太阳能电池伏安特性研究

合集下载

太阳能电池伏安特性研究物理实验报告

太阳能电池伏安特性研究物理实验报告

请认真填写
2.PN结的单向导电性
(1)外加正向电压(正偏)
在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要作用。

结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电流。

(2)外加反向电压(反偏)
在外电场作用下,多子将背离PN结移动,结果使空间电荷区变宽,内电场被增强,有利于少子的漂移而不利于多子的扩散,漂移运动起主要作用。

漂移运动产生的漂移电流的方向与正向电流相反,称为反向电流。

因少子浓度很低,反向电流远小于正向电流。

当温度一定时,少子浓度一定,反向电流几乎不随外加电压而变化,故称为反向饱和电流。

2.光伏效应
指光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象。

当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度E g,则在 p区,n区和结区光子被吸收会产生电子–空穴对。

太阳电池可用pn结二极管D、恒流源I ph、太阳电池的电极等引起的串联电阻R s和相当于pn结泄漏电流的并联电阻R sh组成的电路来表示,如下图所示,该电路为太阳电池的等效电路。

R s
I ph
D
R sh
请认真填写
请在两周内完成,交教师批阅
附件:(实验曲线请附在本页)。

太阳能电池基本特性实验报告

太阳能电池基本特性实验报告

竭诚为您提供优质文档/双击可除太阳能电池基本特性实验报告篇一:实验报告--太阳能电池伏安特性的测量实验报告姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期:太阳能电池伏安特性的测量【实验目的】1.了解太阳能电池的工作原理及其应用2.测量太阳能电池的伏安特性曲线【实验原理】1.太阳电池的结构以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图2.光伏效应图二太阳电池发电原理示意图当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区.如果外电路处于开路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结上产生一个光生电动势.这一现象称为光伏效应(photovoltaiceffect,缩写为pV).3.太阳电池的表征参数太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n区到p区的光生电流Iph.同时,由于pn结二极管的特性,存在正向二极管电流ID,此电流方向从p区到n区,与光生电流相反.因此,实际获得的电流I为(1)式中VD为结电压,I0为二极管的反向饱和电流,Iph为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n称为理想系数(n值),是表示pn结特性的参数,通常在1~2之间.q为电子电荷,kb为波尔茨曼常数,T为温度.如果忽略太阳电池的串联电阻Rs,VD即为太阳电池的端电压V,则(1)式可写为(2)当太阳电池的输出端短路时,V=0(VD≈0),由(2)式可得到短路电流即太阳电池的短路电流等于光生电流,与入射光的强度成正比.当太阳电池的输出端开路时,I=0,由(2)和(3)式可得到开路电压(3)当太阳电池接上负载R时,所得的负载伏–安特性曲线如图2所示.负载R可以从零到无穷大.当负载Rm使太阳电池的功率输出为最大时,它对应的最大功率pm为(4)式中Im和Vm分别为最佳工作电流和最佳工作电压.将Voc与Isc的乘积与最大功率pm之比定义为填充因子FF,则(5)FF为太阳电池的重要表征参数,FF愈大则输出的功率愈高.FF取决于入射光强、材料的禁带宽度、理想系数、串联电阻和并联电阻等.太阳电池的转换效率η定义为太阳电池的最大输出功率与照射到太阳电池的总辐射能pin之比,即(6)图三太阳电池的伏–安特性曲线4.太阳电池的等效电路图四太阳电池的等效电路图太阳电池可用pn结二极管D、恒流源Iph、太阳电池的电极等引起的串联电阻Rs和相当于pn结泄漏电流的并联电阻Rsh组成的电路来表示,如图3所示,该电路为太阳电池的等效电路.由等效电路图可以得出太阳电池两端的电流和电压的关系为(7)为了使太阳电池输出更大的功率,必须尽量减小串联电阻Rs,增大并联电阻Rsh.【实验数据记录、实验结果计算】◆实验中测得的各个条件下的电流、电压以及对应的功率的表格如下:表11.根据以上数据作出各个条件下太阳能电池的伏安特性曲线2.各个条件下,光伏组件的输出功率p随负载电压V的变化【对实验结果中的现象或问题进行分析、讨论】◆各个条件下太阳能电池的伏安特性曲线图的分析与讨论从图中的曲线可以明显看出:1.光照距离越近,也即是光强越大,电池产生的电动势越大(但不能断定是否有上界);2.研究电动势的大小,两个电池并联,电动势几乎不变,电池串联,电动势。

太阳能电池的暗伏安特性与光谱特性实验

太阳能电池的暗伏安特性与光谱特性实验

四、太阳能光伏电池暗伏安特性与光谱特性实验1.实验目的1.了解太阳能光伏电池暗伏安特性2.了解太阳能光伏电池光谱特性3.掌握太阳能光伏电池的暗伏安特性曲线绘制2.实验原理(1)光伏电池暗伏安特性光伏电池暗伏安特性是指无光照射时,流经太阳能电池的电流与外加电压之间的关系。

太阳能电池的基本结构是一个大面积平面P-N结,单个太阳能电池单元的P-N结面积已远大于普通的二极管。

在实际应用中,为得到所需的输出电流,通常将若干电池单元并联。

为得到所需输出电压,通常将若干已并联的电池组串连。

因此,它的伏安特性虽类似于普通二极管,但取决于太阳能电池的材料,结构及组成组件时的串并连关系。

(2)光伏电池光谱特性太阳能电池的光谱特性是指太阳能电池随能量相同但波长不同的入射光而变化的关系。

在太阳能电池中只有那些能量大于其材料禁带宽度的光子才能在被吸收时在光伏材料中产生电子空穴对,而那些能量小于禁带宽度的光子即使被吸收也不能产生电子空穴对(它们只能是使光伏材料变热)。

光伏材料对光的吸收存在一个截止波长。

理论分析表明,对太阳光而言,能得到最佳工作性能的光伏材料应有1.5电子伏的禁带宽度,当禁带宽度增加时,被光伏材料吸收的总太阳能就会越来越少。

每种太阳能电池对太阳光都有自己的光谱响应曲线,它表明太阳能电池对不同波长光的灵敏度(光电转换能力)。

当日光照到太阳能电池上时,某一种波长的光和该波长的太阳能电池光谱灵敏度,决定该波长的光电流值,而总的光电流值是各个波长光电流值的总和。

3.实验内容与步骤(1)光伏电池暗伏安特性曲线绘制1)关闭模拟光源,将挡光板遮住电池组件A,调节直流恒压源电压到零点,用实验导线连结如图2-1所示电路,调节电阻箱的电阻至50欧姆(限流),旋转恒压源电压旋钮,间隔0.5V左右,记录一次电压、电流值。

图2-1光伏电池暗伏安特性正向测量电路2)将直流恒压源电压调到零,调换电池组件A的正负极,再间隔0.5V左右,记录电压、电流值。

太阳能电池伏安特性研究实验报告

太阳能电池伏安特性研究实验报告

太阳能电池伏安特性研究实验报告太阳能电池伏安特性研究实验报告一、引言太阳能电池是一种将太阳能转换为电能的装置,其工作原理基于光电效应。

随着全球对可再生能源的需求不断增加,太阳能电池作为一种环保、可再生的能源技术备受关注。

本实验旨在研究太阳能电池的伏安特性,以了解其工作原理和性能。

二、实验方法1. 实验仪器和材料本实验使用的仪器和材料包括太阳能电池板、直流电源、电压表、电流表和电阻箱等。

2. 实验步骤(1)将太阳能电池板与直流电源连接,调节电压为一定值。

(2)通过电压表和电流表测量太阳能电池板的电压和电流。

(3)改变直流电源的电压,重复步骤(2),记录数据。

(4)根据测量的电压和电流数据绘制伏安特性曲线。

三、实验结果与讨论通过实验测量得到的伏安特性曲线如下图所示:[插入伏安特性曲线图]从伏安特性曲线中可以观察到以下几点:1. 开路电压(Voc):在伏安特性曲线上,当电流为零时对应的电压即为开路电压。

实验结果显示,太阳能电池板的开路电压约为0.6V。

2. 短路电流(Isc):在伏安特性曲线上,当电压为零时对应的电流即为短路电流。

实验结果显示,太阳能电池板的短路电流约为3A。

3. 峰值功率点:伏安特性曲线上的峰值功率点是太阳能电池的最佳工作点,对应的电压和电流分别为Vm和Im。

实验结果显示,太阳能电池板的峰值功率点约为2W。

通过对伏安特性曲线的分析,可以得出以下结论:1. 太阳能电池板的输出功率与其电压和电流的乘积有关,即P = V * I。

为了获得最大的输出功率,需要在峰值功率点(Vm,Im)工作。

2. 开路电压和短路电流是太阳能电池板的基本特性参数,可以用来评估其性能。

3. 太阳能电池板的伏安特性曲线可以用来描述其输出功率随电压和电流变化的关系,为优化太阳能电池的设计和使用提供了依据。

四、结论本实验通过测量太阳能电池板的伏安特性曲线,研究了其基本特性和工作原理。

实验结果显示,太阳能电池板的开路电压约为0.6V,短路电流约为3A,峰值功率点约为2W。

太阳能电池的暗伏安特性与光谱特性实验

太阳能电池的暗伏安特性与光谱特性实验

四、太阳能光伏电池暗伏安特性与光谱特性实验1.实验目的1.了解太阳能光伏电池暗伏安特性2.了解太阳能光伏电池光谱特性3.掌握太阳能光伏电池的暗伏安特性曲线绘制2.实验原理(1)光伏电池暗伏安特性光伏电池暗伏安特性是指无光照射时,流经太阳能电池的电流与外加电压之间的关系。

太阳能电池的基本结构是一个大面积平面P-N结,单个太阳能电池单元的P-N结面积已远大于普通的二极管。

在实际应用中,为得到所需的输出电流,通常将若干电池单元并联。

为得到所需输出电压,通常将若干已并联的电池组串连。

因此,它的伏安特性虽类似于普通二极管,但取决于太阳能电池的材料,结构及组成组件时的串并连关系。

(2)光伏电池光谱特性太阳能电池的光谱特性是指太阳能电池随能量相同但波长不同的入射光而变化的关系。

在太阳能电池中只有那些能量大于其材料禁带宽度的光子才能在被吸收时在光伏材料中产生电子空穴对,而那些能量小于禁带宽度的光子即使被吸收也不能产生电子空穴对(它们只能是使光伏材料变热)。

光伏材料对光的吸收存在一个截止波长。

理论分析表明,对太阳光而言,能得到最佳工作性能的光伏材料应有1.5电子伏的禁带宽度,当禁带宽度增加时,被光伏材料吸收的总太阳能就会越来越少。

每种太阳能电池对太阳光都有自己的光谱响应曲线,它表明太阳能电池对不同波长光的灵敏度(光电转换能力)。

当日光照到太阳能电池上时,某一种波长的光和该波长的太阳能电池光谱灵敏度,决定该波长的光电流值,而总的光电流值是各个波长光电流值的总和。

3.实验内容与步骤(1)光伏电池暗伏安特性曲线绘制1)关闭模拟光源,将挡光板遮住电池组件A,调节直流恒压源电压到零点,用实验导线连结如图2-1所示电路,调节电阻箱的电阻至50欧姆(限流),旋转恒压源电压旋钮,间隔0.5V左右,记录一次电压、电流值。

图2-1光伏电池暗伏安特性正向测量电路2)将直流恒压源电压调到零,调换电池组件A的正负极,再间隔0.5V左右,记录电压、电流值。

太阳能电池伏安特性曲线的测定(终搞)

太阳能电池伏安特性曲线的测定(终搞)

太阳能电池伏安特性曲线的测定(终搞)太阳能电池伏安特性曲线是太阳能电池的重要参数之一,它能够直观地显示太阳能电池在不同电流下的电压表现。

因此,太阳能电池的伏安特性曲线的测定成为了太阳能电池研究、生产和应用的基础工作之一。

本文通过实验测定太阳能电池伏安特性曲线的方法和步骤,以及实验结果和分析。

实验仪器和材料· 太阳能电池:有名牌太阳能电池,光电转换效率较高。

· 电路连接板:多种型号可选,大多数型号带有直流电阻计。

· 直流稳压电源:能够提供不同电压的直流电源,电压变化不超过±1V。

· 直流电流表:能够读取电路中不同电流的电流表,量程为0~5A。

· 太阳能模拟器:能够模拟不同的太阳辐射强度,精度为±10%。

实验步骤和方法1. 准备工作将太阳能电池、电路连接板和绝缘导线等材料全部准备好。

插入直流电压表和直流电流表,确保电表连接线与电路连接板芯片排针正确对应。

2. 基本测量将太阳能电池和直流电阻计依次连接至电路连接板的芯片排针,确保连接无误。

调节直流稳压电源的电压,测量太阳能电池在不同电流下的电压值。

记录电流和电压的数据,以便后续绘制太阳能电池伏安特性曲线。

3. 强光测量将太阳能模拟器调至最大电流,使太阳能电池在强光下工作。

实验结果和分析通过实验测定太阳能电池伏安特性曲线,可以得到太阳能电池在不同电流下的电压值,并根据这些数据绘制出太阳能电池伏安特性曲线。

实验结果显示,太阳能电池伏安特性曲线呈现出一定的规律性。

当太阳能电池的电流增加时,它的电压呈现出下降的趋势,这是因为太阳能电池在工作时会产生内阻,从而使电流和电压的数值发生变化。

在实验过程中,我们还测量了太阳能电池在强光下的伏安特性曲线。

实验结果表明,太阳能电池在强光下的电压值明显高于普通条件下的电压值,这是因为太阳能电池在强光下能够产生更多的电流和电能。

太阳能电池基本特性实验报告

太阳能电池基本特性实验报告

竭诚为您提供优质文档/双击可除太阳能电池基本特性实验报告篇一:实验报告--太阳能电池伏安特性的测量实验报告姓名:张伟楠班级:F0703028学号:5070309108实验成绩:同组姓名:张家鹏实验日期:08.03.17指导教师:批阅日期:太阳能电池伏安特性的测量【实验目的】1.了解太阳能电池的工作原理及其应用2.测量太阳能电池的伏安特性曲线【实验原理】1.太阳电池的结构以晶体硅太阳电池为例,其结构示意图如图1所示.晶体硅太阳电池以硅半导体材料制成大面积pn结进行工作.一般采用n+/p同质结的结构,即在约10cm×10cm面积的p型硅片(厚度约500μm)上用扩散法制作出一层很薄(厚度~0.3μm)的经过重掺杂的n型层.然后在n型层上面制作金属栅线,作为正面接触电极.在整个背面也制作金属膜,作为背面欧姆接触电极.这样就形成了晶体硅太阳电池.为了减少光的反射损失,一般在整个表面上再覆盖一层减反射膜.图一太阳电池结构示意图2.光伏效应图二太阳电池发电原理示意图当光照射在距太阳电池表面很近的pn结时,只要入射光子的能量大于半导体材料的禁带宽度eg,则在p区、n区和结区光子被吸收会产生电子–空穴对.那些在结附近n区中产生的少数载流子由于存在浓度梯度而要扩散.只要少数载流子离pn结的距离小于它的扩散长度,总有一定几率扩散到结界面处.在p区与n区交界面的两侧即结区,存在一空间电荷区,也称为耗尽区.在耗尽区中,正负电荷间形成一电场,电场方向由n区指向p区,这个电场称为内建电场.这些扩散到结界面处的少数载流子(空穴)在内建电场的作用下被拉向p区.同样,如果在结附近p区中产生的少数载流子(电子)扩散到结界面处,也会被内建电场迅速被拉向n区.结区内产生的电子–空穴对在内建电场的作用下分别移向n区和p区.如果外电路处于开路状态,那么这些光生电子和空穴积累在pn结附近,使p区获得附加正电荷,n区获得附加负电荷,这样在pn结上产生一个光生电动势.这一现象称为光伏效应(photovoltaiceffect,缩写为pV).3.太阳电池的表征参数太阳电池的工作原理是基于光伏效应.当光照射太阳电池时,将产生一个由n区到p区的光生电流Iph.同时,由于pn结二极管的特性,存在正向二极管电流ID,此电流方向从p区到n区,与光生电流相反.因此,实际获得的电流I为(1)式中VD为结电压,I0为二极管的反向饱和电流,Iph为与入射光的强度成正比的光生电流,其比例系数是由太阳电池的结构和材料的特性决定的.n称为理想系数(n值),是表示pn结特性的参数,通常在1~2之间.q为电子电荷,kb为波尔茨曼常数,T为温度.如果忽略太阳电池的串联电阻Rs,VD即为太阳电池的端电压V,则(1)式可写为(2)当太阳电池的输出端短路时,V=0(VD≈0),由(2)式可得到短路电流即太阳电池的短路电流等于光生电流,与入射光的强度成正比.当太阳电池的输出端开路时,I=0,由(2)和(3)式可得到开路电压(3)当太阳电池接上负载R时,所得的负载伏–安特性曲线如图2所示.负载R可以从零到无穷大.当负载Rm使太阳电池的功率输出为最大时,它对应的最大功率pm为(4)式中Im和Vm分别为最佳工作电流和最佳工作电压.将Voc与Isc的乘积与最大功率pm之比定义为填充因子FF,则(5)FF为太阳电池的重要表征参数,FF愈大则输出的功率愈高.FF取决于入射光强、材料的禁带宽度、理想系数、串联电阻和并联电阻等.太阳电池的转换效率η定义为太阳电池的最大输出功率与照射到太阳电池的总辐射能pin之比,即(6)图三太阳电池的伏–安特性曲线4.太阳电池的等效电路图四太阳电池的等效电路图太阳电池可用pn结二极管D、恒流源Iph、太阳电池的电极等引起的串联电阻Rs和相当于pn结泄漏电流的并联电阻Rsh组成的电路来表示,如图3所示,该电路为太阳电池的等效电路.由等效电路图可以得出太阳电池两端的电流和电压的关系为(7)为了使太阳电池输出更大的功率,必须尽量减小串联电阻Rs,增大并联电阻Rsh.【实验数据记录、实验结果计算】◆实验中测得的各个条件下的电流、电压以及对应的功率的表格如下:表11.根据以上数据作出各个条件下太阳能电池的伏安特性曲线2.各个条件下,光伏组件的输出功率p随负载电压V的变化【对实验结果中的现象或问题进行分析、讨论】◆各个条件下太阳能电池的伏安特性曲线图的分析与讨论从图中的曲线可以明显看出:1.光照距离越近,也即是光强越大,电池产生的电动势越大(但不能断定是否有上界);2.研究电动势的大小,两个电池并联,电动势几乎不变,电池串联,电动势大致增大一倍;3.研究电池电阻的大小,在I-V图里,函数线越陡,电阻越小,函数线越平坦,电阻越大。

太阳能电池伏安特性

太阳能电池伏安特性

太阳能灯具
太阳能灯具是利用太阳能电池将 光能转换为电能,为照明设备提
供电力的系统。
太阳能灯具具有环保、节能、安 全、方便等优点,广泛应用于城 市道路、公园、庭院等公共场所
的照明。
太阳能灯具的性能与太阳能电池 的伏安特性密切相关,需要选择 合适的太阳能电池板和控制器以
保证照明的稳定性和效果。
06
结论
短路电流是指在电路短路时,流过太阳能电池板的电流大小。它是评估太阳能电池板光能转换效率的 重要参数,反映了电池板在最佳工作状态下的性能。在一定光照条件下,短路电流越大,表示电池板 的光电转换效率越高。
最大功率点
要点一
总结词
最大功率点是指在特定光照条件下,太阳能电池板输出功 率最大的点。
要点二
详细描述
伏安特性曲线的绘制方法
测量方法
在太阳能电池表面施加不同的光 照强度,测量对应的电流和电压 值,并记录数据。
数据处理
将测量数据绘制成散点图,并使 用曲线拟合软件进行拟合,得到 伏安特性曲线。
伏安特性曲线的影响因素
01
光照强度
随着光照强度的增加,太阳能电池的短路电流和开路电压均有所提高,
但最大功率点基本保持不变。
太阳能热水器是利用太阳能光热转换 原理,将太阳辐射能转化为热能,为 家庭或商业设施提供热水和供暖的系 统。
太阳能热水器的性能与太阳能电池的 伏安特性密切相关,需要选择合适的 太阳能电池板和控制器以保证系统的 稳定性和效率。
太阳能热水器具有环保、节能、安全、 经济等优点,是当前绿色建筑和可再 生能源利用的重要方向之一。
太阳能电池的应用
光伏发电系统
光伏发电系统是利用太阳能电池将光能转换为直流电的系统,广泛应用于分布式发 电、离网发电和并网发电等领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

太阳电池厕所(徐家汇太平洋百货店前)
太阳电池电厂
太阳电池太空电厂
韩国的风力发电和太阳能发电互补系统
将来的太阳能车
太阳能车
太阳电池车
太阳电池飞机
太阳电池飞机
太阳电池飞机
太阳能飞机-瑞士“阳光动 力
美国国家航空航天局(NASA)开发的名为 “探路者(Pathfinder)”
实验目的
太阳光的发电的优点
不需要燃料取之不尽用之不竭的太阳光就是能 源。
清洁能源不会排放NOx、CO2等有害物质。
不需要烦琐的操作系统运行全靠自动进行。
系统简单维护方便整个发电系统没有运转部件, 属于静态发电因此维护简单方便。
太阳电池的应用
屋顶太阳能发电并网系统
太阳能建材一体化零能住宅
太阳能交通指示系统
实验原理-2.光伏效应
太阳光入射到太阳电池ቤተ መጻሕፍቲ ባይዱ面上后,被太阳电池 吸收。此时,在太阳电池内部因吸收了光能而 产生了带正电和负电的粒子(空穴和电子), 这些粒子各自在太阳电池内部自由移动。而且 它们绝大多数具有这样的性质,即电子(-) 朝N型半导体汇集,而空穴(+)则朝P型半 导体汇集。因此,在电池表面和背面焊上电极 后,再接上灯泡或马达之类的负载,电流就会 流起来。
➢ 1941年 奥尔在硅上发现光伏效应。 ➢ 1954年 恰宾和皮尔松在美国贝尔实验室,首次制成
了实用的单晶太阳电池,效率为6%。同年,韦克尔首 次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉 薄膜,制成了第一块薄膜太阳电池。 ➢ 1958年 太阳电池首次在空间应用,装备美国先锋1 号卫星电源。 ➢ 1959年 第一个多晶硅太阳电池问世,效率达5%。
(2) 外加反向电压 (反偏) 在外电场作用下,多子将背离PN结移动,结果使空间电荷区变宽,
内电场被增强,有利于少子的漂移而不利于多子的扩散,漂移运动起主要 作用。漂移运动产生的漂移电流的方向与正向电流相反,称为反向电流。 因少子浓度很低,反向电流远小于正向电流 。
当温度一定时,少子浓度一定,反向电流几乎不随外加电压而变化, 故称为 反向饱和电流 。
图(1)浓度差使载流子发生扩散运动
(2)在这个区域内,多数载流子已扩散到对方并 复合掉了,或者说消耗殆尽了,因此,空间电荷 区又称为 耗尽层 。
(3)P区一侧呈现负电荷,N区一侧呈现正电荷, 因此空间电荷区出现了方向由N区指向P区的电 场,由于这个电场是载流子扩散运动形成的,而 不是外加电压形成的,故称为 内电场 。
实验原理-1.PN结的形成及单向导电性
1.PN结的形成
(1)当P型半导体和N型半导体结合在一起时, 由于交界面处存在 载流子浓度的差异 ,这样电 子和空穴都要 从浓度高的地方向浓度低的地方扩 散 。但是,电子和空穴都是带电的,它们扩散的 结果就使P区和N区中原来的电中性条件破坏了。 P区一侧因失去空穴而留下不能移动的负离子, N区一侧因失去电子而留下不能移动的正离子。 这些不能移动的带电粒子通常称为 空间电荷 , 它们集中在P区和N区交界面附近,形成了一个 很薄的空间电荷区,这就是我们所说的 PN结。
➢ 1975年 非晶硅太阳电池问世。
➢ 1980年 单晶硅太阳电池效率达20%,砷化镓电池达 22.5%,多晶硅电池达14.5%,硫化镉电池达9.15%。
➢ 1998年 单晶硅光伏电池效率达25%。荷兰政府提出 “荷兰百万个太阳光伏屋顶计划”,到2020年完成。
自50年代研制成第一块实用的硅太阳电池、60年代太 阳电池进入空间应用、70年代进入了地面应用,太阳能光 电技术已历经了半个世纪。发展到今天,世界太阳电池组 件的年产量达200MW以上。
图(2)内电场形成
PN结的单向导电性
2.PN结的单向导电性 (1) 外加正向电压 (正偏) 在外电场作用下,多子将向PN结移动,结果使空间电荷区变窄,
内电场被削弱,有利于多子的扩散而不利于少子的漂移,扩散运动起主要 作用。结果,P区的多子空穴将源源不断的流向N区,而N区的多子自由 电子亦不断流向P区,这两股载流子的流动就形成了PN结的正向电 流。
(1)了解太阳能电池的基本特性。 (2)测绘太阳能电池的光照伏安特性。
实验仪器
1、太阳能电池基实验仪 2、太阳能电池基实验仪导轨 3、可变负载 4、太阳能电池测试盒
ZKY-SAC-I ZKY-SAC-I-S3 ZKY-SAC-I-S4 ZKY-SAC-I-S5
实验原理
目前半导体光电探测器在数码摄像﹑光通信﹑太 阳电池等领域得到广泛应用,硅光电池是半导体 光电探测器的一个基本单元,深刻理解硅光电池 的工作原理和具体使用特性可以进一步领会半导 体PN结原理﹑光电效应理论和光伏电池产生机理。
PN结的形成 FLASH
(4)内电场是由多子的扩散运动引起的,伴随着 它的建立将带来两种影响:一是 内电场将阻碍多 子的扩散 ,二是P区和N区的少子一旦靠近PN结, 便在内电场的作用下漂移到对方, 使空间电荷区 变窄 。
(5)因此, 扩散运动使空间电荷区加宽,内电场 增强,有利于少子的漂移而不利于多子的扩散; 而漂移运动使空间电荷区变窄,内电场减弱,有 利于多子的扩散而不利于少子的漂移。 当扩散运动和漂移运动达到动态平衡时,交界 面形成稳定的空间电荷区,即 PN结处于动态平 衡 s。
太阳能电池伏安特性研究
沈阳城市学院物理实验中心
太阳能电池简介
太阳电池(Solar Cells),也称为光伏电池,是 将太阳光辐射能直接转换为电能的器件。光电池 是一种光电转换元件,它不需外加电源而能直接 把光能转换为电能。它被设计用于把入射到它表 面的光能转化为电能,因此,可用作光电探测器 和光电池,被广泛用于太空和野外便携式仪器等 的能源。
太阳电池的发展历程
几千年来人类无意识地利用太阳能来取暖和 晾晒物品,直到19世纪末才出现了第一台太阳能 热水器,而第一片太阳电池的出现则是在1954 年······
其发展过程简列如下:
➢ 1893年 法国科学家贝克勒尔发现“光生伏打效应”, 即“光伏效应”。
➢ 1930年 肖特基提出Cu2O势垒的“光伏效应”理论。 同年,朗格首次提出用“光伏效应”制造“太阳电 池”,使太阳能变成电能。
相关文档
最新文档