高中数学-直线与平面平行、平面与平面平行的性质
高中数学必杀1-4线面平行与面面平行的判定及性质

专题4 线面平行与面面平行的判定及性质一、直线与平面平行下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面【解析】由面面平行的定义可知选D.【例2】若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直【解析】A错误,a与α内的直线平行或异面.【例3】已知不重合的直线a ,b 和平面α,①若a ∥α,b ⊂α,则a ∥b ;②若a ∥α,b ∥α,则a ∥b ;③若a ∥b ,b ⊂α,则a ∥α;④若a ∥b ,a ∥α,则b ∥α或b ⊂α,上面命题中正确的是________(填序号).【解析】 ①中a 与b 可能异面;②中a 与b 可能相交、平行或异面;③中a 可能在平面α内,④正确.【例4】已知α、β是平面,m 、n 是直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β.②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.③如果m ⊂α,α⊄n ,m 、n 是异面直线,那么n 与α相交.④若α∩β=m ,n ∥m ,且α⊄n ,β⊄n ,则n ∥α且n ∥β其中正确命题的个数是( )A .1B .2C .3D .4【解析】对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,故选B.【例5】已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题: ①n m n m //⇒⎩⎨⎧⊥⊥αα;①αα//n n m m ⇒⎩⎨⎧⊥⊥;①n m n m ⊥⇒⎩⎨⎧⊥αα//其中真命题的个数为( ) A .0 B .1 C .2 D .3【解析】若⎩⎨⎧⊥⊥ααn m ,则m ①n ,即命题①正确;若⎩⎨⎧⊥⊥n m m α,则n ①α或n ①α,即命题①不正确;若⎩⎨⎧⊥αα//n m ,则m ①n ,即命题①正确;综上可得,真命题共有2个.故选C .【例6】已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是( ) A .m ∥β且l 1∥α B .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2【解析】由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.【例7】在下列条件中,可判断平面α与β平行的是( ) A .α、β都平行于直线l B .α内存在不共线的三点到β的距离相等C .l 、m 是α内两条直线,且l ①β,m ①βD .l 、m 是两条异面直线,且l ①α,m ①α,l ①β,m ①β【解析】排除法,A 中α、β可以是相交平面;B 中三点可面平面两侧;C 中两直线可以不相交.故选D ,也可直接证明.【例8】经过平面外的两点作该平面的平行平面可以作( )A .0个B .1个C .0个或1个D .1个或2个【解析】这两点可以是在平面同侧或两侧.故选C .达标训练11.(2019•延安一模)已知m ,n 表示两条不同的直线,α表示平面.下列说法正确的是( )A .若//m α,//n α,则//m nB .若m α⊥,n α⊥,则//m nC .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥ 2.(2019•湖北期中)平面α与平面β平行的条件可以是( )A .α内有无数多条直线都与β平行B .直线a α⊂,b β⊂,且//a β,//b αC .直线//a α,//a β,且直线a 不在α内,也不在β内D .一个平面α内两条不平行的直线都平行于另一个平面β3.(2019•深圳二模)己知正方体1111ABCD A B C D -,P 为棱1CC 的动点,Q 为棱1AA 的中点,设直线m 为平面BDP 与平面11B D P 的交线,以下关系中正确的是( ) A .1//m D Q B .//m 平面11B D QC .1m B Q ⊥D .m ⊥平面11ABB A4.(2019•聊城二模)在长方体1111ABCD A B C D -中,F ,F ,G ,H 分别为棱11A B ,1BB ,1CC ,11C D 的中点,则下列结论中正确的是( )A .1//AD 平面EFGHB .1//BD GHC .//BD EFD .平面//EFGH 平面11A BCD5.(2019•汕头月考)如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列判断错误的是( ) A .1MN CC ⊥B .MN ⊥平面11ACC AC .//MN 平面ABCDD .11//MN A B6.(2019•大连一模)已知m ,n 为两条不重合直线,α,β为两个不重合平面,下列条件中,可以作为//αβ的充分条件的是( ) A .//m n ,m α⊂,n β⊂ B .//m n ,m α⊥,n β⊥ C .m n ⊥,//m α,//n βD .m n ⊥,m α⊥,n β⊥7.(2019•汕头一模)在正方体1111ABCD A B C D -中,点O 是四边形ABCD 的中心,关于直线1A O ,下列说法正确的是( )A .11//AO D C B .1AO BC ⊥C .1//A O 平面11B CDD .1A O ⊥平面11AB D8.(2019•青云月考)如图,四棱锥P ABCD -中,M ,N 分别为AC ,PC 上的点,且//MN 平面PAD ,则( ) A .//MN PD B .//MN PAC .//MN ADD .以上均有可能9.(2019•上饶一模)设m ,n 表示不同的直线,α,β表示不同的平面,且m ,n α⊂.则“//αβ”是“//m β且//n β”的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分又不必要条件10.(2018•沧州一模)如图,在下列四个正方体中,P ,R ,Q ,M ,N ,G ,H 为所在棱的中点,则在这四个正方体中,阴影平面与PRQ 所在平面平行的是( )A .B .C .D .11.(2017•洛南期末)已知平面//α平面β,直线m α⊂,直线n β⊂,下列结论中不正确的是( ) A .//m βB .//n αC .//m nD .m 与n 不相交12.(2018•杭州期中)如图,四棱锥P ABCD -的底面ABCD 是平行四边形,M 、N 分别为线段PC 、PB 上一点,若:3:1PM MC =,且//AN 平面BDM ,则:PN NB =( )A .4:1B .3:1C .3:2D .2:113.(2018•厦门二模)如图,在正方体1111ABCD A B C D -中,M ,N ,P 分别是11C D ,BC ,11A D 的中点,则下列命题正确的是( )A .//MN APB .1//MN BDC .//MN 平面11BBD DD .//MN 平面BDP14.(2018•辛集期中)在四棱锥P ABCD -中,底面ABCD 为菱形,60BAD ∠=︒,Q 为AD 的中点,点M 在线段PC 上,PM tPC =,//PA 平面MQB ,则实数t 的值为( ) A .15B .14 C .13D .1215.(2018•四川模拟)如图是某几何体的平面展开图,其中四边形ABCD 为正方形,E ,F 分别为PA ,PD 的中点.在此几何体中,以下结论一定成立的是( ) A .直线//BE PFB .直线//EF 平面PBCC .平面BCE ⊥平面PAD D .直线PB 与DC 所成角为60︒16.(2017•万州期末)平面α与ABC ∆的两边AB ,AC 分别交于点D ,E ,且::AD DB AE EC =,如图,则BC 与α的位置关系是( )A .异面B .相交C .平行或相交D .平行17.(2018•桃城模拟)如图,各棱长均为1的正三棱柱111ABC A B C -,M ,N 分别为线段1A B ,1B C 上的动点,且//MN 平面11ACC A ,则这样的MN 有( )A .1条B .2条C .3条D .无数条18.(2018•雁江月考)已知P 为ABC ∆所在平面外一点,平面//α平面ABC ,且α交线段PA ,PB ,PC 于点A ',B ',C ',若:2:3PA AA ''=,则:A B C ABC S S '''=△△( )A .2:3B .2:5C .4:9D .4:2519.(2018•香坊四模)对于不重合的两个平面α和β,给定下列条件: ①存在直线l ,使得l α⊥,且l β⊥; ①存在平面γ,使得αγ⊥且βγ⊥; ①α内有不共线的三点到β的距离相等;①存在异面直线l ,m ,使得//l α,//l β,//m α,//m β. 其中,可以判定α与β平行的条件有( ) A .1个B .2个C .3个D .4个20.(2018•西城期末)在直三棱柱111ABC A B C -中,D 为1AA 中点,点P 在侧面11BCC B 上运动,当点P 满足条件 时,1//A P 平面BCD (答案不唯一,填一个满足题意的条件即可达标训练21.(2017•新课标①)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .2.(2011•浙江)若直线l 不平行于平面α,且l α⊂/,则( ) A .α内存在直线与l 异面 B .α内存在与l 平行的直线C .α内存在唯一的直线与l 平行D .α内的直线与l 都相交 3.(2010•浙江)设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l m ⊥,m α⊂,则l α⊥ B .若l α⊥,//l m ,则m α⊥C .若//l α,m α⊂,则//l mD .若//l α,//m α,则//l m 4.(2010•江西)如图,M 是正方体1111ABCD A B C D -的棱1DD 的中点,给出下列命题 ①过M 点有且只有一条直线与直线AB 、11B C 都相交; ①过M 点有且只有一条直线与直线AB 、11B C 都垂直; ①过M 点有且只有一个平面与直线AB 、11B C 都相交; ①过M 点有且只有一个平面与直线AB 、11B C 都平行. 其中真命题是( ) A .①①①B .①①①C .①①①D .①①①5.(2008•湖南)已知直线m 、n 和平面α、β满足m n ⊥,m α⊥,αβ⊥,则( ) A .n β⊥ B .//n β,或n β⊂ C .n α⊥D .//n α,或n α⊂6.(2007•北京)平面//α平面β的一个充分条件是( ) A .存在一条直线a ,//a α,//a β B .存在一条直线a ,a α⊂,//a βC .存在两条平行直线a ,b ,a α⊂,b β⊂,//a β,//b αD .存在两条异面直线a ,b ,a α⊂,b β⊂,//a β,//b α7.(2011•福建)如图,正方体1111ABCD A B C D -中,2AB =,点E 为AD 的中点,点F 在CD 上,若//EF 平面1AB C ,则线段EF 的长度等于 .。
高中数学直线平面平行的判定与性质

∵AO=FG= 3,
∴VABCDFE=13×2×2×
3×2=8 3
3 .
突破点一
突破点二
课时达标检测Байду номын сангаас
直线、平面平行的判定与性质 结 束
(2)证明:平面 ADE∥平面 BCF. 解:证明:由(1)知 AO∥FG,AO=FG, ∴四边形 AOFG 为平行四边形,∴AG∥OF. 又∵DE∥BC,DE∩AG=G,DE⊂平面 ADE,AG⊂平面 ADE,FO∩BC=O,FO⊂平面 BCF,BC⊂平面 BCF, ∴平面 ADE∥平面 BCF.
突破点一
突破点二
课时达标检测
直线、平面平行的判定与性质
[全国卷 5 年真题集中演练——明规律] 1.(2016·全国丙卷)如图,四棱锥 P-ABCD
结束
中,PA⊥底面 ABCD,AD∥BC,AB
=AD=AC=3,PA=BC=4,M 为线
段 AD 上一点,AM=2MD,N 为 PC
的中点.
(1)证明 MN∥平面 PAB;
(2)证明:平面 ADE∥平面 BCF.
突破点一
突破点二
课时达标检测
直线、平面平行的判定与性质 结 束
解:(1)取 BC 的中点 O,ED 的中点 G,连
接 AO,OF,
FG,AG. ∵AO⊥BC,AO⊂平面 ABC,平面 BCED
⊥平面 ABC,
∴AO⊥平面 BCED.同理 FG⊥平面 BCED.
突破点一
突破点二
课时达标检测
直线、平面平行的判定与性质
(2)若 EB=2,求四边形 GEFH 的面积. [解] 如图,连接 AC,BD 交于点 O,
结束
BD 交 EF 于点 K,连接 OP,GK.
高考数学一轮复习考点知识专题讲解52---直线、平面平行的判定与性质

高考数学一轮复习考点知识专题讲解直线、平面平行的判定与性质考点要求1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行错误!⇒a∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行错误!⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行错误!⇒β∥α性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行错误!⇒a∥b常用结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.(×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)教材改编题1.下列说法中,与“直线a∥平面α”等价的是()A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.2.已知不重合的直线a,b和平面α,则下列选项正确的是()A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α答案D解析若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一直线与平面平行的判定与性质命题点1直线与平面平行的判定例1如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E,F分别是BC,PD的中点,求证:(1)PB∥平面ACF;(2)EF∥平面PAB.证明(1)如图,连接BD交AC于O,连接OF,∵四边形ABCD 是平行四边形, ∴O 是BD 的中点, 又∵F 是PD 的中点, ∴OF ∥PB ,又∵OF ⊂平面ACF ,PB ⊄平面ACF , ∴PB ∥平面ACF .(2)取PA 的中点G ,连接GF ,BG . ∵F 是PD 的中点, ∴GF 是△PAD 的中位线, ∴GF 綉12AD ,∵底面ABCD 是平行四边形,E 是BC 的中点, ∴BE 綉12AD ,∴GF 綉BE ,∴四边形BEFG 是平行四边形, ∴EF ∥BG ,又∵EF ⊄平面PAB ,BG ⊂平面PAB , ∴EF ∥平面PAB .命题点2直线与平面平行的性质例2如图所示,在四棱锥P -ABCD 中,四边形ABCD 是平行四边形,M 是PC 的中点,在DM上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.教师备选如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A 1E ∩EF =E ,A 1E ,EF ⊂平面EFA 1, ∴平面EFA 1∥平面BCHG .延伸探究 在本例中,若将条件“E ,F ,G 分别是AB ,AC ,A 1B 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求ADDC的值. 解如图,连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB =1.又由题设A 1D 1D 1C 1=DC AD, 所以DC AD=1,即ADDC=1.如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G 分别为B 1C 1,A 1B 1,AB 的中点.(1)求证:平面A 1C 1G ∥平面BEF ;(2)若平面A1C1G∩BC=H,求证:H为BC的中点.证明(1)∵E,F分别为B1C1,A1B1的中点,∴EF∥A1C1,∵A1C1⊂平面A1C1G,EF⊄平面A1C1G,∴EF∥平面A1C1G,又F,G分别为A1B1,AB的中点,∴A1F=BG,又A1F∥BG,∴四边形A1GBF为平行四边形,则BF∥A1G,∵A1G⊂平面A1C1G,BF⊄平面A1C1G,∴BF∥平面A1C1G,又EF∩BF=F,EF,BF⊂平面BEF,∴平面A1C1G∥平面BEF.(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.思维升华证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).跟踪训练2如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.证明(1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.题型三平行关系的综合应用例4如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.(1)求证:BD1∥平面AEC;(2)CC1上是否存在一点F,使得平面AEC∥平面BFD1,若存在,请说明理由.(1)证明如图,连接BD交AC于O,连接EO.因为ABCD-A1B1C1D1为正方体,底面ABCD为正方形,对角线AC,BD交于O点,所以O为BD的中点,又因为E为DD1的中点,所以在△DBD1中,OE是△DBD1的中位线,所以OE∥BD1.又因为OE⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.(2)解当CC1上的点F为中点时,即满足平面AEC∥平面BFD1.连接BF,D1F,因为F为CC1的中点,E为DD1的中点,所以CF綉ED1,所以四边形CFD1E为平行四边形,所以D1F∥EC,又因为EC⊂平面AEC,D1F⊄平面AEC,所以D1F∥平面AEC.由(1)知BD1∥平面AEC,又因为BD1∩D1F=D1,BD1,D1F⊂平面BFD1,所以平面AEC∥平面BFD1.教师备选如图,四边形ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.思维升华证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.跟踪训练3如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.(1)证明∵四边形EFGH为平行四边形,∴EF∥HG.∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD . 又∵EF ⊂平面ABC , 平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH . (2)解设EF =x (0<x <4), 由(1)知EF ∥AB , ∴CF CB =EF AB =x 4, 与(1)同理可得CD ∥FG , ∴FG CD =BF BC, 则FG 6=BF BC =BC -CF BC =1-x 4, ∴FG =6-32x .∴四边形EFGH 的周长L =2⎝ ⎛⎭⎪⎫x +6-32x =12-x . 又∵0<x <4, ∴8<L <12,故四边形EFGH 周长的取值范围是(8,12).课时精练1.(2022·宁波模拟)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α答案D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.设l是直线,α,β是两个不同的平面,则下列能判断l∥α的是()A.l∥β,α∥βB.l与平面α内无数条直线平行C.l⊂β,α∥βD.l⊥β,α⊥β答案C解析对于A,l可能在α内,故不能判断l∥α,故A不正确;对于B,l可能在α内,故不能判断l∥α,故B不正确;对于C,因为l⊂β,α∥β,由面面平行的定义得l∥α,故C正确;对于D,l可能在α内,故不能判断l∥α,故D不正确.3.(2022·成都模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则()A.MF∥EB B.A1B1∥NEC.四边形MNEF为平行四边形 D.四边形MNEF为梯形答案D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB,1∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S∶S△ABC等于()△A′B′C′A.2∶3 B.2∶5C.4∶9 D.4∶25答案D解析∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.5.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()答案D解析A项,由正方体性质可知AB∥NQ,NQ⊂平面MNQ,AB⊄平面MNQ,AB∥平面MNQ,排除;B,C项,由正方体性质可知AB∥MQ,MQ⊂平面MNQ,AB⊄平面MNQ,AB∥平面MNQ,排除;D项,由正方体性质易知,直线AB与平面MNQ不平行,满足题意.6.如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是()①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③随着容器倾斜程度的不同,A1C1始终与水面所在平面平行;④当容器倾斜如图(3)所示时,AE·AH为定值.A.①② B.①④C.②③ D.③④答案B解析根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行),结合题中图形易知①正确;由题图可知水面EFGH的边EF的长保持不变,但邻边的长却随倾斜程度而改变,可知②错误;因为A1C1∥AC,AC⊂平面ABCD,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故③错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH -BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故④正确.7.考查①②两个命题,①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α⇒l ∥α,它们都缺少同一个条件,补上这个条件就可以使其构成真命题(其中l ,m 为直线,α为平面),则此条件为__________. 答案l ⊄α解析①由线面平行的判定定理知l ⊄α;②由线面平行的判定定理知l ⊄α.8.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M 在线段FH 上(或点M 与点H 重合) 解析连接HN ,FH ,FN (图略), 则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH ,则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明如图.(1)取B 1B 的中点M ,连接HM ,MC 1,易证四边形HMC 1D 1是平行四边形, ∴HD 1∥MC 1. 又MC 1∥BF , ∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,OD 1, 则OE 綉12DC .又D 1G 綉12DC ,∴OE綉D1G.∴四边形OEGD1是平行四边形,∴EG∥D1O.又D1O⊂平面BB1D1D,EG⊄平面BB1D1D,∴EG∥平面BB1D1D.(3)由(1)知BF∥HD1,由题意易证B1D1∥BD.又B1D1,HD1⊂平面B1D1H,BF,BD⊂平面BDF,且B1D1∩HD1=D1,DB∩BF=B,∴平面BDF∥平面B1D1H.10.如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面PAD.证明(1)如图,连接EC,因为AD∥BC,BC=12 AD,所以BC∥AE,BC=AE,所以四边形ABCE是平行四边形,所以O为AC的中点.又因为F是PC的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .11.(2022·福州检测)如图所示,正方体ABCD -A 1B 1C 1D 1中,点E ,F ,G ,P ,Q 分别为棱AB ,C 1D 1,D 1A 1,D 1D ,C 1C 的中点,则下列叙述中正确的是()A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.12.如图所示,正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱A1B1,B1C1的中点,P是棱AD上的一点,AP=1,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.答案2 2解析因为平面ABCD∥平面A1B1C1D1,平面ABCD∩平面PQNM=PQ,平面A1B1C1D1∩平面PQNM=MN,所以MN∥PQ,又因为MN∥AC,所以PQ∥AC.又因为AP=1,所以PDAD=DQCD=PQAC=23,所以PQ=23AC=23×32=2 2.13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.答案Q为CC1的中点解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,D1B,QB⊂平面D1BQ,所以平面D 1BQ ∥平面PAO .故Q 为CC 1的中点时,有平面D 1BQ ∥平面PAO .14.在三棱锥P -ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________. 答案8解析如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.15.(2022·合肥市第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则PA 1的长度范围为()A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤324,32 D.⎣⎢⎡⎦⎥⎤1,32答案B解析取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF , 取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且PA 1∥平面AMN , ∴点P 的轨迹是线段EF , ∵A 1E =A 1F =12+⎝ ⎛⎭⎪⎫122=52,EF =1212+12=22, ∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值A 1O ,A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,当P 与E (或F )重合时,PA 1的长度取最大值A 1E 或A 1F ,A 1E =A 1F =52.∴PA 1的长度范围为⎣⎢⎡⎦⎥⎤324,52.16.(2022·郑州模拟)如图,在三棱锥P -ABC 中,AC ,BC ,PC 两两垂直,AC =BC ,E ,F 分别是AC ,BC 的中点,△ABC 的面积为8,四棱锥P -ABFE 的体积为4.(1)若平面PEF ∩平面PAB =l ,求证:EF ∥l ; (2)求三棱锥P -ABC 的表面积. (1)证明∵E ,F 分别是AC ,BC 的中点, ∴EF ∥AB ,∵AB ⊂平面PAB ,EF ⊄平面PAB , ∴EF ∥平面PAB .又平面PEF ∩平面PAB =l ,EF ⊂平面PEF , ∴EF ∥l .(2)解∵AC ,BC ,PC 两两垂直,AC ∩BC =C ,AC ,BC ⊂平面ABC , ∴PC ⊥平面ABC ,即PC 是四棱锥P -ABFE 的高. ∵S △ABC =8,AC =BC ,AC ⊥BC , ∴AC =BC =4.∵E ,F 分别是AC ,BC 的中点,V P -ABFE =4, ∴13×34×12AC ×BC ×PC =4,即PC =2. ∴PA =42+22=25,PB =42+22=25,AB =42+42=4 2.∴△PAB的面积为12×42×(25)2-⎝⎛⎭⎪⎫4222=4 6.∴三棱锥P-ABC的表面积S=2×12×4×2+8+46=16+4 6.。
高中数学课件:直线、平面平行的判定与性质

(2)连接FH,OH, ∵F,H分别是PC,CD的中点,∴FH∥PD. ∵PD⊂平面PAD,FH⊄平面PAD,∴FH∥平面PAD. 又∵O是AC的中点,H是CD的中点,∴OH∥AD, 又∵AD⊂平面PAD,OH⊄平面PAD, ∴OH∥平面PAD. 又FH∩OH=H,∴平面OHF∥平面PAD. 又∵GH⊂平面OHF,∴GH∥平面PAD.
的角为 60°,转化为三角形的一个角有关的问题 还缺少所需要用的三角形,可连接 AD,取 AD 的中 差什么 点 M,连接 ME,MF,得三角形 MEF,利用平行 找什么 关系可找到 ME 与 MF 所成的角,然后利用余弦定 理求解即可
[解题方略] 证明面面平行的常用方法
(1)面面平行的定义,即证两个平面没有公共点(不常用); (2)面面平行的判定定理:如果一个平面内有两条相交直线 都平行于另一个平面,那么这两个平面平行(主要方法); (3)利用垂直于同一条直线的两个平面平行(客观题常用); (4)如果两个平面同时平行于第三个平面,那么这两个平面 平行(客观题常用); (5)利用“线线平行”“线面平行”“面面平行”的相互转 化进行证明.
所以四边形BDC1D1为平行四边形, 所以BD1∥C1D. BD1⊄平面AC1D,C1D⊂平面AC1D, 所以BD1∥平面AC1D, 又因为A1B∩BD1=B, 所以平面A1BD1∥平面AC1D.
2.如图,四棱锥P-ABCD中,AD∥BC,AB=BC
=
1 2
AD,E,F,H分别为线段AD,PC,CD的
考法(二) 直线与平面平行性质定理的应用 [例2] 如图所示,四边形ABCD是平行四 边形,点P是平面ABCD外一点,M是PC的中 点,在DM上取一点G,过G和AP作平面交平面 BDM于GH. 求证:AP∥GH.
高中数学高考总复习---直线、平面平行的判定和性质知识讲解及考点梳理

例 1、【高清课堂:直线、平面平行的判定与性质例 1】 如图所示,已知 P、Q 是单位正方体 ABCD-A1B1C1D1 的面 A1B1BA 和面 ABCD 的中心。 证明:PQ//平面 BCC1B1
【证明】方法一:如图,取 B1B 中点 E,BC 中点 F,连接 PE、QF、EF, 因为在三角形 A1B1B 中,P、E 分别是 A1B 和 B1B 的中点,
举一反三: 【变式】(2015 春 澄城县期末)如图所示的多面体中,ABCD 是菱形,BDEF 是矩形, ED⊥面 ABCD,连结 AC,AC∩BD=O, (Ⅰ)求证:面 BCF∥面 AED; (Ⅱ)求证:AO 是四棱锥 A﹣BDEF 的高.
【证明】(Ⅰ)在矩形 BDEF 中,FB∥ED, ∵FB 不包含于平面 AED,ED 平面 AED, ∴FB∥平面 AED, 同理,BC∥平面 AED, 又 FB∩BC=B, ∴平面 FBC∥平面 EDA. (Ⅱ)解:∵ABCD 是菱形,∴AC⊥BD, ∵ED⊥面 ABCD,AC 面 ABCD,
2
如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
2、 符号语言: 3、 面面平行的另一性质: 如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.
符号语言:
.
要点诠释:
平面与平面平行的判定与性质,同直线与平面平行的判定与性质一样,体现了转化与化
归的思想。三种平行关系如图:
性质过程的转化实施,关键是作辅助平面,通过作辅助平面得到交线,就可把面面平行 化为线面平行并进而化为线线平行,注意作平面时要有确定平面的依据。 【典型例题】
。
考点四、平面与平面平行的性质 4、 平行平面的性质定理:
如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
直线与平面,平面与平面平行的判定及其性质

2.2.1 直线与平面平行的判定:知识要点 直线与平面平行的判断方法有两种1 根据定义:直线和平面没有公共点,则直线和平面平行 . ( 一般用反证法. )2. 判定定理:平面外的一条直线与此平面内的一条直线平行,则该直线与此平 面平行.(符号表示为: a ,b ,a//b a// . 图形如图所示) . 二:例题判定定理证明:已知: a α, b α,且 a ∥b求证: a∥α例 1 :求证:空间四边形相邻两边中点的连线平行于经过另 外两边所在的平面。
已知:如图空间四边形 ABCD 中,E 、F 分别是 AB 、 求证: EF ∥平面 BCD 证明:例 2: 正方体 ABCD —A 1B 1C 1D 1中,E 为 DD 1的中点,试判断 BD 1与平面AEC 的位置 关系,说明理由a AF点 BC1CB三练习:1. 判断下列说法是否正确,并说明理由.○1 平面 外的一条直线 a 与平面 内的无数条直线平行则直线 a 和平面 平行;○2平面 外的两条平行直线 a,b ,若 a// ,则b// ;○3 直线a 和平面 平行,则直线 a 平行于平面 内任意一条直线; ○4 直线 a 和平面 平行,则平面 中必定存在直线与直线 a 平行. A. l 1 ∥α B. l 2 α C. l 2 ∥α或l 2 α D. l 2 与α相交 3.以下说法(其中 a ,b 表示直线, 表示平面)①若 a ∥b , b ,则 a ∥ ②若 a ∥ ,b ∥ ,则 a ∥b ③若 a ∥b , b ∥ ,则 a ∥ ④若 a ∥ ,b ,则 a ∥b 其中正确说法的个数是( ) .A. 0 个B. 1 个C. 2 个D. 3 个4.已知a ,b 是两条相交直线, a ∥ ,则 b 与 的位置关系是( ). A. b ∥ B. b 与 相交 C. b α D. b ∥ 或 b 与 相交5. 如果平面 外有两点 A 、B ,它们到平面 的距离都是 a ,则直线 AB 和平面 的 位置关系一定是( ) .A. 平行B. 相交C. 平行或相交D. AB 6.平面 与△ ABC 的两边 AB 、 AC 分别交于 D 、E ,且 AD ∶DB=AE ∶EC ,求证: BC ∥平面 .7.P 是平行四边形 ABCD 所在平面外一点, E 为PB 的中点, O 为 AC ,BD 的交点. (1)求证:EO ‖平面PCD ; (2)图中EO 还与哪个平 面平行?8. 在正方体 ABCD- A 1B 1C 1D 1中, E 、F 分别为棱 BC 、C 1D 1的中点. 求证: EF ∥平面 BB 1D 1D2. 已知直线 l 1、l 2 , 平面α, l 1 ∥l 2 , l 1∥α 那么 l 2 与平面 α 的关系是( ).2.2 平面与平面平行的判定:知识要点平面与平面平行的判断方法有三种 1. 定义:两平面没有公共点,则两平面平行2. 判定定理:如果一个平面内有两条相交直线都平行于另一个平面, 那么这两个平面平行. 用符号表示为: a ,b ,a b P // a// ,b// 图形如图所示图形如图所示 3. 推论:①如果一个平面内有两条相交直线分别平行于 另一个平面内的两条直线,那么这两个平面平行 ②垂直于同一条直线的两个平面平行 . ③平行与同一平面的两个平面平行 . 二:例题 判定定理证明 : 已知:如图, m , n , 求证://mn ( 思考 1 :如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线, 那么这两个平面平行吗 ?为什么? )(思考 2:.在判断一个平面是否水平时,把水准器在这个平 面内交叉地放两次,如果水准器的气泡都是居中的,就 可以判定这个平面和水平面平行,你能说出理由吗?) 例 2:已知正方体 ABCD-A 1B 1C 1D 1, 求证:平面 AB 1D 1 // 平面 C 1BD 。
高考数学一轮复习---直线、平面平行的判定与性质

直线、平面平行的判定与性质一、基础知识1.直线与平面平行的判定定理和性质定理2.平面与平面平行的判定定理和性质定理二、常用结论平面与平面平行的三个性质(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面.(2)夹在两个平行平面间的平行线段长度相等.(3)两条直线被三个平行平面所截,截得的对应线段成比例.三、考点解析考点一直线与平面平行的判定与性质考法(一)直线与平面平行的判定例、如图,在直三棱柱ABCA1B1C1中,点M,N分别为线段A1B,AC1的中点.求证:MN∥平面BB1C1C.考法(二)线面平行性质定理的应用例、如图,在四棱柱ABCDA1B1C1D1中,E为线段AD上的任意一点(不包括A,D两点),平面CEC1与平面BB1D交于FG.跟踪训练1.已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.如图,在四棱锥PABCD中,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.求证:BM∥平面P AD.3.如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和P A作平面P AHG交平面BMD于GH.求证:P A∥GH.考点二平面与平面平行的判定与性质例、如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.变式练习:1.(变结论)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.2.如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点,求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.课后作业1.已知直线额a与直线b平行,直线a与平面α平行,则直线b与α的关系为()A.平行B.相交C.直线b在平面α内D.平行或直线b在平面α内2.若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线3.在空间四边形ABCD中,E,F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶2,则对角线AC 和平面DEF的位置关系是()A.平行B.相交C.在平面内D.不能确定4.设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.存在一条直线a,a∥α,a∥β B.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α5.如图,透明塑料制成的长方体容器ABCDA1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在平面平行;④当容器倾斜如图所示时,BE·BF是定值.其中正确命题的个数是()A.1 B.2 C.3 D.46.如图,平面α∥平面β,△P AB所在的平面与α,β分别交于CD,AB,若PC=2,CA=3,CD=1,则AB=________.7.设α,β,γ是三个平面,a,b是两条不同直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(填序号).8.在三棱锥PABC中,PB=6,AC=3,G为△P AC的重心,过点G作三棱锥的一个截面,使截面平行于PB和AC,则截面的周长为________.9.如图,E,F,G,H分别是正方体ABCDA1B1C1D1的棱BC,CC1,C1D1,AA1的中点.求证:10.如图,在四棱锥PABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面P AB;(2)求三棱锥PABM的体积.提高训练1.如图,四棱锥PABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M为线段AD 上一点,AM=2MD,N为PC的中点.(1)求证:MN∥平面P AB;(2)求四面体NBCM的体积.2.如图所示,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.。
2019年高中数学·第一轮复习 第40讲 直线、平面平行的判定与性质

第40讲 直线、平面平行的判定与性质[学生用书P130]1.直线与平面平行的判定定理和性质定理判断正误(正确的打“√”,错误的打“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ) (2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ) (3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ) (4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( ) (5)若直线a 与平面α内无数条直线平行,则a ∥α.( ) (6)若α∥β,直线a ∥α,则a ∥β.( ) 答案:(1)× (2)× (3)× (4)√ (5)× (6)×对于直线m ,n 和平面α,若n ⊂α,则“m ∥n ”是“m ∥α”的( ) A .充分不必要条件 B.必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:D(教材习题改编)如果直线a ∥平面α,那么直线a 与平面α的位置关系可另等价表述,下列命题中正确的是( )A .直线a 上有无数个点不在平面α内B .直线a 与平面α内的所有直线平行C .直线a 与平面α内的无数条直线不相交D .直线a 与平面α内的任意一条直线都不相交解析:选D .因为a ∥平面α,直线a 与平面α无公共点,因此a 和平面α内的任意一条直线都不相交,故选D .(教材习题改编)下列命题为真的是( ) A .若直线l 与平面α有两个公共点,则l ⊄α B .若α∥β,a ⊂α,b ⊂β,则a 与b 是异面直线 C .若α∥β,a ⊂α,则a ∥βD .若α∩β=b ,a ⊂α,则a 与β一定相交解析:选C .A 错误.直线l 和平面α有两个公共点,则l ⊂α. B 错误.若α∥β,a ⊂α,b ⊂β,则a 与b 异面或平行. C 正确.因为a 与β无公共点,则a ∥β. D 错误.a 与β有可能平行.故选C .(教材习题改编)设m ,n 表示直线,α、β表示平面,则下列命题为真的是( ) A .⎭⎪⎬⎪⎫m ∥αn ∥α⇒m ∥n B.⎭⎪⎬⎪⎫m ∥αα∥β⇒m ∥β C .⎭⎪⎬⎪⎫α∩β=m n ∥α n ∥β⇒m ∥n D .⎭⎪⎬⎪⎫α∥βm ∥αn ∥β⇒m ∥n 解析:选C .A 错误,因为m 可能与n 相交或异面. B 错误,因为m 可能在β内.D 错误,m 、n 可能异面或相交,故选C .(教材习题改编)如图,正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与平面AEC 的位置关系为______.解析:连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,E为DD1的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.答案:平行线面、面面平行的相关命题的真假判断[学生用书P130][典例引领](1)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面(2)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,m∥α,则m∥β;④若m∥α,n∥β,m∥n,则α∥β.其中是真命题的是________(填上正确命题的序号).【解析】(1)A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n与已知m,n不平行矛盾,所以原命题正确,故D 项正确.(2)①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m⊂β,故③错误;④α∥β或α与β相交,故④错误.【答案】(1)D(2)②(1)判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.(2)①结合题意构造或绘制图形,结合图形作出判断.②特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.[通关练习]已知直线a,b,平面α,β,且a⊥α,b⊂β,则“a⊥b”是“α∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B.根据题意,分两步来判断:①当α∥β时,因为a⊥α,且α∥β,所以a⊥β,又因为b⊂β,所以a⊥b,则“a⊥b”是“α∥β”的必要条件,②若a⊥b,不一定α∥β,当α∩β=b时,又由a⊥α,则a⊥b,但此时α∥β不成立,即a⊥b不是α∥β的充分条件,则“a⊥b”是“α∥β”的必要不充分条件,故选B.线面平行的判定与性质(高频考点)[学生用书P131]平行关系是空间几何中的一种重要关系,包括线线平行、线面平行、面面平行,其中线面平行在高考试题中出现的频率很高,一般出现在解答题中.主要命题角度有:(1)判断线面的位置关系;(2)线面平行的证明;(3)线面平行性质的应用.[典例引领]角度一判断线面的位置关系(2017·高考全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()【解析】 对于选项B ,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ ,又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ .同理可证选项C ,D 中均有AB ∥平面MNQ .故选A .【答案】 A角度二 线面平行的证明如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD .【证明】 (1)连接EC ,因为AD ∥BC ,BC =12AD ,所以BC ═∥AE ,所以四边形ABCE 是平行四边形,所以O 为AC 的中点. 又因为F 是PC 的中点,所以FO∥AP,因为FO⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)连接FH,OH,因为F,H分别是PC,CD的中点,所以FH∥PD,所以FH∥平面P AD.又因为O是BE的中点,H是CD的中点,所以OH∥AD,所以OH∥平面P AD.又FH∩OH=H,所以平面OHF∥平面P AD.又因为GH⊂平面OHF,所以GH∥平面P AD.角度三线面平行性质的应用如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.【解】(1)证明:因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)如图,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为P A=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH , 所以PO ∥平面GEFH .因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点. 再由PO ∥GK 得GK =12PO ,即G 是PB 的中点, 且GH =12BC =4.由已知可得OB =42.PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK=4+82×3=18.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).[通关练习]如图所示,已知四边形ABCD 是正方形,四边形ACEF 是矩形,AB =2,AF =1,M 是线段EF的中点.(1)求证:MA∥平面BDE.(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.解:(1)证明:如图,记AC与BD的交点为O,连接OE.因为O,M分别是AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.面面平行的判定与性质[学生用书P132][典例引领]如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为GH是△A1B1C1的中位线,所以GH∥B1C1.又因为B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)因为E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.因为A1G═∥EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.因为A1E∩EF=E,所以平面EF A1∥平面BCHG.1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1═∥BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1.BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D.所以平面A1BD1∥平面AC1D.证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理;如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”“线面平行”“面面平行”的相互转化.[通关练习]如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面B1D1C=直线l,证明B1D1∥l.证明:(1)由题设知BB1═∥DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1═∥B1C1═∥BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面B1D1C=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.线线、线面、面面平行间的转化其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面面平行的性质.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.解决平行问题应注意三点(1)在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.(2)面面平行的判定中易忽视“面内两条相交线”这一条件.(3)如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.[学生用书P303(单独成册)]1.设α,β是两个不同的平面,m,n是平面α内的两条不同直线,l1,l2是平面β内的两条相交直线,则α∥β的一个充分不必要条件是()A.m∥l1且n∥l2 B.m∥β且n∥l2C.m∥β且n∥βD.m∥β且l1∥α解析:选A.由m∥l1,m⊂α,得l1∥α,同理l2∥α,又l1,l2相交,l1,l2⊂β,所以α∥β,反之不成立,所以m∥l1且n∥l2是α∥β的一个充分不必要条件.2.已知m,n,l是不同的直线,α,β是不同的平面,以下命题正确的是()①若m∥n,m⊂α,n⊂β,则α∥β;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n;③若m⊥α,n⊥β,α∥β,则m∥n;④若α⊥β,m∥α,n∥β,则m⊥n.A.①③ B.③④C.②④D.③解析:选D.①若m∥n,m⊂α,n⊂β,则α∥β或α,β相交;②若m⊂α,n⊂β,α∥β,l⊥m,则l⊥n或l∥n或l,n异面;③正确;④若α⊥β,m∥α,n∥β,则m⊥n或m∥n或m,n异面.3.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AE∶EB=AF∶FD =1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFGH,且四边形EFGH是矩形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是菱形D.EH∥平面ADC,且四边形EFGH是平行四边形解析:选B.由AE∶EB=AF∶FD=1∶4知EF═∥15BD,所以EF∥平面BCD.又H,G分别为BC,CD的中点,所以HG═∥12BD,所以EF∥HG且EF≠HG.所以四边形EFGH是梯形.4.在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1.其中推断正确的序号是()A.①③ B.①④C.②③D.②④解析:选A.因为在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为BC1∥AD1,所以FG∥AD1,因为FG⊄平面AA1D1D,AD1⊂平面AA1D1D,所以FG∥平面AA1D1D,故①正确;因为EF∥A1C1,A1C1与平面BC1D1相交,所以EF与平面BC1D1相交,故②错误;因为E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为FG⊄平面BC1D1,BC1⊂平面BC1D1,所以FG∥平面BC1D1,故③正确;因为EF与平面BC1D1相交,所以平面EFG与平面BC1D1相交,故④错误.故选A.5.设l,m,n表示不同的直线,α,β,γ表示不同的平面,给出下列命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选B.由题易知①正确;②错误,l也可以在α内;③错误,以墙角为例即可说明;④正确,可以以三棱柱为例说明,故选B.6.如图,透明塑料制成的长方体容器ABCD -A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH 所在四边形的面积为定值; ③棱A 1D 1始终与水面所在平面平行; ④当容器倾斜如图所示时,BE ·BF 是定值. 其中正确的命题是________.解析:由题图,显然①是正确的,②是错误的; 对于③,因为A 1D 1∥BC ,BC ∥FG , 所以A 1D 1∥FG 且A 1D 1⊄平面EFGH , 所以A 1D 1∥平面EFGH (水面). 所以③是正确的;对于④,因为水是定量的(定体积V ), 所以S △BEF ·BC =V ,即12BE ·BF ·BC =V .所以BE ·BF =2VBC (定值),即④是正确的.答案:①③④7.棱长为2的正方体ABCD -A 1B 1C 1D 1中,M 是棱AA 1的中点,过C ,M ,D 1作正方体的截面,则截面的面积是________.解析:由面面平行的性质知截面与平面AB 1的交线MN 是△AA 1B 的中位线,所以截面是梯形CD 1MN ,易求其面积为92.答案:928.已知平面α∥β,P ∉α且P ∉ β,过点P 的直线m 与α,β分别交于A ,C ,过点P 的直线n 与α,β分别交于B ,D ,且P A =6,AC =9,PD =8,则BD 的长为________.解析:如图1,因为AC ∩BD =P ,图1所以经过直线AC 与BD 可确定平面PCD . 因为α∥β,α∩平面PCD =AB , β∩平面PCD =CD , 所以AB ∥CD .所以P A AC =PB BD, 即69=8-BD BD ,所以BD =245. 如图2,同理可证AB ∥CD .图2所以P A PC =PB PD ,即63=BD -88,所以BD =24.综上所述,BD =245或24.答案:245或249.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,E ,F 分别是线段A 1D ,BC 1的中点.延长D 1A 1到点G ,使得D 1A 1=A 1G .证明:GB ∥平面DEF .证明:连接A 1C ,B 1C ,则B 1C ,BC 1交于点F . 因为CB ═∥D 1A 1,D 1A 1=A 1G ,所以CB ═∥A 1G ,所以四边形BCA 1G 是平行四边形,所以GB ∥A 1C . 又GB ⊄平面A 1B 1CD ,A 1C ⊂平面A 1B 1CD ,所以GB ∥平面A 1B 1CD .又点D ,E ,F 均在平面A 1B 1CD 内,所以GB ∥平面DEF . 10.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,A 1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明:(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,所以HD1∥MC1.又因为MC1∥BF,所以BF∥HD1.(2)取BD的中点O,连接EO,D1O,则OE═∥12DC,又D1G═∥12DC,所以OE═∥D1G,所以四边形OEGD1是平行四边形,所以GE∥D1O.又GE⊄平面BB1D1D,D1O⊂平面BB1D1D,所以EG∥平面BB1D1D.(3)由(1)知BF∥HD1,又BD∥B1D1,B1D1,HD1⊂平面B1D1H,BF,BD⊂平面BDF,且B1D1∩HD1=D1,DB∩BF=B,所以平面BDF∥平面B1D1H.1.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列说法中,错误的为() A.AC⊥BDB.AC=BDC.AC∥截面PQMND.异面直线PM与BD所成的角为45°解析:选B.因为截面PQMN是正方形,所以PQ∥MN,QM∥PN,则PQ∥平面ACD、QM∥平面BDA,所以PQ∥AC,QM∥BD,由PQ⊥QM可得AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故C正确;由BD∥PN,所以∠MPN是异面直线PM与BD所成的角,且为45°,D正确;由上面可知:BD∥PN,MN∥AC.所以PNBD=ANAD,MNAC=DNAD,而AN≠DN,PN=MN,所以BD≠AC.B错误.故选B.2.设α,β,γ是三个不同的平面,a,b是两条不同的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确条件的序号都填上).解析:由面面平行的性质定理可知,①正确;当b∥β,a⊂γ时,a和b在同一平面内,且没有公共点,所以平行,③正确.故填入的条件为①或③.答案:①或③3.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,所以MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)4.如图,在直三棱柱ABC -A 1B 1C 1中,若BC ⊥AC ,∠BAC =π3,AC =4,M 为AA 1的中点,点P 为BM 的中点,Q 在线段CA 1上,且A 1Q =3QC ,则PQ 的长度为________.解析:由题意知,AB =8,过点P 作PD ∥AB 交AA 1于点D ,连接DQ ,则D 为AM 的中点,PD =12AB =4.又因为A 1Q QC =A 1D AD=3,所以DQ ∥AC ,∠PDQ =π3,DQ =34AC =3,在△PDQ 中, PQ =42+32-2×4×3×cos π3=13.答案:135.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG 与平面ACH 的位置关系,并证明你的结论.解: (1)点F ,G ,H 的位置如图所示. (2)平面BEG ∥平面ACH ,证明如下: 因为ABCD -EFGH 为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.6.如图,ABCD与ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.(1)求证:BE∥平面DMF;(2)求证:平面BDE∥平面MNG.证明:(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE 的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB中点,所以MN为△ABD的中位线,所以BD∥MN,又BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG,又DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【证明】证法一:如图所示,分别取AA1,A1B1 的中点M,N,连接MN,NQ,MP.
∵P,Q分别是面AA1 D1D,面A1B1C1D1的中点,
∴MP∥AD, MP=
NQ=
1 2
A1D1.
1 2
AD,NQ∥A1D1,
∴MP∥NQ且MP=NQ.
∴四边形PQNM为平行四边形.
∴PQ∥MN.
∵MN AA1B1B,
∵CQ∥
∴CQ∥MN.
∵EF是△ABC的中位线,∴M是PC的中点,
则N是PQ的中点,即PQ被平面EFGH平分.
【点评】P,C,Q三点所确定的辅助平面是解决本题的 核心.有了面PCQ,就有了连接CD与面EFGH的桥梁, 线面平行的性质才能得以应用.
返回
如图2-3-4所示,已知ABCD是平行四边形,点P是平面 ABCD外一点,M是PC的中点,在DM上取一点G,过G 和AP作平面交平面BDM于GH.求证:AP∥GH.
.
∴AC∥MN∥AC,且AC= 13AC.
∴AC∥平面ABC.
同理,A′B′∥平面ABC.
又∵AC∩A′B′=A′,
∴平面A′B′C′∥平面ABC.
1
1
(2)同理A′B′= AB3 , B=C BC3 ,
∴△A′B′C′∽△ABC.
∴S△A′B′C′
S△ABC =1:9.
返回
1.如何理解线面平行的性质定理?
表示平面的平行四边形的外面,并且使它与平行四边形的一 边或平行四边形内的一条线段平行.
返回
2.如何理解两个平面平行的性质定理?
平面平行的性质是根据面面平行、线面平行、线线平行的 定义直接给出的;判定直线与直线平行,进而判定直线与 平面平行和平面与平面平行,或者反过来由后者判定前者, 是立体几何最基本又最常见的一类问题.证明线面平行往往 转化为证明面面平行.
∵A1B A1D1B,∴A1B∥平面ADC1.
返回
学点四 平行的综合问题 设P,Q是单位正方体AC1的面AA1D1D、 面A1B1C1D1的中心.证明:PQ∥平面AA1B1B
【分析】学完了空间中的平行关系,要证明直线和 平面平行的途径主要有两种:一是可以由线线平行 来证,即在平面内找一条直线和已知直线平行;二 是通过面面平行的性质来证明.
开始
学点一
学点二
学点三
1.一条直线与一个平面平行,则过这条直线的
任一平面 与此平面的交线与该直线平行.
这个定理叫做直线与平面平行的 性质定理 .用
符号表示为 a∥α,a β,α∩β=b a∥b
.
2.如果两个平行平面同时和第三个平面相交,那
么它们的
交线 平行.这个定理叫做平
面与平面平行的 性质定理 ,用符号表示为
返回
如图所示,正三棱柱ABC— A1B1C1中,D是BC的中点,试 判断A1B与平面ADC1的位置关 系,并证明你的结论.
直线A1B∥平面ADC1,取B1C1的中点D1,连接A1D1,BD1, 则A1D1∥AD,D1B∥C1D,
∴AD∥平面A1D1B,C1D∥平面A1D1B.
又∵AD∩C1D=D,∴平面ADC1∥平面A1D1B,
E,EQ,由题知PE∥DD1,DD1∥AA1,
∴PE∥AA1,∵EQ∥A1B1,又∵PE∩EQ=E,
PE
AA1 A1B1
1B1B, 1B1B1,
∴面PEQ∥面AA1B1B.
又∵PQ
∴PQ∥面AA1B1B.
返回
【点评】本题在证明线面平行时提供了三种证法,证法 一通过平行四边形的对边平行得到“线线平行”,从而 证得“线面平行”;证法二通过三角形的中位线与底边 平行得到“线线平行”,从而证得“线面平行”;证法 三是通过构造两个平行平面,然后运用面面平行的性质 来证,即先由“线线平行”证得“面面平行”,再由 “面面平行”得到“线面平行”.本题充分体现了“线线 平行”“线面平行”“面面平行”之间的转化.
∵α∥β,∴AC∥BD.
又M,N为AB,CD的中点,∴MN∥BD.
α,MN α,∴MN∥平面α.
返回
②若AB,CD异面,如图所示,过A作AE∥CD交α于 E,取AE中点P,连接MP, PN ,BE, ,ED.
∵AE∥CD,∴AE,CD确定 平面AEDC.则平面AEDC 与α,β的交线为ED,AC,
返回
1.已知三条互相平行的直线a,b,c中,a α,b β,c β,则两个平面α,β的位置关系是( )
A.平行
B.相交
C与平面α平行的平面,则
这样的平面可以作
()
A.1个或2个
B.0个或1个
C.1个
D.0个
返回
3.设 m,n是平面α内的两条不同直线,l1,l2是平 面β内的两条相交直线,则能使α∥β的一个条
【分析】利用“线∥ ∥面”的转化.
返回
【证明】 (1)∵E,F,G,H分别是AC,CB,BD,
DA的中点,∴EH∥CD,FG∥CD,∴EH∥FG,
因此,E,F,G,H共面.
∵CD∥EH,CD
∴CD∥平面EFGH,同理,AB∥平面EFGH.
(2)设PQ∩平面EFGH=N,连接PC.
设PC∩EF=M,平面PCQ∩平面EFGH=MN.
∴OM∥平面PAHG.
∵平面PAHG∩平面BMD=GH,OM
∴OM∥GH.
∴AP∥GH.
BMD,
返回
学点三 面面平行的性质定理
已知AB,CD是夹在两个平行平面α,β之间 的线段,M,N分别为AB,CD的中点,求证: MN∥平面α.
【分析】分AB,CD是否共面两种情况.
【证明】①若AB,CD在同一平面内,则平面ABDC与α, β的交线为BD,AC.
AA1B1B 面,
∴PQ∥面 AA1B1B .
返回
证法二:如图所示,连接AD1,AB1,在△AB1D1中, 显然P,Q分别是AD1,D1B1的中点,
∴PQ∥AB1,且PQ=
1 2
AB1.
∵PQ
1B1B,
AB1
1B1B,
∴PQ∥平面AA1B1B.
返回
证法三:如图所示,取A1D1的中点E,分别连接P
线面平行的性质定理是由线面平行推出线线平行,此处的线 线是指与平面平行的一条直线和过这条直线的平面与已知平 面的交线.这个定理用符号语言来表示,
即 a∥α aβ
a∥b在应用该定理时,要防止出现“一
α∩β=b
条直线平行于一个平面就平行于这个平面内的一切直线”的
错误.
画一条直线与已知平面平行时,通常把表示直线的线段画在
2.除了两个平面平行的性质定理外,两个平面平行还有下列性 质:
(1)如果两个平面平行,那么其中一个平面内的直线必平行
于另一个平面.用符号表示为:α∥β,a α a∥β.此性质由面面
平行得到线面平行,这也是线面平行的一个判定方法.
(2)夹在两个平行平面之间的平行线段相等;
(3)经过平面外一点,有且只有一个平面与已知平面平行.
返回
已知三棱锥P—ABC,A′,B′,C′是 △PBC,△PCA,△PAB的重心.
(1)求证:面A′B′C′∥面ABC;
(2)求S△A′B′C′
S△ABC .
返回
(1)证明:设M,N是BC,AB的中点.
连接PN,PM,则C′,A′分别在PN,PM上.
在△PMN中,
PC PA 2 PN PM 3
∵α∥β,∴ED∥AC.
又P,N为AE,CD的中点,
∴PN∥ED,ED α, PN α,∴PN∥平面α.
同理可证MP∥BE,∴MP∥平面α,又∵PN∩MP=P, ∴平面MPN∥平面α.
∴MN∥平面α.
返回
【点评】(1)分类讨论常用于位置关系不确定的条件. (2)本题是平面几何中梯形中位线在空间的推广.
返回
证法一:如图,连接AC交BD于O,连接MO.
∵四边形ABCD是平行四边形,
∴O是AC的中点.
又∵M是PC的中点,
∴AP∥OM.
∵OM
BMD,PA BMD,
∴PA∥平面BMD.
∵平面PAHG∩平面BMD=GH,PA 平面PAHG,
∴PA∥GH.
返回
证法二:同证法一有AP∥OM.
∵PA
PAHG,OM PAHG,
∵AB∥α,α∩β=CD,∴AB∥CD,同理AB∥EF,∴C D∥EF.
返回
学点二 直线与平面平行的判定及性质定理的应用
如图所示,线段AB,CD所在直线是异面直线,E,F, G,H分别是线段AC,CB,BD,DA的中点.
(1) 求证:E,F,G,H共 面并且所在平面平行于直线A B和CD; (2) 设P,Q分别是AB和C D上任意一点,求证:PQ被 平面EFGH平分.
β∩δ=n.
∵a∥α,a γ,α∩γ=m,
∴a∥m.同理a∥n, ∴m∥n.
∵m β,n β,∴m∥β,
又∵m α,α∩β=b,
∴m∥b. 又∵a∥m,∴a∥b.
图2-3-2
返回
【点评】(1)如果已知直线与平面平行,在利用直线与平 面平行的性质定理时,常作过此直线与已知平面相交的辅 助平面,完成线面平行向线线平行的转化,再由线线平行 向线面平行转化,这种互相转化的思想方法的应用,在立 体几何中十分常见.
(2)本题是直线与平面平行的判定定理和性质定理的综合 应用.
(3)在寻求线线平行时,初中阶段学过的平行线的判定要 充分利用,如中位线的性质、等比例截割定理、平行四边 形的性质等.
返回
如图所示,已知 α∩β=CD,α∩γ=EF,β∩γ= AB,AB∥α.求证:CD ∥EF.
证明:∵ABβ,AB α,又
返回
返回
6.如图2-3-10,四面体A—BCD被一平面所截,截面 与四条棱AB,AC,CD,分别相交于E,F,G,H 四点,且截面EFGH是一个平行四边形,求证: BC∥平面EFGH.