sin cos 1 cos sin 1 sin cos 1 cos sin 2
2
ks5u精品课件
灵活运用公式
sin 2 2 sin cos
二倍角的三角函数公式课件-2022-2023学年高一下学期数学北师大版(2019)必修第二册

9
4
=
−(2×25−1)×(−5)
3
5
28
=− 75.
高中数学
必修第二册
北师大版
sin
sin 2+2sin2 sin 2+2sin cos · cos
(方法2) 1−tan =
=sin
1−tan
17π
∵ 12 < <
π
7π
5π
,∴
4
3
1+tan
π
π
2 · 1−tan =−cos( 2 + 2)tan( 4 + ).①
1
8
1
8
1
8
= cos 70°·cos 10°·cos 50°= cos 10°cos 50°cos 70°= .
1
1
∵ ≠0,∴ =8,即sin 10°sin 50°sin 70°=8.
tan2 5°−1 sin 20°
2
(4)原式=2·2tan 5° ·1+cos 20°=− tan 10°·tan
必修第二册
北师大版
反思
感悟
反思感悟
(1)整体思想是三角函数求值中的常见思想,本题的前两种方法尤为值得注意,更为重要的是本题中的
π
角“2”与“ 4 +”的变换方法,即sin
π
π
π
2=−cos( 2 +
π
π
2)=−cos[2( 4
π
π
+ )]=1-2cos 2 ( 4 +
π
( + )
)=2sin2 4 -1.
(3)因式分解变形
二倍角的正弦、余弦、正切公式

归纳小结
(1)二倍角公式是和角公式的特例,体现了 二倍角公式是和角公式的特例, 二倍角公式是和角公式的特例 将一般化归为特殊的基本数学思想方法。 将一般化归为特殊的基本数学思想方法。 (2)二倍角公式与和角、差角公式一样,反 二倍角公式与和角、 二倍角公式与和角 差角公式一样, 映的都是如何用单角α的三角函数值表示 映的都是如何用单角 的三角函数值表示 复角( 的三角函数值, 复角(和、差、倍)的三角函数值,结合 前面学习到的同角三角函数关系式和诱导 公式可以解决三角函数中有关的求值、 公式可以解决三角函数中有关的求值、化 简和证明问题。 简和证明问题。
化简 sin 50 (1 + 3 tan10 )
o o
cos10o + 3 sin 10o o 解: 原式 = sin 50 ⋅ o cos10 o o 2 sin 40 = sin 50 ⋅ o cos10 o o 2 sin 40 = cos 40 ⋅ o cos10 o sin 80 = =1 o cos10
[例2]若270°<α<360°, 化简:
1 1 + 2 2
求值
1 1 + cos 2α 2 2
(1)cos80°cos40°cos20° (2)sin10°sin30°sin50°sin70°
例3
1+sin2 −cos2 θ θ 求 : 证 = tanθ 1+sin2 +cos2 θ θ
2
1 + 2 sin θ cos θ − (1 − 2 sin θ ) 证明: 证明:左边 = 2 1 + 2 sin θ cos θ + ( 2 cos θ − 1)
同样对于正切也有这样的结论
5.5.1第三课时二倍角的正弦、余弦、正切公式课件高一上学期数学人教A版(2019)必修第一册

2
+
1-cos (2 -30°)
2
+cos θsin θ
1
=1+2(cos 2θcos 30°-sin 2θsin 30°-cos 2θcos 30°-sin 2θsin 30°)
1
1
+2sin 2θ=1-sin 2θsin 30°+2sin 2θ=1.
(2)证明 左边=
(1-cos2 )+sin2
A.2sin 15°cos 15°
B.cos215°-sin215°
C.2sin215°
D.sin215°+cos215°
2.若 sin
α
3
= ,则 cos α等于
2 3
2
1
A.-
B.-
3
3
π
π
3.sin4 -cos4 等于
12
12
1
A.-
2
B.-
3
2
1
C.
3
1
C.
2
2
D.
3
D.
3
2
跟踪训练
4.cos275°+cos215°+cos 75°cos 15°的值等于
二倍关系.
(3)注意几种公式的灵活应用,如:
①sin
π
π
2x=cos2-2x=cos24-x
=2cos
②cos
π
π
2x=sin2-2x=sin24-x
π
π
=2sin4-xcos4-x.
高一寒假第六讲:二倍角与半角的正弦,余弦和正切xsb

高一寒假第六讲:二倍角与半角的正弦、余弦和正切【知识梳理】1、二倍角公式: αααc o s s i n 22s i n =;)(2αSααα22sin cos 2cos -=;)(2αCααα2tan1tan 22tan -=;)(2αT降幂公式:1cos 22cos 2-=αα αα2sin 212cos -=)(2αC ' 升幂公式:22cos 1sin22cos 1cos 22αααα-=+=2、半角公式:α+α-±=αα+±=αα-±=αcos 1cos 12tan,2cos 12cos,2cos 12sin3、万能公式:2tan12tan2tan ,2tan12tan1cos ,2tan12tan2sin 2222ααααααααα-=+-=+=基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等); (2)三角比名互化(切割化弦); (3)公式变形使用(ta n ta n αβ±()()tan 1tan tan αβαβ=±;(4)三角比次数的降升(降幂公式:21c o s 2c o s 2αα+=,21c o s 2s in 2αα-=与升幂公式:21c o s 22c o s αα+=,21c o s 22sin αα-=);【方法总结】 三角比的化简、计算、证明的恒等变形的基本思路:一角二名三结构。
即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角比变换的核心!第二看三角比的名称之间的关系,通常“切化弦”;第三观察代数式的结构特点.(5)式子结构的转化(对角、三角比名称、式子结构化同) ; (6)常值变换主要指“1”的变换(221sinc o s x x =+22se cta nta n c o t x x x x=-=⋅ta ns in 42ππ===)(7)正余弦“三兄妹—sin cos sin cos x x x x ±、”的内在联系――“知一求二”,若sin cos x x t ±=,则sin cos x x =212t -±,特别提醒:[2,2]t ∈-.【例题精讲】例1、不用计算器,求下列各式的值(1)15cos 15sin ; (2)8sin8cos22ππ-; (3)5.22tan 15.22tan 22-; (4)75sin 212-.变式练习:求下列各式的值(1))125cos125)(sin125cos 125(sin ππππ-+ (2)2sin2cos44αα-(3)ααtan 11tan 11+-- (4)θθ2cos cos 212-+例2、已知5cos 3sin cos sin 2-=θ-θθ+θ,求3cos 2θ + 4sin 2θ 的值例3、已知π<α<π2,0<β<π-,tan α =31-,tan β =71-,求2α + β【辅助角公式】()22s in c o s s in a x b x ab x θ+=++(其中θ角所在的象限由a , b 的符号确定,θ角的值由2222s in ,c o s b a a ba bθθ==++ ,ta n b aθ=确定)在求最值、化简时起着重要作用.变式练习:已知α、β为锐角,且3sin 2α+2sin 2β=1,3sin2α-2sin2β=0求证:α+2β=2π例4、 已知sin α - cos α = 21,π<α<π2,求2tanα和tan α的值例5、已知cos α - cos β = 21,sin α - sin β = 31-,求sin(α + β)的值变式练习:已知12c o s (),s in (),923ααββ-=--=且,022ππαπβ<<<<,求c o s ()αβ+的值。
高一数学二倍角公式的应用

高一数学二倍角公式的应用课题:二倍角公式的应用 教学目标:1. 要求学生能较熟练地运用公式进行化简、求值、证明。
2. 增强学生灵活运用数学知识和逻辑推理能力。
3. 培养学生解决实际问题的能力。
教学重点:灵活运用倍角公式及其变形。
教学过程: 一、 复习公式:例一、(板演或提问)化简下列各式: 1.=αα4cos 4sin42sin 2α2.=-40tan 140tan 280tan 21 3.2sin 2157.5︒ - 1 = 22315cos -=-4.=ππ125sin 12sin416sin 2112cos 12sin =π=ππ 5.cos20︒cos40︒cos80︒ =20sin 80cos 40cos 20cos 20sin20sin 80cos 40cos 40sin 21=8120sin 160sin 8120sin 80cos 80sin 41===例二、求证:[sin θ(1+sin θ)+cos θ(1+cos θ)]×[sin θ(1-sin θ)+cos θ(1-cos θ)] = sin2θ 证:左边 = (sin θ+sin 2θ+cos θ+cos 2θ)×(sin θ-sin 2θ+cos θ-cos 2θ) = (sin θ+ cos θ+1)×(sin θ+cos θ -1) = (sin θ+ cos θ)2 -1 = 2sin θcos θ= sin2θ = 右边∴原式得证二、 关于“升幂”“降次”的应用注意:在二倍角公式中,“升次”“降次”与角的变化是相对的。
在解题中应视题目的具体情况灵活掌握应用。
(以下四个例题可视情况酌情选用) 例三、求函数x x x y sin cos cos 2+=的值域。
解:21)42sin(222sin 2122cos 1+π+=++=x x x y ——降次 ∵1)42sin(1≤π+≤-x ∴]221,221[+-∈y 例四、求证:)6(sin )3cos(cos sin 22α-π-α+πα+α的值是与α无关的定值。
2倍角万能公式

2倍角万能公式一、二倍角公式。
1. 正弦二倍角公式。
- sin2α = 2sinαcosα- 推导:根据两角和的正弦公式sin(A + B)=sin Acos B+cos Asin B,令A = B=α,则sin2α=sin(α+α)=sinαcosα+cosαsinα = 2sinαcosα。
2. 余弦二倍角公式。
- cos2α=cos^2α - sin^2α- 推导:根据两角和的余弦公式cos(A + B)=cos Acos B-sin Asin B,令A = B=α,则cos2α=cos(α+α)=cosαcosα-sinαsinα=cos^2α-sin^2α。
- 另外,由于sin^2α+cos^2α = 1,所以cos2α = 2cos^2α - 1=1 - 2sin^2α。
3. 正切二倍角公式。
- tan2α=(2tanα)/(1-tan^2)α- 推导:根据正切公式tan(A + B)=(tan A+tan B)/(1 - tan Atan B),令A =B=α,则tan2α=tan(α+α)=(tanα+tanα)/(1-tanαtanα)=(2tanα)/(1-tan^2)α。
二、万能公式(与二倍角公式相关)1. 正弦万能公式。
- 设tan(α)/(2)=t,则sinα=(2t)/(1 + t^2)。
- 推导:- 因为sinα = 2sin(α)/(2)cos(α)/(2),又sin^2(α)/(2)+cos^2(α)/(2)=1,tan(α)/(2)=(sinfrac{α)/(2)}{cos(α)/(2)} = t,即sin(α)/(2)=(t)/(√(1 + t^2)),cos(α)/(2)=(1)/(√(1 + t^2))。
- 所以sinα=2sin(α)/(2)cos(α)/(2)=2×(t)/(√(1 + t^2))×(1)/(√(1 + t^2))=(2t)/(1 + t^2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在高中数学中同学们感到吃力的一部分是三角函数的学习,在这一部分有大量的公式需要同学们熟练记忆,并且在使用的时候不能够混淆。
为了方便同学们能够清楚掌握这部分内容,在考试中能够取得好成绩,下面小编给大家整理了高中书序中二倍角公式推导讲解。
正弦二倍角公式:
sin2α = 2cosαsinα
推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
拓展公式:sin2A=2sinAcosA=2tanAcosA^2=2tanA/[1+tanA^2]
1+sin2A=(sinA+cosA)^2
余弦二倍角公式:
余弦二倍角公式有三组表示形式,三组形式等价:
1.Cos2a=Cosa^2-Sina^2=[1-tana^2]/[1+tana^2]
2.Cos2a=1-2Sina^2
3.Cos2a=2Cosa^2-1
推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cosA^2-sinA^2=2cosA^2-1
=1-2sinA^2
正切二倍角公式:
tan2α=2tanα/[1-tanα^2]
推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tanA^2]
降幂公式: cosA^2=[1+cos2A]/2
sinA^2=[1-cos2A]/2
tanA^2=[1-cos2A]/[1+cos2A]
变式:
sin2α=sin^2(α+π/4)-cos^2(α+π/4)=2sin^2(a+π/4)-1=1-2cos^2(α+π/4); cos2α=2sin(α+π/4)cos(α+π/4)
以上就是关于高中数学二倍角公式的分享,对于这些公式同学们要掌握他们的推到过程,认真对应三角图形,参考推导过程进行熟练记忆。
最后要强调同学们还是要进行适当的习题训练,加强公式记忆。