高一数学倍角公式

合集下载

高一数学倍角公式、半角公式、万能公式人教实验A版知识精讲

高一数学倍角公式、半角公式、万能公式人教实验A版知识精讲

高一数学倍角公式、半角公式、万能公式人教实验A 版【本讲教育信息】一. 教学内容:倍角公式、半角公式、万能公式二. 重点、难点:1. αααcos sin 22sin ⋅=1cos 2sin 21sin cos 2cos 2222-=-=-=αααααααα2tan 1tan 22tan -=2. ααα3sin 4sin 33sin -=(不记忆)αααcos 3cos 43cos 3-= 3. 2cos 12sin αα-±=2cos 12cos αα+±=(不记忆)αααcos 1cos 12tan +-±= 4. αααααααααcos sin 1cos sin 1sin cos 1cos 1sin 2tan ++-+=-=+=5. 令t =2tan α∴212sin t t+=α2211cos t t +-=α212tan t t-=α【典型例题】[例1] 化简,求值(1)︒︒︒︒70sin ,50sin ,30sin ,10sin(2)︒︒︒︒78sin ,66sin ,42sin ,6sin(3)︒-︒10cos 2310sin 21(4)︒-︒-︒+︒10cos 150sin 2)10tan 31(10cos(5)︒-+︒+︒⋅︒+︒+︒70cos 170cos 1)60tan 10tan 1(10cos 40cos 32解:(1)原式︒⋅︒⋅︒=80cos 40cos 20cos 2116120sin 16160sin 20sin 280cos 40cos 20cos 20sin =︒⋅︒=︒︒⋅︒⋅︒⋅︒=(2)原式︒⋅︒⋅︒⋅︒=48cos 24cos 12cos 6sin1616cos 166cos 6cos 1696sin 6cos 48cos 24cos 12cos 6cos 6sin =︒︒=︒︒=︒︒⋅︒⋅︒⋅︒⋅︒= (3)原式︒︒-︒=︒⋅︒︒-︒=20sin ]10sin 2310cos 21[210cos 10sin 210sin 310cos 220sin )1030sin(2=︒︒-︒= (4)原式︒︒-︒+︒=5sin 250sin 210sin 310cos 25sin 25sin 225sin 2)4540sin(225sin 240cos 240sin 25sin 250sin 240sin 2-=︒︒-=︒︒-︒=︒︒-︒=︒︒-︒= (5)原式︒+︒︒+︒+︒=35cos 235sin 210sin 310cos 40cos 32 280sin 100sin 280sin 240sin 240cos 32=︒︒=︒︒+︒=[例2] 是否存在锐角βα、,使(1)πβα322=+;(2)32tan 2tan -=⋅βα,同时成立,并证明你的结论。

高一数学人教B版必修4课件3-2-1倍角公式

高一数学人教B版必修4课件3-2-1倍角公式
4.由于 sin2x=2sinx·cosx, 从而 1±sinx=sin2x±cos2x2,可用于无理式的化简及运算.
5.要熟悉公式的逆用.如
sin3α·cos3α

1 2
sin6α.4sinα4·cosα4=22sinα4·cosα4=2sinα2,S
1-2tatann4204°0°=tan80°,cos22α-sin22α=cos4α.
∴sinα-cosα= sinα-cosα2

1-sin2α=
17 3.
cos2α=
1-sin22α=
17 9.
[辨析]

sinα

cosα

1 3

0<α<π

π 2
<α<π


|sinα|>|cosα|,故应讨论 sinα-cosα 与 cos2α 的符号得 sinα-
cosα>0,cos2α<0.
[解析] 解法一:因为 sin4π+α·sinπ4-α =sinπ4+αcosπ4+α=16,
所以 sinπ2+2α=13,即 cos2α=13.
因为 α∈2π,π,则 2α∈(π,2π),
所以 sin2α=- 1-cos22α=-23 2,
• [点评] 以上几种方法大致遵循以下规律: 首先都是由复杂端向简单端转化;其次是 化倍角为单角;最后,证题中注意对数字 的处理,尤其是对“1”的妙用.
[解析] 左边=tanta2θn-θ 1,
右边=-
2 2tanθ
=-1-tatnaθn2θ
1-tan2θ
=tanta2θn-θ 1,
∵左边=右边,
[正解] 将 sinα+cosα=13两边平方得

三角函数和差及倍角公式讲义.docx

三角函数和差及倍角公式讲义.docx

教育学科教师辅导讲义教学内容一、 上次作业检查与讲解; 二、 学习要求及方法的培养: 三、 知识点分析、讲解与训练:Mite一、两角和与差的正弦、余弦、正切公式及倍角公式:sin (° ± 0) = sin QCOS 0 土 cos osin 0 —令空©》sin 2a = 2 sin a cos a (o±0) = cosfzcos^ + sinc^sin p —cos2a = cos?(7-sin 2 a-2cos 2 a-\ = l-2sin 2 a7 1+COS 2Q n cos 「a= ----------2.9 l — cos2o sirr a= ----------2r2 tan atan 2a = ------- -l-tarr a二、三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系, 注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三 观察代数式的结构特点。

基本的技巧有:(1) 巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变 换.如G = (Q + 0)-0 = (Q -0) + 0, 2Q = (G + 0) + (Q -0) , 2a = (0 + a)-(0-a), 心=2•呼,呼十号俘")⑵三角函数名互化(切割化弦),⑶公式变形使用(tana 土tan0 = tan (仅±0)(1^tanotan")。

1 Iy zyI /cos等),(4)三角函数次数的降升(降幕公式:cos2 6Z = —-—, sin%= —与升幕公式:2 2 1+ cos 2a = 2 cos2a , 1-cos 2a = 2 sin2a)。

(5)式子结构的转化(对角、函数名、式子结构化同)。

(6)常值变换主要指"1"的变换(1 = sin 2 x + cos 2 x = sec 2 x - tan 2 x = tan x • cot x = tan^ = sin^ =…等),⑺正余弦“三兄妹一sinx 土cosx 、sinxcosx”的内存联系——“知一求二”, 三、辅助角公式:asinx + bcosx = Jd 2+戻 sin(x + &)1(其中&角所在的象限由日,方的符号确定,&角的值由tan& =—确定)在求最值、化简时起着重要作用。

8.2.3倍角公式(教学课件)-高一下学期数学人教B版(2019)必修第三册

8.2.3倍角公式(教学课件)-高一下学期数学人教B版(2019)必修第三册
第八章
8.2.3
倍角公式
复习引入
复习引入
1.两角和差的正弦公式:
sin(α+β)= sinαcosβ+cosαsinβ.
sin(α-β)= sinαcosβ-cosαsinβ.
2.两角和差的余弦公式:
cos(α+β)= cosαcosβ-sinαsinβ.
cos(α-β)= cosαcosβ+sinαsinβ.
3 2
5
,
4
= .
5
又因为 = ,所以 = ,
因此 = 2,从而
sin = sin2 = 2sincos =
24
25
.
随堂练习
随堂练习
解:
求函数 = cos2 + cos sin 的值域.
1 + cos2 1
=
+ sin2
2
2
2
π
1
=
sin 2 +
+
2
4
−2×
= ,
13
169
sin 2
120
2 = cos 2 = − 169
÷
119
169
120
= − 119 .
例题精解
例二
(1)
证明下列恒等式:
sin 2 +sin
2cos 2+2sin 2 +cos
1+2sin cos
(2)
cos 2 −sin 2
=Байду номын сангаас
= tan;
3.tan 2α的公式推导:
tan + tan
2tan

高一数学公式总结(必修一)

高一数学公式总结(必修一)

高一数学公式总结(必修一)高中数学背的话就是那些公式,但主要还是要理解吧,高中数学比较灵活,不是说你背了一定可以考好,关键还是要理解会用,今天小编在这给大家整理了高一数学公式总结,接下来随着小编一起来看看吧!高一数学公式总结1高一数学必修一公式【和差化积】2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 【某些数列前n项和】1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角弧长公式 l=axr a是圆心角的弧度数r >0 扇形面积公式 s=1/2xlxr 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1xX2=c/a 注:韦达定理【判别式】b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根【两角和公式】sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)【倍角公式】tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))【降幂公式】(sin^2)x=1-cos2x/2(cos^2)x=i=cos2x/2【万能公式】令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)高中数学公式顺口溜一、《集合与函数》内容子交并补集,还有幂指对函数。

常见的三角函数运算法则总结整理公式总结

常见的三角函数运算法则总结整理公式总结

常见的三角函数运算法则总结整理公式总结
三角函数的运算离不开三角函数运算法则,那么三角函数运算法则具体有哪些呢?想要了解详情的考生赶紧来看看本文吧___
一、三角函数间的关系
互余角的三角函数存在很多的练习,三角函数间的关系有以下三种,具体的内容请看下文了解:
你知道高中必修一常见的三角函数间的关系总结吗
二、倍角公式及推导
倍角公式是三角函数中非常实用的一类公式。

就是倍角的三角函数用本角的三角函数表示出来。

在计算中可以用来化简计算式、减少求三角函数的次数,在工程中也有广泛的运用。

倍角公式是三角函数中非常实用的一类公式。

具体运算请点击:最新高一数学倍角公式及推导过程
三、和差公式
很多学生在解两角和差三角函数题时,常常出现过程、结论貌似正确,实质错误的情况发生, 究其原因是题目所提供的条件在角、值及式子结构等方面的关系比较隐蔽,对隐蔽条件挖掘不够导致出现错误的现象尤为严重。

高中必修一数学和差公式总结
常见的三角函数运算法则的全部内容就是这些,掌握好法则和公式可以让大家的成绩更上一层楼。

高一三角函数知识点归纳总结公式

高一三角函数知识点归纳总结公式

高一三角函数知识点归纳总结公式三角函数是数学中非常重要的一个概念,它在几何学、物理学、工程学等领域都有广泛的应用。

在高一阶段,我们学习了三角函数的基本定义、性质和常用公式。

下面我将对这些知识点进行归纳总结,以便大家更好地掌握和应用。

1. 三角函数的基本定义:在一个直角三角形中,对于一个锐角A,我们定义正弦函数sin(A)、余弦函数cos(A)和正切函数tan(A)如下:sin(A) = 对边/斜边cos(A) = 临边/斜边tan(A) = 对边/临边2. 三角函数的周期性:正弦函数、余弦函数和正切函数都是周期函数,其中正弦函数和余弦函数的周期是2π,正切函数的周期是π。

3. 三角函数的性质:(1) 正弦函数和余弦函数的值域都是[-1, 1],即 -1 ≤ sin(A) ≤ 1,-1 ≤ cos(A) ≤ 1。

(2) 正弦函数和余弦函数的图像关于y轴对称。

(3) 正弦函数和余弦函数的图像都是连续的曲线。

(4) 正弦函数和余弦函数的图像都是周期性的。

(5) 正弦函数和余弦函数的图像都是振荡曲线。

4. 三角函数的基本关系:(1) sin(A) = cos(90° - A)(2) cos(A) = sin(90° - A)(3) sin^2(A) + cos^2(A) = 15. 三角函数的和差公式:(1) sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)(2) cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)(3) tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))6. 三角函数的倍角公式:(1) sin(2A) = 2sin(A)cos(A)(2) cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)(3) tan(2A) = (2tan(A))/(1 - tan^2(A))7. 三角函数的半角公式:(1) sin(A/2) = ±√[(1 - cos(A))/2](2) cos(A/2) = ±√[(1 + cos(A))/2](3) tan(A/2) = ±√[(1 - cos(A))/(1 + cos(A))]8. 三角函数的积化和差公式:(1) sin(A)sin(B) = (cos(A - B) - cos(A + B))/2(2) cos(A)cos(B) = (cos(A - B) + cos(A + B))/2(3) sin(A)cos(B) = (sin(A + B) + sin(A - B))/2通过对三角函数的定义、性质和常用公式的学习,我们可以解决很多与角度相关的问题。

二倍角公式课件-高一上学期数学人教A版(2019)必修第一册

二倍角公式课件-高一上学期数学人教A版(2019)必修第一册
°
°
=(
×
.

)
=

=
− . °
二倍角的正弦、余弦、正切公式
sin2α = 2sinα cosα
S(2α)
cos2α = cos2α - sin2α
= 2cos2α - 1
= 1-2sin2α
C(2α)
2tanα
tan2α = ————
1 - tan2α
T(2α)
正弦:SCCS
符号同
(∓) : ( ∓ = ±
余弦:CCSS
符号异
(∓) :

( ∓ ) =
1 ±

正切:

子同母异
探究1:你能利用S(α+β), C(α+β),T(α+β)推导出sin2α,cos2α,

2
1 tan 2 A B
11 117
1
2
.
课堂检测
教材P223练习1

4
1.已知cos =− ,8
8
5
解: ∵ 8 < <



< < 12,求sin ,cos ,tan 的值.
4
4
4

3

3
12 ,∴ < < ∴sin
,8 =− 5
S(2α)
cos2α = cos2α - sin2α
= 1-2 sin2α=2cos2α-1
C(2α)
2tanα
tan2α = ————
1 - tan2α
T(2α)
作业:教材P223 :练习:3、4题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.2.1倍角公式
(一)教学目标:
1.知识目标:
(1)掌握2,2,2S C T ααα公式的推导,明确α的取值范围;
(2) 能正确运用二倍角公式求值、化简、证明。

2.能力目标:
(1)通过公式的推导,了解它们的内在联系,从而培养逻辑推理内容能力; (2)通过综合运用公式,掌握有关技巧,提高分析问题、解决问题的能力。

3.情感目标:
引导学生发现数学规律,培养学生思维的严密性与科学性等思维品质.
(二)教学重点、难点
重点:二倍角的正弦、余弦、正切公式以及公式的变形,二倍角公式的简单应用。

难点:理解二倍角公式,用单角的三角函数表示二倍角的三角函数,倍角公式与以前学
过的同角三角函数的基本关系式、诱导公式、和角公式的综合应用。

(三)教学方法
本节课采用观察、赋值、启发探究相结合的教学方法,进行教学活动。

通过设置问题让学生理解二倍角公式是由和角公式由一般化归为特殊而来的。

对于二倍角公式的灵活运用,采用讲、练结合的方式进行处理,让学生从实例中去理解,从而能灵活地运用二倍角公式解题。

sin sin αcos sin α±1tg tg tg tg αβ
αβ
±
师:今天,我们继续学习二倍角的正弦、余师生互动
2.二倍角余弦公式的不同表达形式。

,
4
k
π
απ
≠±
1
,()
224
k k k Z
ππ
απαπ
≠+≠+∈

1
,()
242
k k k Z
ππ
απαπ
≠+≠+∈
且时才成
立,否则不成立.
师:注意公式中的α与2α是单角与二倍角关系.
例如2β与4β,α
α

2

63
ππ
与等都满足这种
关系.
例如:
33
sin2sin cos,sin32sin cos
2222
αααα
αα
==.
师:对于cos2α= cos2α-sin2α,还有没有其他的
形式?
生:有利用公式sin2α+ cos2α=1变形可得:
sin2α= 1-cos2α, cos2α= 1-sin2α
这样,cos2α= cos2α-sin2α=cos2α-(1-
cos2α)=2cos2α-1
cos2α = cos2α-sin2α=(1-sin2α)-sin2α =1
-2sin2α
因此,cos2α还可以变形为下述表达形式:
正确的理解单角
与二倍角的关
系,从而能灵活
的运用二倍角公
式解题。

公式
的应

教学
环节
例1.
教学内容例 1.已知)
,
2
(
,
13
5
sinπ
π

α
=
α,求sin2α,
cos2α,tan2α的值
教师分析题意,学生思考并解答。

解:∵)
,
2
(
,
13
5
sinπ
π

α
=
α

13
12
sin
1
cos2-
=
α
-
-
=
α
∴sin2α = 2sinαcosα =
169
120
-
师生互动
例1是二倍角公
式的应用求值问
题,同时复习了
同角三角函数的
基本关系式及三
角函数在各个象
限的符号问题。

设计意图
巩固练习一:练习A 2,3。

例2 cos2α =
169
119
sin
2
12=
α
-
tan2α =
119
120
-
cos2α = 2cos2α-1
cos2α =1-2sin2α
布置作业层次一:
练习B 1,2
习题3-2 B 1.
层次二:
练习B 1,2,3
习题3-2 B
1,3(1)(2)
(3).
作业分两个层次,第一个层次要求所有学生都要完
成,第二层次要求学有余力的同学完成。

通过分层作业使
学生进一步巩固
本节课所学内
容,并为有余力
的同学的发展提
供更加广阔的空
间。

相关文档
最新文档