武汉市2016-2017学年八年级数学下学期期末试题(附答案)
2016-2017学年湖北省武汉市江岸区八年级(下)期末数学试卷-普通用卷

2016-2017学年湖北省武汉市江岸区八年级(下)期末数学试卷副标题一、选择题(本大题共10小题,共30.0分)1.函数y=中自变量x的取值范围是()A. B. C. D.2.已知三角形三边的长分别为3、2、,则该三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定3.在平行四边形中,不一定具有下列性质的是()A. 对边相等B. 对边平行C. 对角线相等D. 内角和为4.如图分别给出了变量x与y之间的对应关系,其中y不是x的函数是()A. B.C. D.5.如果一组数据3、4、x、5的平均数是4,那么x的值为()A. 2B. 3C.D. 46.已知A(x1,y1)、B(x2,y2),是一次函数y=-2x+3的图象上的点.当x1>x2时,y1、y2的大小关系为()A. B.C. D. 以上结论都有可能7.如图,函数y=kx和y=ax+b的图象相交于点A(1,3),则不等式kx≥ax+b的解集为()A.B.C.D.8.如图所示,购买水果所付金额y(元)与购买量x(千克)之间的函数图象,则一次购买5千克这种水果比分五次每次购买1千克这种水果可节省()元A. 10B. 6C. 5D. 49.如图,在3×3的网格中(每一个小正方形的边长为1),直角△ABC的顶点均在格点.若△ABC的面积为,则满足条件的直角三角形有()A. 12个B. 16个C. 20个D. 24个10.已知函数y=(k-1)x+2k-1与y=|x-1|,当满足0≤x≤3时,两个函数的图象存在2个公共点,则k满足的条件是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.计算:=______.12.已知直角三角形的两直角边分别为5、12,则另一条边是______.13.一组数据2、3、x、4的众数与平均数相等,则x=______14.如图,在△ABC中,AB=AC,BC=2,三角形的中线BE、CD交于点O,点F、G分别为OB、OC的中点.若四边形DFGE是正方形,则△ABC的面积为______15.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.16.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为______.三、计算题(本大题共1小题,共8.0分)17.计算:(1)(2)四、解答题(本大题共7小题,共64.0分)18.如图,正方形ABCD中,点P为BC的中点,求证:AP=DP.19.已知一次函数的图象经过(-1,0)和(1,4)两点,求一次函数的解析式20.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,解决下列问题:(1)七年级共有______人参加了兴趣小组;(2)体育兴趣小组对应扇形圆心角的度数为______;(3)以各小组人数组成一组新数据,求这组新数据的中位数.21.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.22.如图,直线l:y=2x+4(1)①直接写出直线l关于y轴对称的直线l1的解析式______②直接写出直线l向右平移2个单位得到的直线l2的解析式______(2)在(1)的基础上,点M是x轴上一点,过点M作x轴的垂线交直线l1于点Q、交直线l2于点P.若PM=2PQ,求M点的坐标23.如图,已知正方形ABCD的边长是2,点P沿A→B→C→D运动,到达点D停止(1)连接PD,设点P运动的距离为x,请用x表示△APD的面积y(直接写出结果);(2)作DE⊥AP于点E①如图2,点P在线段BC上,将△APB沿AP翻折得到△APB′,连接DB′,求∠B′DE的度数;②连接EC,若△CDE是等腰三角形,则DE=______(直接写出结果).24.已知直线a:y=(x+1)k+1与x轴交于点P、与y轴交于点Q(1)直线a经过定点A,则点A的坐标为:______(直接写出结果)(2)直线b:y=(k-1)x+k与y轴交于点M,与直线a交于点B,求证:无论k取何值,△BQM的面积为定值(3)如图,过点Q在第二象限内作线段CQ⊥PQ,且CQ=AQ,连接AC,取AC的中点D.当k的值从3逐步变化到1时,求点D运动的路径长答案和解析1.【答案】C【解析】解:由题意得,1-x≥0,解得x≤1.故选C.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.【答案】B【解析】解:∵22+()2=32,∴该三角形是直角三角形,故选:B.两小边的平方和等于最长边的平方,即可由勾股定理的逆定理证明三角形是直角三角形.本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.【答案】C【解析】解:因为平行四边形对边相等,对边平行,内角和为360°,对角线不一定相等,故选:C.根据平行四边形的性质即可判断.本题考查平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考常考题型.解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B中y不是x的函数.故选:B.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.5.【答案】D【解析】解:根据题意知=4,解得:x=4,故选:D.运用平均数的计算公式即可求得x的值.本题考查的是样本平均数的求法及运用,即平均数公式:=.6.【答案】A【解析】解:∵A(x1,y1)、B(x2,y2)是一次函数y=-2x+3的图象上的点,∴y1=-2x1+3,y2=-2x2+3,又∵x1>x2,∴-2x1+3<-2x2+3,即y1<y2.故选:A.利用一次函数图象上点的坐标特征可得出y1=-2x1+3、y2=-2x2+3,结合x1>x2即可得出y1<y2,此题得解(利用一次函数的性质解决该题亦可).本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.解:函数y=kx和y=ax+b的图象相交于点A(1,3),由图可知,不等式kx≥ax+b的解集为x≥1.故选:A.以交点为分界,结合图象写出不等式kx≥ax+b的解集即可.本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合8.【答案】B【解析】解:设直线AB的解析式为y=kx+b,将(2,20)、(4,36)代入y=kx+b中,,解得:,∴y=8x+4(x≥2).当x=5时,y=44.∵x=1时,y=10,50-44=6,则一次购买5千克这种苹果比分五次每次购买1千克这种苹果可节省6元,故选:B.求出直线AB的解析式即可解决问题;本题考查了一次函数的应用、待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9.【答案】D【解析】解:设直角三角形的两直角边是a和b∵△ABC的面积为∴ab=∴ab=3又:直角△ABC的顶点均在格点上,小正方形的边长为1.∴它的两直角边的长度为1和3满足条件.如图所示,取线段AB,可构造两个符合要求的三角形.类似图中线段AB的线段共有12条,每条线段可以构造两个三角形所以,总共可以找到的三角形个数是:12×2=24(个)故选:D.通过直角三角形的面积可以得到两直角边的乘积是3,结合各顶点在格点的要求,可以知道直角边为1和3满足要求,通过作图探索,可以发现这样的三角形共有24个.这是典型的探索格点三角形个数的题目,重在考察学生对直角三角形的认识、面积的计算方法、直观想象能力.作答此类题目,要做到数三角形的个数时“不重不漏”.10.【答案】D【解析】解:由已知,当x=-2时,y=2(k-1)+2k-1=2∴函数y=(k-1)x+2k-1的图象过定点A(-2,1)如图:y=|x-1|的图象如图为折线BCD,其中点B(0,1),C(1,0),D(3,2)当函数y=(k-1)x+2k-1的图象过点C(1,0)时,与折线BCD恰一个交点k=当过直线过点A、B时,AB∥x轴,直线AB与折线BCD有两个交点此时,k-1=0∴k=1故选:D.观察函数y=(k-1)x+2k-1图象,其过定点A(-2,1)则其图象绕点A旋转,且画出y=|x-1|的图象,将y=(k-1)x+2k-1的图象旋转找到临界点.本题考查了一次函数图象性质和临界点问题.本题解题关键在于发现带有参数的函数解析式过定点.11.【答案】2【解析】解:==2.故答案为2.根据算术平方根的性质进行化简,即=|a|.此题考查了算术平方根的性质,能够能够算术平方根的性质进行化简,是一道基础题.12.【答案】13【解析】解:在直角三角形中,已知两直角边为5、12,则另一条边为斜边,边长为=13,∴第三条边为13,故答案为13.在直角三角形中,三边边长符合勾股定理,已知两直角边为5、12,则另一条边即斜边可以根据勾股定理求解.本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理求第三边是解题的关键.13.【答案】3【解析】解:当这组数的众数是2时,则平均数是:(2+x+3+4)=2,解得:x=-1,当这组数的众数是3时,则平均数是:(2+x+3+4)=3,解得:x=3,当这组数的众数是4时,则平均数是:(2+x+3+4)=4,解得:x=7,则x=3时,数据2、3、x、4的众数与平均数相等;故答案为:3.根据众数和平均数的定义以及众数与平均数相等,分别进行解答即可.此题考查了众数和平均数,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.14.【答案】3【解析】解:∵四边形DFGE是正方形,∴DG⊥EF,OE=OF,OD=OG,∠EGF=90°,∵CD是△ABC的中线,∴S△BDC=S△ADC,∵点F、G分别为OB、OC的中点,∴FG是△OBC的中位线,∴FG=BC=1,由勾股定瑆得:DG=EF=,∴OD=OG=CG=,∴CD=,OB=,∴S △ABC=2S△BDC=2××CD×OB=×=3,故答案为:3.先根据三角形中线平分三角形面积得:S△BDC=S△ADC,再根据三角形中位线定理计算GF=1,即正方形DFGE为1,可得对角线的长为,根据三角形面积公式可得结论.本题考查了三角形的面积、中线和中位线定理,正方形的性质,熟练掌握这些定理是本题的关键.15.【答案】175【解析】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m-2.5)×(180-30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).故答案为:175.根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程-甲所走的路程即可得出答案.本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.16.【答案】2或4-2【解析】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE、△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A、点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE-EM=2-2,∴DF=DM=4-2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF=DE=2,1综上所述DF的长为2或4-2.故答案为2或4-2.当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF=DM解决问题,当直线l在直线EC下方时,由∠DEF1=∠BEF1=∠DF1E,得到DF1=DE,由此即可解决问题.本题考查翻折变换、矩形的性质、等腰直角三角形的性质和判定,解题的关键是正确画出图形,注意有两种情形,属于中考常考题型.17.【答案】解:(1)原式=3-=;(2)原式=2-.【解析】(1)原式化简后,合并即可得到结果;(2)原式利用多项式除以单项式法则即可求出值.此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】证明:∵四边形ABCD是正方形,∴AB=DC,∠B=∠C,∵P是BC中点,∴BP=CP,∴△ABP≌△DCP.∴AP=DP.【解析】正方形的四边相等,四个角是直角,即AB=DC,∠B=∠C,且BP=PC,很容易证得△ABP≌△DCP,从而可得到结论.本题考查正方形的性质,四边相等,四个角相等,以及全等三角形的判定和性质.19.【答案】解:设一次函数解析式为y=kx+b(k≠0),由题意,得,解得.则该函数的解析式为y=2x+2.【解析】设函数解析式为y=kx+b(k≠0),将(-1,0)和(1,4)分别代入解析式,组成关于k、b的方程组,解方程组即可.本题考查的是用待定系数法求一次函数的解析式,根据题意设出函数解析式,把已知点的坐标代入得出关于k、b的方程组是解答此题的关键.20.【答案】320;108°【解析】解:(1)七年级参加了兴趣小组的人数为:32÷10%=320人.故答案为:320.(2)体育兴趣小组对应扇形圆心角的度数为360×=108°.故答案为:108°.(3)将各小组人数组成的数据按从小到大的顺序排列为:16,32,48,64,64,96,中间两个分别是48,64,所以中位数是(48+64)÷2=56.(1)根据总人数=参加某项的人数÷所占比例求解即可;(2)根据体育兴趣小组对应扇形圆心角的度数=360°×对应的百分比计算.(3)将一组数据按照从小到大(或从大到小)的顺序排列,处于中间位置的数(或中间两个数据的平均数)就是这组数据的中位数求解.本题主要考查了条形统计图,扇形统计图及中位数;解题的关键是读懂统计图,从中获得准确的信息.21.【答案】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50-m)=-2m+350,∵-2<0,∴W随m的增大而减小,又∵m≤3(50-m),解得:m≤37.5,而m为正整数,∴当m=37时,W最小=-2×37+350=276,此时50-37=13,答:当购买A型灯37只,B型灯13只时,最省钱.【解析】(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据:“1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元”列方程组求解即可;(2)首先根据“A型节能灯的数量不多于B型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型灯的只数之间的关系得到函数解析式,确定函数的最值即可.此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.22.【答案】y=-2x+4;y=2x【解析】解:①如图,记直线y=2x+4与y轴的交点为A,与x轴的交点为B,∴A(-2,0),B(0,4),∴点B关于y轴的对称点C的坐标为(2,0),设直线l1的解析式的解析式为y=kx+4,∴2k+4=0,∴k=-2,∴直线l1的解析式y=-2x+4;②直线l:y=2x+4向右平移2个单位得到的直线l2的解析式y=2(x-2)+4=2x,故答案为y=-2x+4,y=2x;(2)如图,设点M(m,0),∵点P在直线l2:y=-2x+4上,∴P(m,-2m+4),∵点Q在直线l1:y=2x+4上,∴Q(m,2m+4),∴PM=|-2m+4|,PQ=|-2m+4-(2m+4)|=4|m|,∵PM=2PQ,∴|-2m+4|=2×4|m|,∴m=-或m=,∴M(-,0)或(,0).(1)①先求出点A,B坐标,再利用对称性求出点C坐标,最后利用待定系数法即可得出结论;②利用平移的性质即可得出结论;(3)设出点M坐标,进而表示出点P,Q坐标,即可表示出PM,PQ,最后建立方程求解即可得出结论.此题是一次函数综合题,主要考查了待定系数法,平移的性质,对称的性质,用方程的思想解决问题是解本题的关键.23.【答案】2或或【解析】解:(1)分三种情况:①当点P在边AB上时,如图1,0≤x≤2,y=S△APD=AP•AD=x•2=x;②当点P在边BC上时,如图2,2<x≤4,y=S△APD=AP•AD=×2×2=2,③当点P在边CD上时,如图3,4<x≤6,∴S△APD=PD•AD=(6-x)×2=6-x;(2)①如图4,过A作AF⊥B'D于F,交DE于G,由折叠得:AB=AB',∠BAP=∠B'AP,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠B'AF=∠DAF,∴∠B'AP+∠B;AF=∠BAP+∠DAF=∠BAD=45°,即∠EAG=45°,∴∠AGE=∠FGD=45°,∴∠B'DE=45°;②当P在边AB上时,如图1,此时E与A重合,∴ED=DC=2,当P在边BC上时,如图5,当DE=EC时,过E作GF⊥CD于F,交AB于G,则FG⊥AB,DF=FC=1,∵AE⊥DE,∴∠AED=90°,易得△AGE∽△EFD,∴,∴,∴EF=1,∴DE=,此时P与C重合;当点P在边BC上,如图6,CE=CD时,过C作CQ⊥ED于Q,则DQ=EQ,设DQ=x,则DE=2x,∵AD=CD,∠ADE=∠DCQ,∠AED=∠DQC=90°,∴△AED≌△DQC,∴AE=DQ=x,由勾股定理得:AE2+DE2=AD2,∴x2+(2x)2=22,∴x=,ED=;综上所述,ED的长是2或或.(1)分三种情况:点P分别在边AB、BC、CD上,根据三角形面积公式可得:y 与x的关系式子;(2)①如图4,过A作AF⊥B'D于F,交DE于G,根据∠BAP=∠B'AP,∠B'AF=∠DAF,得∠EAG=45°,可得∠B'DE=45°;②分三种情况:E与A重合时,ED=2;P与C重合时,ED为对角线的一半,ED=;当CE=CD时,如图6,根据等腰三角形的性质和三角形全等可得AE的长,从而得DE的长.此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、三角形的面积及动点问题.注意掌握分类讨论思想的应用是解此题的关键.24.【答案】(-1,1)【解析】解:(1)y=(x+1)k+1中,当x=-1时,y=1,∴直线a经过定点A(-1,1),故答案为:(-1,1);(2)由,解得,即B(-1,1),将x=0代入y=(k-1)x+k,可得y=k,即M(0,k).将x=0代入y=(x+1)k+1,可得y=k+1,即Q(0,k+1),∵S△BQM=QM•|x B|=×1×1=,∴无论k取何值,△BQM的面积为定值;(3)如图,过A作AM⊥y轴于M,连接DQ、DM,过D作DN⊥DM交MA的延长线于N点,∵三角形ADQ是等腰直角三角形,∴AD=DQ,又∵∠ADN+∠ADM=∠QDM+∠ADM=90°,∴∠ADN=∠QDM,∴△ADN≌△QDM(ASA),∴AN=QM=k+1-1=k,NM=AN+AM=k+1,∠QMD=∠AND=45°,∴点D的运动轨迹为直线DM,∵△MDN为等腰直角三角形,MN∥x轴,∴D(,),设,当k=3时,D1(-2,3),当k=1时,D2(-1,2),∴DD2==.1(1)根据y=(x+1)k+1中,当x=-1时,y=1,即可得到直线a经过定点A(-1,1);(2)通过解方程组即可得到两直线交点B(-1,1),将x=0代入y=(k-1)x+k,可得M(0,k).将x=0代入y=(x+1)k+1,可得Q(0,k+1),依据S△BQM=QM•|x B|=×1×1=,可得无论k取何值,△BQM的面积为定值;(3)过A作AM⊥y轴于M,连接DQ、DM,过D作DN⊥DM交MA的延长线于N点,判定△ADN≌△QDM,可得AN=QM=k+1-1=k,NM=AN+AM=k+1,依据D (,),设,根据k=3时,D1(-2,3),k=1时,D2(-1,2),即可得到点D运动的路径长.本题属于一次函数综合题,主要考查了一次函数的图象与性质,等腰直角三角形的性质,全等三角形的判定与性质以及两点间距离公式的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等求解.第21页,共21页。
武汉市青山区2016-2017学年度八年级下期末数学试卷有答案

青山区2016~2017学年度第二学期八年级期末测试考试时间:2017年6月28日14:00~16:00一、选择题(共10小题,每小题3分,共30分)1.若3+x 在实数范围内有意义,则x 的取值范围是( )A .x >3B .x >-3C .x ≥-3D .x ≤-32.下列四组线段中,可以构成直角三角形的是( )A .1、2、3B .2、3、4C .1、2、3D .4、5、6 3.下列各曲线表示的y 与x 的关系中,y 不是x 的函数的是( )4.甲、乙、丙、丁四人进行射击测试,每人测试10次,平均成绩均为9.2环,方差如下表所示:选手 甲 乙 丙 丁方差0.56 0.60 0.50 0.45 A .甲 B .乙 C .丙 D .丁 5.正方形具有而菱形不一定具有的性质是( ) A .四边相等 B .对角线相等 C .对角线互相垂直 D .对角线互相平分 6.直线y =-3x +2经过的象限为( )A .第一、二、四象限B .第一、二、三象限C .第一、三、四象限D .第二、三、四象限 7.如图,广场中心菱形花坛ABCD 的周长是32米,∠A =60°,则A 、C 两点之间的距离为( ) A .4米B .34米C .8米D .38米8.已知,在平面直角坐标系xOy 中,点A (-4,0),点B 在直线y =x +2上.当A 、B 两点间的距离最小时,点B 的坐标是( )A .(22--,2-)B .(22--,2)C .(-3,-1)D .(-3,2-) 9.如图,在长方形ABCD 中,AC 是对角线.将长方形ABCD 绕点B 顺时针旋转90°到长方形GBEF 位置,H 是EG 的中点.若AB =6,BC =8,则线段CH 的长为( ) A .52B .41C .102D .21 10.已知函数⎪⎪⎩⎪⎪⎨⎧>-≤<+-≤<-+-≤--=)1(1)10(1)01(1)1(11x x x x x x x x y 的图象为“W ”型,直线y =kx -k +1与函数y 1的图象有三个公共点,则k的值是( )A .1或21B .0或21C .21D .21或21-二、填空题(本大题共6个小题,每小题3分,共18分)11.已知函数y =2x +m -1是正比例函数,则m =___________.12.已知P 1(-3,y 1)、P 2(2,y 2)是一次函数y =-2x +1图象上的两个点,则y 1__________y 2. 13.已知一组数据0、2、x 、4、5的众数是4,那么这组数据的中位数是___________. 14.如图,把一张长方形纸条ABCD 沿AF 折叠.已知∠ADB =25°,AE ∥BD ,则∠BAF =___________.15.在青山区“海绵城市”工程中,某工程队接受一段道路施工的任务,计划从2016年10月初至2017年9月底(12个月)完成.施工3个月后,实行倒计时,提高工作效率,剩余工程量与施工时间的关系如图所示,那么按提高工作效率后的速度做完全部工程,则工期可缩短________个月.16.如图,矩形ABCD 中,AB =4,AD =3,E 为对角线BD 上一个动点,以E 为直角顶点,AE 为直角边作等腰Rt △AEF ,A 、E 、F 按逆时针排列.当点E 从点B 运动到点D 时,点F 的运动路径长为___________. 三、解答题(共8题,共72分) 17.(本题8分)计算:(1) 2238+- (2) )35)(35(-+18.(本题8分)如图,□ABCD 的对角线AC 、BD 相交于点O ,过点D 作DE ∥AC ,且DE =21AC ,连接CE 、OE(1) 求证:四边形OCED 是平行四边形; (2) 若AD =DC =3,求OE 的长.19.(本题8分)作为武汉市政府民生实事之一的公共自行车建设工作已基本完成,“摩拜单车”等租车服务进入市民的生活.某部门对今年5月份一周中的连续7天进行了公共自行车日租车量的统计,并绘制了如下条形图: (1) 求这7天日租车量的众数与中位数;(2) 求这7天日租车量的平均数,并用这个平均数估计5月份(31天)共租车多少万车次?20.(本题8分)武汉市某校实行学案式教学,需印制若干份数学学案.印刷厂有甲、乙两种收费方式,除按印刷份数收取印刷费外,甲种方式还需收取制版费而乙种不需要,两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示(1) 求甲、乙两种收费方式的函数关系式;(2) 当印刷多少份学案时,两种印刷方式收费一样?21.(本题8分)如图,在四边形ABCD 中,AD ∥BC ,AB =3,BC =5,连接BD ,∠BAD 的平分线分别交BD 、BC 于点E 、F ,且AE ∥CD (1) 求AD 的长; (2) 若∠C =30°,求CD 的长.22.(本题10分)某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A 、B 两种产品共50件.已知生产一件A 种产品需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品需用甲种原料4千克、乙种原料10千克,可获利润1200元.设生产A 种产品的件数为x (件),生产A 、B 两种产品所获总利润为y (元)(1) 试写出y 与x 之间的函数关系式 (2) 求出自变量x 的取值范围(3) 利用函数的性质说明哪种生产方案获总利润最大?最大利润是多少?23.(本题10分)已知:在正方形ABCD 中,AB =6,P 为边CD 上一点,过P 点作PE ⊥BD 于点E ,连接BP (1) O 为BP 的中点,连接CO 并延长交BD 于点F ① 如图1,连接OE ,求证:OE ⊥OC② 如图2,若53=EF BF ,求DP 的长(2) CP EP 22+=___________24.(本题12分)如图1,直线333+-=x y 分别与y 轴、x 轴交于点A 、点B ,点C 的坐标为(-3,0),D 为直线AB 上一动点,连接CD 交y 轴于点E(1) 点B 的坐标为__________,不等式0333>+-x 的解集为___________ (2) 若S △COE =S △ADE ,求点D 的坐标(3) 如图2,以CD 为边作菱形CDFG ,且∠CDF =60°.当点D 运动时,点G 在一条定直线上运动,请求出这条定直线的解析式.青山区2016~2017学年度第二学期八年级期末测试参考答案题号 1 2 3 4 5 6 7 8 9 10 答案 CA DDBADCBB9.提示:取二、填空题(共6小题,每小题3分,共18分) 11.1 12.>13.4 14.57.5° 15.1.516.2516.提示:建立平面直角坐标系设E (a ,343+-a ),表示出F 点坐标(三垂直)三、解答题(共8题,共72分) 17.解:(1) 0;(2) 218.解:略(此题条件无聊) 19.解:(1) 8、8;(2) 263.520.解:(1) 6101+=x y 甲,x y 253=乙(2) 30021.解:(1) 2;(2) 3322.解:(1) y =700x +1200(50-x )=-500x +60000(2) 由⎩⎨⎧≤-+≤-+290)50(103360)50(49x x x x ,得30≤x ≤32(3) 当x =30时,y 有最大值为45000 23.证明:(1) ① ∵∠PEB =∠PCB =90°,O 为BP 的中点∴OE =OB =OP =OC∴∠POE =2∠DBP ,∠POC =2∠CBP∴∠COE =∠POE +∠POC =2(∠DBP +∠CBP )=90° ∴OE ⊥OC② 连接OE 、CE∵△COE 为等腰直角三角形 ∴∠ECF =45°在等腰Rt △BCD 中,BF 2+DE 2=EF 2 设BF =3x ,EF =5x ,则DE =4x∴3x +4x +5x =26,解得x =22 ∴DP =2DE =424=x(2) ∵62==-+=+CD C DP CP EP∴2322=+CP EP 24.解:(1) (3,0)、x <3(2) ∵S △COE =S △ADE ∴S △AOB =S △CBD即33321621⨯⨯=⨯⨯D y ,y D =233 当y =233时,23233333==+-x x ,∴D (23323,) (3) 连接CF ∵∠CDF =60°∴△CDF 为等边三角形 连接AC∵AB =AC =BC =6 ∴△ABC 为等边三角形 ∴△CAF ≌△CBD (SAS ) ∴∠CAF =∠ACB =60° ∴AF ∥x 轴设D (m ,333+-m ) 过点D 作DH ⊥x 轴于H∴BH =3-m ,DB =6-2m =AF ∴F (2m -6,33)由平移可知:G (m -9,m 3-)令⎪⎩⎪⎨⎧-=-=my m x 39 ∴点G 在直线393--=x y 上。
湖北省2016-2017学年八年级下学期期末测试数学试卷5

八年级数学试题 第 1 页 (共 9 页)湖北省2016-2017学年八年级下学期期末测试数学试卷温馨提示:1.本科考试分试题卷与答题卷,考生须用钢笔或圆珠笔将试题答案写在答题卷中相应位置,不得在试题卷上直接作答,考试完毕后只交答题卷.2.试题卷共4页,共25小题,满分120分,考试时限120分钟. 3.在密封区内写明校名,姓名,班级和考号. 4.答卷时不允许使用计算器.一、选择题(每题3分,共30分,下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号填入答题卷的答题框内) 1.下列二次根式中,是最简二次根式的是( )B.2aD.3 2.一次函数y =2x -1的图象不经过( ) A.第一象限 B.第二象限 C.第三象限D.第四象限 3.下列计算正确的是( )A.==3=D.24=4.如图, ABCD 中,∠C =110°,BE 平分∠ABC ,则∠AEB 等于( ) A.11 ° B.35°C.55°D.70°5.下列长度的三条线段能组成直角三角形的是( )A.4,5,6B.2,3,4C.1,1D.1,2,26.下列命题中的真命题是( )A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形7.某中学绘画兴趣小组9名成员的年龄情况如下:A.15,15B.15,16C.15,17D.16,158.若一次函数y x k =-+的图象上有两点A (-1,y 1),B (2,y 2),则下列说法正确的是( ) A.y 1>y 2 B.y 1≥y 2 C.y 1<y 2 D.y 1≤y 2 9.如图,在矩形ABCD 中,有以下结论:①△AOB 是等腰三角形;②ABO ADO S S ∆∆=;③AC =BD ;④AC⊥BD;⑤当∠ABD=45°时,矩形ABCD会变成正方形.其中错误结论的个数是()A.0B.1D.3第9题10.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+4与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移k个单位,当点C落在△EOF的内部时(不包括三角形的边),k的值可能是()A.2B.3C.4D.5二、填空题(每题3分,共18分.请直接将答案填写在答题卷中,不写过程)11x的取值范围为.12x与方差2S:应该选择.13.如图,已知平行四边形ABCD,E是AB延长线上一点,连结DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是.(只需要填一个)14.如图,将△ABC纸片折叠,使点A落在边BC上,记落点为点D,且折痕EF∥BC,若EF=3,则BC的长度为.第13题第14题第15题第16题15.如图,直线1l:1y x=+与直线2l:y mx n=+相交于点P(a,2),则关于x的不等式mx+n ≤x+1的解集为.16.目前,我市正积极推进“五城联创”,其中扩充改造绿地是推进工作计划之一.现有一块直角三角形绿地,量得两直角边长分别为a=9(米)和b=12(米),现要将此绿地扩充改造为等腰三角形,且扩充部分含以b=12(米)为直角边的直角三角形,则扩充后等腰三角形的周长为.三、解答题(本大题有9个小题,共72分)八年级数学试题第 2 页(共9 页)八年级数学试题 第 3 页 (共 9 页)17.(8分)计算:(1(2)()(33+.18.(5分)已知:y 与2x +成正比例,且1x =时,6y =-. (1)求y 与x 之间的函数关系式;(2)若点M (m ,4)在这个函数的图象上,求m 的值. 19.(6分)在如图所示的4×3网格中,每个小正方形的边长均为1,正方形顶点叫格点,连结两个网格格点的线段叫网格线段.点A 固定在格点上.(1)若a是图中能用网格线段表示的最小无理数,b 是图中能用网格线段表示的最大无理数,则b = ,ba= ; (2)请你画出顶点在格点上且边长为的所有菱形ABCD ,你画出的菱形面积为. 20.(6分)如图,在四边形ABCD 中,AB =AD =4,∠A =60°,BC =CD =8.(1)求∠ADC 的度数;(2)求四边形ABCD 的面积.21.(7分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.(1)本次共抽查学生______人,并将条形图补充完整; (2)捐款金额的众数是______,平均数是______;(3)在八年级600名学生中,捐款20元及以上(含20元)的学生估计有多少人?22.(8分)如图,平面直角坐标系中,直线2y x m =+与y 轴交于点A ,与直线5y x =-+交C八年级数学试题 第 4 页 (共 9 页)于点B (4,n ),P 为直线5y x =-+上一点. (1)求m ,n 的值;(2)求线段AP 的最小值,并求此时点P 的坐标.第22题 第23题 第24题23.(10分)甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y (米)与时间x (时)的函数图象为线段OA ,乙队铺设完的路面长y (米)与时间x (时)的函数图象为折线BC --CD --DE ,如图所示,从甲队开始工作时计时. (1)直接写出乙队铺设完的路面长y (米)与时间x (时)的函数关系式; (2)当甲队清理完路面时,乙队还有多少米的路面没有铺设完?24.(10分)如图,E 是正方形ABCD 的BC 边上一点,BE 的垂直平分线交对角线AC 于点P ,连接PB ,PE ,PD ,DE .请判断△PED 的形状,并证明你的结论. 25.(12分)已知:如图,平面直角坐标系中,A (0,8),B (0,4),点C 是x 轴上一点,点D 为OC 的中点. (1) 求证:BD ∥AC ; (2) 若点C 在x 轴正半轴上,且BD 与AC 的距离等于2,求点C 的坐标;(3)如果OE ⊥AC 于点E ,当四边形ABDE 为平行四边形时,求直线AC 的解析式.八年级数学试题 第 5 页 (共 9 页)备用图期末调研考试八年级数学试题参考答案及评分说明一、选择题1~10: D B C B C D A A B B二、填空题11.x ≥-1 12.甲 13.DC =EB 或CF =BF 等 14.6 15.x ≥1 16.40,48,30+56三、解答题17.解:(1)原式= 分=……………………………………………………………4分(2)原式=()()33=(223-…………………………2分=89-……………………………………………………………3分=1-.…………………………………… ………………………4分18.解:(1)设此函数关系式为)2(+=x k y ,()………………………1分八年级数学试题 第 6 页 (共 9 页)则6)21(-=+k ………………………………………………………2分 ∴2-=k , ∴此函数关系式为42--=x y …………………………3分 (2)当4y =时 ,244m --= ……………………………………………4分∴4m =- ………………………………………………………………5分19.解:(1)……………………………………………………………2分(2)………………4分菱形面积为5或4. …………………………………………………6分20.解:(1)连接BD ,∵AB =AD =4,∠A =60º,∴△ABD 是等边三角形,∴BD =4,∠ADB =60º,…………………………………………………2分在△BDC 中,BD =4,DC =8,BC=222BC DC BD =+, ∴△BDC 是直角三角形,∴∠BDC =90º, ……………………………3分 ∴∠ADC =∠ADB +∠BDC =150º;………………………………………4分 (2)S 四边形ABCD =S △ABD +S △BDC116481642=⨯+⨯⨯=……………………………6分21.解:(1)50,如图;………………………………2分22.解:(1)∵点B (4,n )在直线5y x =-+上,∴n =1,B (4,1)………1分八年级数学试题 第 7 页 (共 9 页)∵点B (4,1)在直线上2y x m =+上,∴m =-7.………………2分 (2)过点A 作直线5y x =-+的垂线,垂足为P ,此时线段AP 最短.………………………………3分 ∴∠APN =90º,∵直线5y x =-+与y 轴交点N (0,5),与x直线27y x =-与y 轴交点A (0,-7), ∴∠ANP =45º,AN =12,……………………5分 ∴AM =PM =6,AP =…………………………6分 ∴OM =1,…………………………………………7分 ∴P (6,-1).……………………………………8分23.解:(1)2575 050325112.55x x y x x x ⎧⎪-⎪=⎨⎪⎪-⎩(≤<3),(≤<5),109(≤≤).10…………………………………6分 (2)由题得:甲队每小时清理路面的长为 100÷5=20, 甲队清理完路面的时间,x =160÷20=8. 把x =8代入y =25x -112.5,得y =25×8-112.5=87.5.………………………………………………9分 此时,乙队没有铺设完的路面长为:160-87.5=72.5(米)……………………………………………10分24.解:△PED 是等腰直角三角形,证明如下:……………………………………1分∵四边形ABCD 是正方形,∴BC =DC ,∠1=∠2. 又∵PC =PC ,∴△PBC ≌△PDC .∴PB=PD . ………………………………………2分 又P 在BE 的垂直平分线上,∴PE=PB ,∴PE=PD . ………………………………………4分 又∵四边形ABCD 是正方形, ∴∠BCD =90°. ∵△PBC ≌△PDC ,DA八年级数学试题 第 8 页 (共 9 页)∴∠3=∠PDC .∵PE=PB ,∴∠3=∠4. ∴∠4=∠PDC . 又∵∠4+∠PEC =180°, ∴∠PDC +∠PEC =180°.∴∠EPD =360°-(∠BCD +∠PDC +∠PEC )=90°.∴△PED 是等腰直角三角形………………………………………………10分25.解:(1)∵A (0,8),B (0,4),∴ OA =8,OB =4,点B 为线段OA 的中点. ∵ 点D 为OC 的中点,∴ BD ∥AC .……………………………………………………………… 3分 (2)如图,作BF ⊥AC 于点F ,取AB 的中点G ,则G (0,6).∵ BD ∥AC ,BD 与AC 的距离等于2, ∴ BF =2.∵ 在Rt △ABF 中,90AFB ∠=︒,AB =4,点G 为AB 的中点, ∴ 22ABFG BG ===. ∴ △BFG 是等边三角形,60ABF ∠=︒. ∴ 30BAC ∠=︒.设OC x =,则2AC x =,OA . ∵ OA =8,∴x =. ∵ 点C 在x 轴的正半轴上,∴ 点C的坐标为.………………………………………………7分 (3)①如图,若点C 在x 轴的正半轴上,当四边形ABDE 为平行四边形时,AB ∥DE .∴ DE ⊥OC .∵ 点D 为OC 的中点, ∴ OE=EC . ∵ OE ⊥AC ,∴ 45OCA ∠=︒. ∴ OC=OA =8. ∴ 点C 的坐标为(8,0).设直线AC 的解析式为y kx b =+(k ≠0).八年级数学试题 第 9 页 (共 9 页)则80,8.k b b +=⎧⎨=⎩ 解得1,8.k b =-⎧⎨=⎩∴ 直线AC 的解析式为8y x =-+.……………………………………10分 ②同理,若点C 在x 轴的负半轴上,可求得直线AC 的解析式为8y x =+.…………………………12分说明:以上各题若有其他解法,请参照评分说明给分.。
2016-2017年八年级下数学期末检测试卷及答案

1FED CB A(-1,1)1y(2,2)2yxyO 405060708090某班学生1~8月课外阅读数量705858427583本数2016-2017学年八年级数学(下)期末检测试卷(时间:120分钟满分:150分)一、选择题(本题共10小题,每小题4分,共40分)1.二次根式21、12 、30 、x+2 、240x、22yx+中,最简二次根式有()个。
A、1 个B、2 个C、3 个D、4个2.若式子23xx--有意义,则x的取值范围为().A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.1113,4,5222 C.3,4, 5 D.114,7,8224、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C(C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A.40°B.50°C.60°D.80°6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()7.如图所示,函数xy=1和34312+=xy的图象相交于(-1,1),(2,2)两点.当21yy>时,x的取值范围是()A.x<-1 B.—1<x<2 C.x>2 D. x<-1或x>28、在方差公式()()()[]2222121xxxxxxnSn-++-+-= 中,下列说法不正确的是()A. n是样本的容量B.nx是样本个体 C. x是样本平均数 D. S是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A)极差是47 (B)众数是42 (C)中位数是58 (D)每月阅读数量超过40的有4个月MFEA第6题图第5题图第7题图BCADO15题图10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,每小题4分,共40分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2016-2017学年八年级下期末数学试题含答案

2016-2017学年八年级下期末数学试题含答案2016~2017学年度第二学期期末练习初二数学考生须知1. 本试卷共6页,共三道大题,26道小题。
满分100分。
考试时间90分钟。
2. 在试卷和答题卡上认真填写学校名称、姓名和考号。
3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个.1.在平面直角坐标系xOy中,点P(2,-3)关于原点O对称的点的坐标是A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.如果一个多边形的每个内角都是120°,那么这个多边形是A.五边形B.六边形C.七边形D.八边形3.下面四个图案依次是我国汉字中的“福禄寿喜”的艺术字图.这四个图案中是.中心对称图形的是①②③④A.①② B.②③C.②④ D.②③④4.方程()xxx=-1的解是A.x = 0 B.x = 2 C.x1= 0,x2= 1 D.x1= 0,x2= 2 5.数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们10次还原魔方所用时间的平均值x与方差2S:甲乙丙丁x(秒)30 30 28 282S 1.21 1.05 1.211.05 要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择 A .甲 B .乙C .丙D .丁6.矩形ABCD 中,对角线AC ,BD 相交于点O ,如果∠ABO =70°,那么∠AOB的度数是A .40°B .55°C .60°D .70° 7.用配方法解方程2210x x --=,原方程应变形为 A .2(1)2x -= B .2(1)2x +=C .2(1)1x -=D .2(1)1x +=8.德国心理学家艾宾浩斯(H.Ebbinghaus )研究发现,遗忘在学习之后立即开始,遗忘是有规律的.他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量.通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图.该曲线对人类记忆认知研究产生了重大影响.小梅观察曲线,得出以下四个结论: ①记忆保持量是时间的函数②遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢 ③学习后1小时,记忆保持量大约为40%④遗忘曲线揭示出的规律提示我们学习后要及时复习 其中错误的结论是 A .①B .②C .③D .④ 9.关于x 的一元二次方程2210kx x -+=有两个实数根,那么实数k 的取值范围是A .1k ≤B .1k <且0k ≠C .1k ≤且0k ≠D .1k ≥10.如图1所示,四边形ABCD 为正方形,对角线AC ,BD 相交于点O ,动点P 在正方形的边和对角线上匀速运动. 如果点P 运动的时间为x ,点P 与点A 的距离为y ,且表示 y 与x 的函数关系的图象大致如图2所示,那么点P 的运动路线可能为图1 图2A .A →B →C →A B .A →B →C →D C .A →D →O →A D .A →O →B →C 二、填空题(本题共18分,每小题3分) 11.函数12y x =-中,自变量x 的取值范围是 . 12.在△ABC 中,D ,E 分别是边AB ,AC 的中点,如果DE =10,那么BC = .13.“四个一”活动自2014年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.下图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示故宫的点的坐标为(0,1),表示中国国家博物馆的点的坐标为(1,-1),那么表示人民大会堂的点的坐标是 .14.在四边形ABCD 中,对角线AC ,BD 相交于点O .如果AB ∥CD ,请你添加一个条件,使得四边形ABCD 成为平行四边形,这个条件可以 是 .(写出一种情况即可) 15.在平面直角坐标系xOy 中,一次函数y kx =和3y x =-+的图象如图所示,则关于x 的一元一次不等式3kx x <-+的解集美术馆景山电报大楼故宫王府井天安门中国国家博物馆前门人民大会堂北y =kxy3214O BC D A已知:∠AOB .求作:射线OE ,使OE 平分∠AOB . 作法:如图,(1)在射线OB 上任取一点C ;(2)以点O 为圆心,OC 长为半径作弧,交射线OA 于点D ;(3)分别以点C ,D 为圆心,OC 长为半径作弧,两弧相交于点E ; (4)作射线OE .所以射线OE 就是所求作的射线.是 .16.下面是“作已知角的平分线”的尺规作图过程.请回答:该作图的依据是 .三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分) 17.解方程:2430x x -+=.18.在平面直角坐标系xOy 中,已知一次函数112y x =-+的图象与x 轴交于点A ,OBAEDC ABO与y 轴交于点B . (1)求A ,B 两点的坐标;(2)在给定的坐标系中画出该函数的图象;(3)点M (-1,y 1),N (3,y 2)在该函数的图象上,比较y 1与y 2的大小.19.已知:如图,E ,F 为□ABCD 的对角线BD 上的两点,且BE =DF . 求证:AE ∥CF .20.阅读下列材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布表FEABCD yOx312123321321平均每周阅读 时间x (时)频数 频率 02x ≤<10 0.025 学生平均每周阅读时间频数分布直方图请根据以上信息,解答下列问题:(1)在频数分布表中,a = ______,b = _______; (2)补全频数分布直方图;(3)如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有 人.21.“在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.86420频数12080402010060时间/时101222.如图,在四边形ABCD 中,AB AD =,CB CD =,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究. (1)小文根据筝形的定义得到筝形边的性质是______________________; (2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD 中,AB AD =,CB CD =.求证:_____________. 证明:BADC在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢?根据中国产业信息网数据统计及分析,2014年中国在线教育市场产值约为1 000亿元,2016年中国在线教育市场产值约为1 440亿元.(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是__________________________.(写出一条即可)23.已知关于x 的一元二次方程21102x mx m ++-=.(1)求证:此方程有两个不相等的实数根; (2)选择一个m 的值,并求出此时方程的根.24.小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t (分)时,小明与家之间的距离为s 1(米),小明爸爸与家之间的距离为s 2(米),图中折线OABD ,线段EF 分别表示s 1,s 2与t 之间的函数关系的图象. (1)求s 2与t 之间的函数表达式;E 2400OFD CBt /分10A s /米(2)小明从家出发,经过多长时间在返回途中追上爸爸?25.已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.(1)如图1,连接AF,CF,直接写出AF与CF的数量关系;(2)如图2,点E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.①请你根据题意在图2中补全图形;②猜想AF与BE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.A D FBCC DABE图1 图2 26.在平面直角坐标系xOy 中,如果点A ,点C 为某个菱形的一组对角的顶点,且点A ,C 在直线y = x 上,那么称该菱形为点A ,C 的“极好菱形”. 下图为点A ,C 的“极好菱形”的一个示意图.已知点M 的坐标为(1,1),点P 的坐标为(3,3).(1)点E (2,1),F (1,3),G (4,0)中,能够成为点M ,P 的“极好菱形”的顶点的是 ;(2)如果四边形MNPQ 是点M ,P 的“极好菱形”.①当点N 的坐标为(3,1)时,求四边形MNPQ 的面积;②当四边形MNPQ 的面积为8,且与直线y = x + b 有公共点时,写出b 的取值范围.y=xDCBA4444123123321213xO y丰台区2016—2017学年度第二学期期末练习初二数学参考答案选择题(本题共30分,每小题3分) 题号1 2 3 4 5 6 7 8 9 10 答案B BCD D A A C C A二、填空题(本题共18分,每小题3分)11.2x ≠; 12.20; 13.()11--,; 14. AB=CD 或AD ∥BC 等,答案不唯一; 15.1x <; 16.四条边都相等的四边形是菱形,菱形的每一条对角线平分一组对角,两点确定一条直线.三、解答题(本题共52分,第17题4分,第18-24题每小题5分,第25题6分,第26题7分)17. 解:(1)(3)0x x --=, ……2分∴121, 3.x x == ……4分其他解法相应给分.18.解:(1)令0y =,则2x =;令0x =,则1y =.∴点A 的坐标为(2,0),……1分点B 的坐标为(0,1). ……2分(2)如图:y =12x +1y O x31212211……4分(3)12.y y .……5分19.证明:连接AC 交BD 于点O ,连接AF ,CE .∵四边形ABCD 是平行四边形,∴OB =OD ,OA =OC .(平行四边形的对角线互相平分)2分∵BE =DF ,∴OB -BE =OD -DF即OE =OF .……3分∴四边形AECF 是平行四边形.(对角线互相平分的四边形是平行四边形)4分∴AE ∥CF . ……5分其他证法相应给分.20.解:(1)80,0.275; ……2分(2) O DC B A E F 6010080120频数…4分(3)1000 ……5分21.解:设2014年到2016年中国在线教育市场产值的年平均增长率是x , ……1分依题意,得:错误!未找到引用源。
湖北省武汉市江岸区2016-2017学年下学期期末考试八年级数学试卷

武汉市江岸区2016-2017学年下学期期末考试八年级数学试卷一、选择题(共10小题,每小题3分,共30分) 1.函数x y-=1中自变量x 的取值范围是( )A .x <1B .x ≥1C .x ≤1D .x ≠12.已知三角形三边的长分别为3、2、5,则该三角形的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定 3.在平行四边形中,不一定具有下列性质的是( )A .对边相等B .对边平行C .对角线相等D .内角和为360º4.下图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .5.如果一组数据3、4、x 、5的平均数是4,那么x 的值为( )A .2B .3C .3.5D .46.已知A(x 1,y 1)、B(x 2,y 2),是一次函数y =-2x +3的图象上的点.当x 1>x 2时,y 1、y 2的大小 关系为( ) A .y 1<y 2 B .y 1>y 2 C .y 1=y 2D .以上结论都有可能 7.如图,函数y =kx 和y =ax +b 的图象相交于点A(1,3),则不等式kx ≥ax +b 的解集 为( )A .x ≥1B .x ≤3C .x ≤1D .x ≥38.如图所示,购买水果所付金额y (元)与购买量x (千克)之间的函数图象,则一次购买5千克 这种水果比分五次每次购买1千克这种水果可节省( )元A .10B .6C .5D .49.如图,在3×3的网格中(每一个小正方形的边长为1),等腰△ABC 的顶点均在格点.若△ABC 的面积为23,则满足条件的三角形有( ) A .12个B .16个C .20个D .24个10.已知函数y =(k -1)x +2k -1与y =|x -1|,当满足0≤x ≤3时,两个函数的图象存在2个公共点,则k 满足的条件是( ) A .0≤k ≤3B .32≤k ≤56C .31-<k ≤0 D .32<k ≤1 二、填空题(每小题3分,共计18分)11.8=___________12.已知直角三角形的两直角边分别为5、12,则第三边为___________ 13.一组数据2、3、x 、4的众数与平均数相等,则x =___________14.如图,在△ABC 中,AB =AC ,BC =2,三角形的中线BE 、CD 交于点O ,点F 、G 分别为OB 、OC 的中点. 若四边形DFGE 是正方形,则△ABC 的面积为___________15.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息.已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y (米)与甲出发的时间x (秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是___________米16.如图,矩形ABCD 中,AB =4,BC =2,E 是AB 的中点,直线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2,点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠,使点A 恰好落在直线l 上,则DF 的长为___________ 三、解答题(共计72分) 17.(本题8分)计算:(1) 2918-(2) 12)2434(÷-18.(本题8分)如图,正方形ABCD 中,点P 为BC 的中点,求证:AP =DP19.(本题8分)已知一次函数的图象经过(-1,0)和(1,4)两点,求一次函数的解析式20.(本题8分)某校在八年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,解决下列问题:(1) 八年级共有___________人参加了兴趣小组(2) 体育兴趣小组对应扇形圆心角的度数为___________(3) 以各小组人数组成一组新数据,求这组新数据的中位数.21.(本题8分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元(1) 求一只A型节能灯和一只B型节能灯的售价各是多少元(2) 学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由22.(本题10分)如图,直线l:y=2x+4(1) ①直接写出直线l关于y轴对称的直线l1的解析式___________________.②直接写出直线l向右平移2个单位得到的直线l2的解析式________________.(2) 在(1)的基础上,点M是x轴上一点,过点M作x轴的垂线交直线l1于点Q、交直线l2于点P.若PM=2PQ,求M点的坐标23.(本题10分)如图,已知正方形ABCD的边长是2,点P沿A→B→C→D运动,到达点D停止(1) 连接PD,设点P运动的距离为x,请用x表示△APD的面积y(直接写出结果)(2) 作DE⊥AP于点E①如图2,点P在线段BC上,将△APB沿AP翻折得到△APB′,连接DB′,求∠B′DE的度数②连接EC,若△CDE是等腰三角形,则DE=___________(直接写出结果)24.(本题12分)已知直线a:y=(x+1)k+1与x轴交于点P、与y轴交于点Q(1) 直线a经过定点A,则点A的坐标为:____________(直接写出结果)(2) 直线b:y=(k-1)x+k 与y轴交于点M,与直线a交于点B,求证:无论k取何值,△BQM的面积为定值(3) 如图,过点Q在第二象限内作线段CQ⊥PQ,且CQ=AQ,连接AC,取AC的中点D.当 k的值从3逐步变化到1时,求点D运动的路径长2016-2017学年度下学期期末八年级数学试题参考答案一、选择题(共10小题,每小题3分,共30分)1.C2.B3. C4.B5. D6. A7.A8. B9. C 10. D 二、填空题(共6小题,每题3分,共18分)11. 12. 13 13. 314. 3 15. 175 16. 或• 解答题(共8小题,,共72分) 17) (8分)计算:(1)解:原式= ...............2分= ..............4分(2) 解:原式=...............2分=2- .............4分18.(8分)证明:在正方形ABCD 中,AB =DC ,∠B =∠C ,∵P 为BC 中点,∴BP =CP . ............................ ..............2分 在△ABP 和△DCP 中,∴ △ABP ≌△DCP (ASA ) ∴ AP =DP ........................................8分19. (8分)解:设一次函数解析式y =kx +b ,将点(-1,0)(1,4)代入得⎩⎨⎧=+=+-40b k b k .................................…4分解得,k =b =2 ...................................…6分所以,一次函数解析式为:y =2x +2 ..................................…8分20) (8分) (1)320 ...............2分 (2)108° ...............2分 (3)56 ...............8分21. (8分)解:(1)设A 型节能灯,B 型节能灯售价分别为a 元,b 元,依据题意得:⎩⎨⎧=+=+2923263b a b a 解得⎩⎨⎧==75b a所以,A 型节能灯售价为5元,B 型节能灯售价为7元...........................................4分(2)设学校购进A 型号节能灯x 只,则B 型号节能灯为(50-x )只,共花费为y 元依据题意,x ≤3(50-x )解得,x ≤37.5(且x 为正数)则根据题意可得:y =5x +7(50-x ),y =350-2x ,因为y 随x 的增大而减小所以当x =37时,y 取最小值。
湖北省2016-2017学年八年级下学期第一次期末数学精品试题

2016-2017学年度湖北省八年级期末数学试卷一、选择题(每题3分,共30分) 1.在下列各数:3.1415926;10049;0.2;π1;7;11131;327;中,无理数的个数( ).A .2B .3C .4D .5 2.下列几组数中不能作为直角三角形三边长度的是A .25,24,7===c b aB .5.2,2,5.1===c b a C. 25,2,34a b c ===D .15,8,17a b c ===3.使代数式43--x x 有意义的x 的取值范围是( ) A .x>3 B .x ≥3 C .x>4 D .x ≥3 且x ≠4 4.以下列各组数为边的三角形中,是直角三角形的有( )(1)3,4,5;(2)3,4,5;(3)32,42,52;(4)0.03,0.04,0.05.A .1个B .2个C .3个D .4个 5.下列运算正确的是( )A.3)3(2-=-B.819=±C. 3)3(33=-D. 3273-=- 6.下面是某同学在一次数学测验中,解答的填空题,其中答对的是( ) A 、若2x =5,则x=5 B 、若2x =x 3 ,则x=3 C 、x 2+x —m=0的一根为—1,则m=0 D 、以上都不对7.ABC ∆的三边为,,a b c 且2()()a b a b c +-=,则该三角形是( ) A 、以a 为斜边的直角三角形 B 、以b 为斜边的直角三角形 C 、以c 为斜边的直角三角形 D 、锐角三角形 8.下列定理中,没有逆定理的是( )A .直角三角形的两锐角互余B .若三角形三边长a ,b ,c 满足a 2+b 2=c 2,则该三角形是直角三角形C .全等三角形的对应角相等D .互为相反数的两数之和为09.如图所示圆柱形玻璃容器,高17cm ,底面周长为24㎝,在外侧下底面点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1㎝的点F 处有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是( )(A )20cm (B )138cm (C )433cm (D )24cm10.如图,在△ABC 中,8AC =,6BC =,10AB =,把ABC ∆沿AB 边翻折成ABC '∆,(在同一个平面内)则CC '的长为( ) A .524 B .125 C .245 D .485二、填空题(每题3分,共24分) 11.计算5515⨯÷所得的结果是 。
湖北省武汉市 八年级(下)期末数学试卷 含答案

八年级(下)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1−x1.函数y=中自变量x的取值范围是( )A. B. C. D.x>1x≥1x≤1x≠152.已知三角形三边的长分别为3、2、,则该三角形的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定3.在平行四边形中,不一定具有下列性质的是( )A. 对边相等B. 对边平行C. 对角线相等D. 内角和为360∘4.如图分别给出了变量x与y之间的对应关系,其中y不是x的函数是( )A. B.C. D.5.如果一组数据3、4、x、5的平均数是4,那么x的值为( )A. 2B. 3C.D. 43.56.已知A(x1,y1)、B(x2,y2),是一次函数y=-2x+3的图象上的点.当x1>x2时,y1、y2的大小关系为()A. B.y1<y2y1>y2C. D. 以上结论都有可能y1=y27.如图,函数y=kx和y=ax+b的图象相交于点A(1,3),则不等式kx≥ax+b的解集为( )A. x≥1B. x≤3C. x≤1D. x ≥38.如图所示,购买水果所付金额y (元)与购买量x (千克)之间的函数图象,则一次购买5千克这种水果比分五次每次购买1千克这种水果可节省( )元A. 10B. 6C. 5D. 49.如图,在3×3的网格中(每一个小正方形的边长为1),直角△ABC 的顶点均在格点.若△ABC 的面积为,则满足条件的32直角三角形有( )A. 12个B. 16个C. 20个D. 24个10.已知函数y =(k -1)x +2k -1与y =|x -1|,当满足0≤x ≤3时,两个函数的图象存在2个公共点,则k 满足的条件是( )A. B. C. D. 0≤k ≤323≤k ≤65−13<k ≤023<k ≤1二、填空题(本大题共6小题,共18.0分)11.计算:=______.812.已知直角三角形的两直角边分别为5、12,则另一条边是______.13.一组数据2、3、x 、4的众数与平均数相等,则x =______14.如图,在△ABC 中,AB =AC ,BC =2,三角形的中线BE 、CD交于点O ,点F 、G 分别为OB 、OC 的中点.若四边形DFGE是正方形,则△ABC 的面积为______15.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是______米.16.如图,矩形ABCD中,AB=4,BC=2,E是AB的中点,直线l平行于直线EC,且直线l与直线EC之间的距离为2,点F在矩形ABCD边上,将矩形ABCD沿直线EF折叠,使点A恰好落在直线l上,则DF的长为______.三、计算题(本大题共1小题,共8.0分)17.计算:(1)18−92(2)(43−24)÷12四、解答题(本大题共7小题,共64.0分)18.如图,正方形ABCD中,点P为BC的中点,求证:AP=DP.19.已知一次函数的图象经过(-1,0)和(1,4)两点,求一次函数的解析式20.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,下面是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,解决下列问题:(1)七年级共有______人参加了兴趣小组;(2)体育兴趣小组对应扇形圆心角的度数为______;(3)以各小组人数组成一组新数据,求这组新数据的中位数.21.学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B 型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.22.如图,直线l:y=2x+4(1)①直接写出直线l关于y轴对称的直线l1的解析式______②直接写出直线l向右平移2个单位得到的直线l2的解析式______(2)在(1)的基础上,点M是x轴上一点,过点M作x轴的垂线交直线l1于点Q、交直线l2于点P.若PM=2PQ,求M点的坐标23.如图,已知正方形ABCD的边长是2,点P沿A→B→C→D运动,到达点D停止(1)连接PD,设点P运动的距离为x,请用x表示△APD的面积y(直接写出结果);(2)作DE⊥AP于点E①如图2,点P在线段BC上,将△APB沿AP翻折得到△APB′,连接DB′,求∠B′DE的度数;②连接EC,若△CDE是等腰三角形,则DE=______(直接写出结果).24.已知直线a:y=(x+1)k+1与x轴交于点P、与y轴交于点Q(1)直线a经过定点A,则点A的坐标为:______(直接写出结果)(2)直线b:y=(k-1)x+k与y轴交于点M,与直线a交于点B,求证:无论k取何值,△BQM的面积为定值(3)如图,过点Q在第二象限内作线段CQ⊥PQ,且CQ=AQ,连接AC,取AC 的中点D.当k的值从3逐步变化到1时,求点D运动的路径长答案和解析1.【答案】C【解析】解:由题意得,1-x≥0,解得x≤1.故选C.根据被开方数大于等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.【答案】B【解析】解:∵22+()2=32,∴该三角形是直角三角形,故选:B.两小边的平方和等于最长边的平方,即可由勾股定理的逆定理证明三角形是直角三角形.本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.3.【答案】C【解析】解:因为平行四边形对边相等,对边平行,内角和为360°,对角线不一定相等,故选:C.根据平行四边形的性质即可判断.本题考查平行四边形的性质,解题的关键是记住平行四边形的性质,属于中考常考题型.4.【答案】B【解析】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B中y不是x的函数.故选:B.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解析】解:根据题意知=4,解得:x=4,故选:D.运用平均数的计算公式即可求得x的值.本题考查的是样本平均数的求法及运用,即平均数公式:=.6.【答案】A【解析】解:∵A(x1,y1)、B(x2,y2)是一次函数y=-2x+3的图象上的点,∴y1=-2x1+3,y2=-2x2+3,又∵x1>x2,∴-2x1+3<-2x2+3,即y1<y2.故选:A.利用一次函数图象上点的坐标特征可得出y1=-2x1+3、y2=-2x2+3,结合x1>x2即可得出y1<y2,此题得解(利用一次函数的性质解决该题亦可).本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.【答案】A【解析】解:函数y=kx和y=ax+b的图象相交于点A(1,3),由图可知,不等式kx≥ax+b的解集为x≥1.故选:A.以交点为分界,结合图象写出不等式kx≥ax+b的解集即可.本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合8.【答案】B【解析】解:设直线AB的解析式为y=kx+b,将(2,20)、(4,36)代入y=kx+b中,,解得:,∴y=8x+4(x≥2).当x=5时,y=44.∵x=1时,y=10,则一次购买5千克这种苹果比分五次每次购买1千克这种苹果可节省6元,故选:B.求出直线AB的解析式即可解决问题;本题考查了一次函数的应用、待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.9.【答案】D【解析】解:设直角三角形的两直角边是a和b∵△ABC的面积为∴ab=∴ab=3又:直角△ABC的顶点均在格点上,小正方形的边长为1.∴它的两直角边的长度为1和3满足条件.如图所示,取线段AB,可构造两个符合要求的三角形.类似图中线段AB的线段共有12条,每条线段可以构造两个三角形所以,总共可以找到的三角形个数是:12×2=24(个)故选:D.通过直角三角形的面积可以得到两直角边的乘积是3,结合各顶点在格点的要求,可以知道直角边为1和3满足要求,通过作图探索,可以发现这样的三角形共有24个.这是典型的探索格点三角形个数的题目,重在考察学生对直角三角形的认识、面积的计算方法、直观想象能力.作答此类题目,要做到数三角形的个数时“不重不漏”.10.【答案】D【解析】解:由已知,当x=-2时,y=2(k-1)+2k-1=2∴函数y=(k-1)x+2k-1的图象过定点A(-2,1)如图:y=|x-1|的图象如图为折线BCD,其中点B(0,1),C(1,0),D(3,2)当函数y=(k-1)x+2k-1的图象过点C(1,0)时,与折线BCD恰一个交点k=当过直线过点A、B时,AB∥x轴,直线AB与折线BCD有两个交点此时,k-1=0∴k=1故选:D.观察函数y=(k-1)x+2k-1图象,其过定点A(-2,1)则其图象绕点A旋转,且画出y=|x-1|的图象,将y=(k-1)x+2k-1的图象旋转找到临界点.本题考查了一次函数图象性质和临界点问题.本题解题关键在于发现带有参数的函数解析式过定点.11.【答案】22【解析】解:==2.故答案为2.根据算术平方根的性质进行化简,即=|a|.此题考查了算术平方根的性质,能够能够算术平方根的性质进行化简,是一道基础题.12.【答案】13【解析】解:在直角三角形中,已知两直角边为5、12,则另一条边为斜边,边长为=13,∴第三条边为13,故答案为13.在直角三角形中,三边边长符合勾股定理,已知两直角边为5、12,则另一条边即斜边可以根据勾股定理求解.本题考查了勾股定理在直角三角形中的运用,本题中正确的运用勾股定理求第三边是解题的关键.13.【答案】3【解析】解:当这组数的众数是2时,则平均数是:(2+x+3+4)=2,解得:x=-1,当这组数的众数是3时,则平均数是:(2+x+3+4)=3,解得:x=3,当这组数的众数是4时,则平均数是:(2+x+3+4)=4,解得:x=7,则x=3时,数据2、3、x、4的众数与平均数相等;故答案为:3.根据众数和平均数的定义以及众数与平均数相等,分别进行解答即可.此题考查了众数和平均数,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.14.【答案】3【解析】解:∵四边形DFGE是正方形,∴DG⊥EF,OE=OF,OD=OG,∠EGF=90°,∵CD是△ABC的中线,∴S△BDC=S△ADC,∵点F、G分别为OB、OC的中点,∴FG是△OBC的中位线,∴FG=BC=1,由勾股定瑆得:DG=EF=,∴OD=OG=CG=,∴CD=,OB=,∴S△ABC=2S△BDC=2××CD×OB=×=3,故答案为:3.先根据三角形中线平分三角形面积得:S△BDC=S△ADC,再根据三角形中位线定理计算GF=1,即正方形DFGE为1,可得对角线的长为,根据三角形面积公式可得结论.本题考查了三角形的面积、中线和中位线定理,正方形的性质,熟练掌握这些定理是本题的关键.15.【答案】175【解析】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m-2.5)×(180-30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500-1325=175(米).故答案为:175.根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程-甲所走的路程即可得出答案.本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.16.【答案】2或4-222【解析】解:如图,当直线l在直线CE上方时,连接DE交直线l于M,∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵AB=4,AD=BC=2,∴AD=AE=EB=BC=2,∴△ADE、△ECB是等腰直角三角形,∴∠AED=∠BEC=45°,∴∠DEC=90°,∵l∥EC,∴ED⊥l,∴EM=2=AE,∴点A、点M关于直线EF对称,∵∠MDF=∠MFD=45°,∴DM=MF=DE-EM=2-2,∴DF=DM=4-2.当直线l在直线EC下方时,∵∠DEF1=∠BEF1=∠DF1E,∴DF1=DE=2,综上所述DF的长为2或4-2.故答案为2或4-2.当直线l在直线CE上方时,连接DE交直线l于M,只要证明△DFM是等腰直角三角形即可利用DF=DM解决问题,当直线l在直线EC下方时,由∠DEF 1=∠BEF 1=∠DF 1E ,得到DF 1=DE ,由此即可解决问题.本题考查翻折变换、矩形的性质、等腰直角三角形的性质和判定,解题的关键是正确画出图形,注意有两种情形,属于中考常考题型.17.【答案】解:(1)原式=3-=;23232(2)原式=2-.2【解析】(1)原式化简后,合并即可得到结果;(2)原式利用多项式除以单项式法则即可求出值.此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】证明:∵四边形ABCD 是正方形,∴AB =DC ,∠B =∠C ,∵P 是BC 中点,∴BP =CP ,∴△ABP ≌△DCP .∴AP =DP .【解析】正方形的四边相等,四个角是直角,即AB=DC ,∠B=∠C ,且BP=PC ,很容易证得△ABP ≌△DCP ,从而可得到结论.本题考查正方形的性质,四边相等,四个角相等,以及全等三角形的判定和性质.19.【答案】解:设一次函数解析式为y =kx +b (k ≠0),由题意,得,{−k +b =0k +b =4解得.{k =2b =2则该函数的解析式为y =2x +2.【解析】设函数解析式为y=kx+b (k≠0),将(-1,0)和(1,4)分别代入解析式,组成关于k 、b 的方程组,解方程组即可.本题考查的是用待定系数法求一次函数的解析式,根据题意设出函数解析式,把已知点的坐标代入得出关于k 、b 的方程组是解答此题的关键.20.【答案】320;108°【解析】解:(1)七年级参加了兴趣小组的人数为:32÷10%=320人.故答案为:320.(2)体育兴趣小组对应扇形圆心角的度数为360×=108°.故答案为:108°.(3)将各小组人数组成的数据按从小到大的顺序排列为:16,32,48,64,64,96,中间两个分别是48,64,所以中位数是(48+64)÷2=56.(1)根据总人数=参加某项的人数÷所占比例求解即可;(2)根据体育兴趣小组对应扇形圆心角的度数=360°×对应的百分比计算.(3)将一组数据按照从小到大(或从大到小)的顺序排列,处于中间位置的数(或中间两个数据的平均数)就是这组数据的中位数求解.本题主要考查了条形统计图,扇形统计图及中位数;解题的关键是读懂统计图,从中获得准确的信息.21.【答案】解:(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据题意,得:,{x +3y =263x +2y =29解得:,{x =5y =7答:一只A 型节能灯的售价是5元,一只B 型节能灯的售价是7元;(2)设购进A 型节能灯m 只,总费用为W 元,根据题意,得:W =5m +7(50-m )=-2m +350,∵-2<0,∴W 随m 的增大而减小,又∵m ≤3(50-m ),解得:m ≤37.5,而m 为正整数,∴当m =37时,W 最小=-2×37+350=276,此时50-37=13,答:当购买A 型灯37只,B 型灯13只时,最省钱.【解析】(1)设一只A 型节能灯的售价是x 元,一只B 型节能灯的售价是y 元,根据:“1只A 型节能灯和3只B 型节能灯共需26元;3只A 型节能灯和2只B 型节能灯共需29元”列方程组求解即可;(2)首先根据“A 型节能灯的数量不多于B 型节能灯数量的3倍”确定自变量的取值范围,然后得到有关总费用和A 型灯的只数之间的关系得到函数解析式,确定函数的最值即可.此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.22.【答案】y =-2x +4;y =2x【解析】解:①如图,记直线y=2x+4与y轴的交点为A,与x轴的交点为B,∴A(-2,0),B(0,4),∴点B关于y轴的对称点C的坐标为(2,0),设直线l1的解析式的解析式为y=kx+4,∴2k+4=0,∴k=-2,∴直线l1的解析式y=-2x+4;②直线l:y=2x+4向右平移2个单位得到的直线l2的解析式y=2(x-2)+4=2x,故答案为y=-2x+4,y=2x;(2)如图,设点M(m,0),∵点P在直线l2:y=-2x+4上,∴P(m,-2m+4),∵点Q在直线l1:y=2x+4上,∴Q(m,2m+4),∴PM=|-2m+4|,PQ=|-2m+4-(2m+4)|=4|m|,∵PM=2PQ,∴|-2m+4|=2×4|m|,∴m=-或m=,∴M(-,0)或(,0).(1)①先求出点A,B坐标,再利用对称性求出点C坐标,最后利用待定系数法即可得出结论;②利用平移的性质即可得出结论;(3)设出点M坐标,进而表示出点P,Q坐标,即可表示出PM,PQ,最后建立方程求解即可得出结论.此题是一次函数综合题,主要考查了待定系数法,平移的性质,对称的性质,用方程的思想解决问题是解本题的关键.23.【答案】2或或2455【解析】解:(1)分三种情况:①当点P在边AB上时,如图1,0≤x≤2,y=S△APD=AP•AD=x•2=x;②当点P在边BC上时,如图2,2<x≤4,y=S△APD=AP•AD=×2×2=2,③当点P在边CD上时,如图3,4<x≤6,∴S△APD=PD•AD=(6-x)×2=6-x;(2)①如图4,过A作AF⊥B'D于F,交DE于G,由折叠得:AB=AB',∠BAP=∠B'AP,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠B'AF=∠DAF,∴∠B'AP+∠B;AF=∠BAP+∠DAF=∠BAD=45°,即∠EAG=45°,∴∠AGE=∠FGD=45°,∴∠B'DE=45°;②当P在边AB上时,如图1,此时E与A重合,∴ED=DC=2,当P在边BC上时,如图5,当DE=EC时,过E作GF⊥CD于F,交AB于G,则FG⊥AB,DF=FC=1,∵AE⊥DE,∴∠AED=90°,易得△AGE∽△EFD,∴,∴,∴EF=1,∴DE=,此时P与C重合;当点P在边BC上,如图6,CE=CD时,过C作CQ⊥ED于Q,则DQ=EQ,设DQ=x,则DE=2x,∵AD=CD,∠ADE=∠DCQ,∠AED=∠DQC=90°,∴△AED≌△DQC,∴AE=DQ=x,由勾股定理得:AE2+DE2=AD2,∴x2+(2x)2=22,∴x=,ED=;综上所述,ED的长是2或或.(1)分三种情况:点P分别在边AB、BC、CD上,根据三角形面积公式可得:y 与x的关系式子;(2)①如图4,过A作AF⊥B'D于F,交DE于G,根据∠BAP=∠B'AP,∠B'AF=∠DAF,得∠EAG=45°,可得∠B'DE=45°;②分三种情况:E与A重合时,ED=2;P与C重合时,ED为对角线的一半,ED=;当CE=CD时,如图6,根据等腰三角形的性质和三角形全等可得AE的长,从而得DE的长.此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、三角形的面积及动点问题.注意掌握分类讨论思想的应用是解此题的关键.24.【答案】(-1,1)【解析】解:(1)y=(x+1)k+1中,当x=-1时,y=1,∴直线a经过定点A(-1,1),故答案为:(-1,1);(2)由,解得,即B(-1,1),将x=0代入y=(k-1)x+k,可得y=k,即M(0,k).将x=0代入y=(x+1)k+1,可得y=k+1,即Q(0,k+1),∵S△BQM=QM•|x B|=×1×1=,∴无论k取何值,△BQM的面积为定值;(3)如图,过A作AM⊥y轴于M,连接DQ、DM,过D作DN⊥DM交MA的延长线于N点,∵三角形ADQ是等腰直角三角形,∴AD=DQ,又∵∠ADN+∠ADM=∠QDM+∠ADM=90°,∴∠ADN=∠QDM,∴△ADN≌△QDM(ASA),∴AN=QM=k+1-1=k,NM=AN+AM=k+1,∠QMD=∠AND=45°,∴点D的运动轨迹为直线DM,∵△MDN为等腰直角三角形,MN∥x轴,∴D(,),设,当k=3时,D1(-2,3),当k=1时,D2(-1,2),∴D1D2==.(1)根据y=(x+1)k+1中,当x=-1时,y=1,即可得到直线a经过定点A(-1,1);(2)通过解方程组即可得到两直线交点B(-1,1),将x=0代入y=(k-1)x+k,可得M(0,k).将x=0代入y=(x+1)k+1,可得Q(0,k+1),依据S△BQM= QM•|x B|=×1×1=,可得无论k取何值,△BQM的面积为定值;(3)过A作AM⊥y轴于M,连接DQ、DM,过D作DN⊥DM交MA的延长线于N点,判定△ADN≌△QDM,可得AN=QM=k+1-1=k,NM=AN+AM=k+1,依据D(,),设,根据k=3时,D1(-2,3),k=1时,D2(-1,2),即可得到点D运动的路径长.本题属于一次函数综合题,主要考查了一次函数的图象与性质,等腰直角三角形的性质,全等三角形的判定与性质以及两点间距离公式的综合运用,解决问题的关键是作辅助线构造全等三角形,利用全等三角形的对应边相等,对应角相等求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉市2016-2017学年八年级数学下学期期末试题(附答案)
(考试时间:120分钟满分:120分)
一、选择题:(共10小题,每小题3分,共30分)
1、若在实数范围内有意义,则x的取值范围是()
A. x>0
B. x≥2
C. x≠2
D. x≤2
2、直角三角形中,斜边长为13,一直角边为12,则另一直角边的长为
()
A. 1
B. 3
C. 5
D. 8
3、如图,能判定四边形ABCD是平行四边形的是()
A. AB∥CD,AD=BC
B. ∠A=∠B,∠C=∠D
C. AB=AD,CB=CD
D. AB=CD,AD=BC
4、下列等式成立的是()
A. +=
B.=3
C. =
D. -=
5、某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果
这个注满水的蓄水池以固定的流量把水全部放出,下面的图像能
大致表示水的深度h和放水时间t之间的关系的是()
6、直线y=ax+b和y=cx+d在坐标系中的图像如图所示,则a、b、c、d从小到大的排列顺序是()
A. c<a<d<b
B. d<b<a<c
C. a<c<d<b
D. a<b<c<d
7、如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC上的点F处,若AE=5,BF=3,则CD的长是()
A. 7
B. 8
C. 9
D. 10
8、已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:00乙从B地出发骑自行车到A地,甲乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()
A. 上午8:30
B. 上午8:35
C. 上午8:40
D. 上午8:45
9、正方形,,,……,按如图所示的方式放置。
点,,,…和点,,,…分别在直线y=kx+b(k>0)和x轴上,已
知点,的坐标分别为,,则的坐标是()
A. (63,32)
B. (127,64)
C. (255,128
D. (511,256)
10、如图,点,点P从O点出发,沿射线OM方向以1个单位/秒匀速
运动,运动的过程中以P为正方形对角线的交点,O为一个顶点作正方形OABC,当正方形面积为128时,点A坐标是()
A. (,)
B. (,)
C. (2,)
D. (,)
二、填空题(共6小题,每小题3分,共18分)
11、计算:=_________;=_________;=_________
12、一个三角形的三边的比是3:4:5,它的周长是24,则它的面积是_________
13、如图,在平行四边形ABCD中,∠B=80°,∠ADC的角平分线DE与BC交
于点E。
若BE=CE,则∠DAE=_________度。
14、如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,现有以下结论:○1当x=-2时,两函数值相等;
○2直线y=-x+m与坐标轴围成的是等腰直角三角形;
○3直线y=nx+4n(n≠0)与x轴的交点为定点;
○4x>-2是关于x的不等式-x+m>nx+4n的解集。
其中正确的是_________(填写序号)
15、如图,点C、D分别在两条直线y=kx和y=x上,点,B点再x轴正
半轴上,已知四边形ABCD是正方形,则k值为_________
16、如图,矩形OABC的顶点B的坐标为,动点P从原点O出发,以每秒
2个单位的速度沿折现O-A-B运动,到点B时停止,同时,动点Q从点C出发,以每秒1个单位的速度在线段CO上运动,当一个点停止时,另一个点也随之而停止,在运动过程中,当线段PQ恰好经过点M(3,2)时,运动时间t的值是
_________秒。
第13题图第14题图第15题图第16题图
三、计算题(共8小题,共72分)
17、(本题8分)计算:
(1)(2)
18、(本题8分)已知:y与x-2成正比例,且它的图象过点(1,2).
(1)求y与x的函数解析式;
(2)若点P(m,m-2)在此函数图象上,求P点坐标。
19、(本题8分)如图所示,在矩形ABCD中,E、F分别是AB、CD上的两点,
连接AF、CE,且DF=BE,求证:四边形AECF是平行四边形。
20、(本题8分)如图○1,C、E分别在x轴和y轴上,AB、EF平行于x轴,CB、AF平行于y轴,CB=5,点P从点C出发,以1单位长度/秒的速度,沿凹
六边形AEFABC的边匀速运动一周,记△BCP面积为S,点P运动的时间为t,
已知S与t之间的函数关系如图○2所示。
(1)直接写出C、E两点的坐标与m的值:
C(___ ,0), E(0,___),m=____;
(2)当S=10时,直接写出P点坐标:
________________________;
(3)已知D(2,0),若直线PD将凹六边
形OEFABC分成面积相等的两部分,请你直
接写出直线PD的函数解析式:
____________________________.
21、(本题8分)已知:如图,E是正方形ABCD的边AD上一动点,以BE为折
痕将△ABE向内翻折,点A落在F处,连接CF和DF.
(1)如图○1,当∠ABE=30°时,求∠CFD的度数;
(2)如图○2,若∠CFD=90°,求此时的值.
22、(本题10分)某发电厂共有6台发电机发电,
每台的发电量为300万千瓦/月.该厂计划从今年7
月开始到年底,对6台发电机各进行一次改造升级.
每月改造升级1台,这台发电机当月停机,并于次
月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知
每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).
(1)该厂第2个月的发电量为__________万千瓦,今年下半年的总发电量为
__________万千瓦;
(2)求y关于x的函数关系式;
(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第
(万
几个月(这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额W
1
(万元)?元)),将超过同样时间内发电机不作改造升级时的发电盈利总额W
2
23、(本题10分)在菱形ABCD中,∠BAD=60°.
(1)如图○1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图○2,M为线段AC上一点(M不与A,C重合),以AM为边向上构造等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连
接DQ,MQ,判断DM与DQ的数量关系,并证明你的结论;
(3)在(2)条件下,若AC=,请你直接写出DM+CN的最小值.
24、(本题10分)如图○1,在平面直角坐标系中,点A(0,4),点B(m,0),以AB为边在右侧作正方形ABCD.
(1)当点B在x轴正半轴上运动时,点C在一条确定的直线上,求这条直线的解析式;
(2)当m=0时,如图○2,P为OA上一点,过点P作PM⊥PC,PM=PC,连MC∠OD于点N,求AM+2DN的值;
(3)如图○3,在第(2)问的条件下,E、F分别为CD、CO上的点,作EG∥x 轴交AO于G,作FH∥y轴交AD于H,K是EG与FH的交点,若=2,试确定∠EAF的大小,并证明你的结论.。