第七章线性离散系统
合集下载
自动控制原理第7章线性离散控制系统

差分方程描述了系统在离散时间点的 行为,通过求解差分方程,可以预测 系统未来的输出。
状态方程
状态方程是描述线性离散控制系统动态行为的数学模型,其形 式为 X(k+1) = A*X(k) + B*U(k),其中X(k)表示在时刻k的系统 状态向量,U(k)表示在时刻k的控制输入向量,A和B是系统矩 阵。
自动控制原理第7章 线性离散控制系统
目录
CONTENTS
• 引言 • 线性离散控制系统的数学模型 • 线性离散控制系统的稳定性分析 • 线性离散控制系统的性能分析 • 线性离散控制系统的设计方法 • 线性离散控制系统的应用案例
01
引言
线性离散控制系统的定义与特点
定义
线性离散控制系统是指系统的动态行为由差分方程或离散状态方程描述的一类控制系统。
适性。
常见的智能家居控制系统包括智 能照明、智能安防、智能环境监
测等。
案例三:工业自动化控制系统设计
工业自动化控制系统是线性离散 控制系统的另一个重要应用领域, 主要用于实现生产过程的自动化
和智能化。
工业自动化控制系统通常采用分 布式控制结构,通过各种传感器、 执行器和主控制器实现对生产设
备的监测和控制。
离散控制系统的稳定性判据
劳斯-赫尔维茨稳定性判据
通过计算离散控制系统的传递函数的极点和零点,判断系统的稳定性。如果所有极点都位于复平面的左半部分,则系 统稳定;否则系统不稳定。
奈奎斯特稳定性判据
通过分析离散控制系统的频率响应,判断系统的稳定性。如果频率响应的相位曲线在-π~π范围内,则系统稳定;否则系 统不稳定。
系统实现
将设计好的控制器应用于实际系统中,并进 行实验验证。
离散控制系统设计的常用方法
状态方程
状态方程是描述线性离散控制系统动态行为的数学模型,其形 式为 X(k+1) = A*X(k) + B*U(k),其中X(k)表示在时刻k的系统 状态向量,U(k)表示在时刻k的控制输入向量,A和B是系统矩 阵。
自动控制原理第7章 线性离散控制系统
目录
CONTENTS
• 引言 • 线性离散控制系统的数学模型 • 线性离散控制系统的稳定性分析 • 线性离散控制系统的性能分析 • 线性离散控制系统的设计方法 • 线性离散控制系统的应用案例
01
引言
线性离散控制系统的定义与特点
定义
线性离散控制系统是指系统的动态行为由差分方程或离散状态方程描述的一类控制系统。
适性。
常见的智能家居控制系统包括智 能照明、智能安防、智能环境监
测等。
案例三:工业自动化控制系统设计
工业自动化控制系统是线性离散 控制系统的另一个重要应用领域, 主要用于实现生产过程的自动化
和智能化。
工业自动化控制系统通常采用分 布式控制结构,通过各种传感器、 执行器和主控制器实现对生产设
备的监测和控制。
离散控制系统的稳定性判据
劳斯-赫尔维茨稳定性判据
通过计算离散控制系统的传递函数的极点和零点,判断系统的稳定性。如果所有极点都位于复平面的左半部分,则系 统稳定;否则系统不稳定。
奈奎斯特稳定性判据
通过分析离散控制系统的频率响应,判断系统的稳定性。如果频率响应的相位曲线在-π~π范围内,则系统稳定;否则系 统不稳定。
系统实现
将设计好的控制器应用于实际系统中,并进 行实验验证。
离散控制系统设计的常用方法
第七章--线性离散系统的稳定性分析

取反变换,得 g (k ) b0δ (t ) b1δ (t T ) bnδ (t nT )
• 上式表明,一个n阶稳定系统的脉冲响应序列共有n个脉冲, 如果在典型信号输入作用下,系统脉冲响应过程将在n个 采样周期内结束(对连续系统而言,理论上动态过程在 t→∞时才结束),由于这种系统瞬态响应时间最短,故称
0.11K 0 1.1 0.095 K 0 2.9 0.015 K 0
因此,使系统稳定K值范围为
0 K 11.58
• 采样器和保持器对离散系统的动态性能有如下影响: 1)采样器可使系统的峰值时间和调节时间略有减小,但使超调量增大, 故采样造成的信息损失会降低系统的稳定程度。 2)零阶保持器使系统的峰值时间和调节时间都加长,超调量和振荡次数 也增加。这是因为除了采样造成的不稳定因素外,零阶保持器的相角滞后降
y* t
5
4
3
2 1
0
T
2T
3T
4T
5T
t
单位斜坡响应 暂态过程只要两个采样周期即可结束!
将上述系统的输入信号改为单位阶跃信号 r (t ) 1(t )
则系统的输出信号的z变换为
1 Y ( z ) GB ( z ) R( z ) (2 z 1 z 2 ) 1 z 1 2 z 1 z 2 z 3 L z n L 此时动态过程也可在两个采样周期内结束,但在t=T时超 调量为100%。
映射稳定区域左半s平面不稳定区域右半s平面临界稳定区域虚轴上单位圆内部单位圆外部单位圆上线性离散系统稳定的充分必要条件离散系统极点分布与稳定性的关系由由s平面与z平面的映射关系及连续系统的稳定性理论可知离散系统极点分布与其稳定性的关系如下极点分布稳定情况z单位圆内稳定z单位圆外不稳定z单位圆上临界稳定线性离散系统的稳定判据由前面的分析可知只要知道系统的极点分布即可判断系统的稳定与否但这里要解决的问题是如何知道闭环系统的极点分布
第七章(3-7) 线性离散系统的分析与校正

2)离散系统的型别与静态误差系数法
采样器不影响脉冲传递函数的极点
a).
b).
c).
教材P358 表7-5
(熟记)
7-6. 离散系统的动态性能分析
时域法、根轨迹法和频域法 ,其中 时域法最简单。本章介绍时域法。
1.离散系统的时间响应 2.采样器和保持器对动态性能的影响 3.闭环极点与动态响应的关系
离散系统输入输出变量及其各阶差分的等式
含义: 对于一般的线性定常离散系统, k 时刻的输出 c(k ) ,不仅与 k 时刻的输入 r (k ) 有关,还与 k 时刻以前的输入 r (k 1), r (k 2),... 有关,同时还与 k 时刻以前的输 出 c(k 1), c(k 2),... 有关。 回忆线性定常连续系统数学模型
C (s) GR (s) GH (s)C (s)
RG ( z ) C ( z) 1 GH ( z )
无法分离出 R( z ) 得不到脉冲传递函数
7-5. 离散系统的稳定性与稳态误差
1.S域到Z域的映射 2.离散系统稳定性的充分必要条件 3.离散系统的稳定性判据 4.采样周期与开环增益对稳定性的影响 5.离散系统的稳态误差
E ( s) R (s) 1 G1 ( s ) HG 2 ( S )
输出信号的采样拉氏变换 进行Z变换,证得
G2 ( s)G1 ( s) R ( s) C ( s) G2 ( s)G ( s) E ( s) 1 G1 ( s) HG2 ( S )
1
?
可以导出采样器为不同配置形式的其它闭环系统脉冲传递函数。但只要
误差信号e(t)处没有采样开关,则输入采样信号r*(t)就不存在,此时不能写出
自动控制原理课件_7__线性离散系统的分析与校正_1资料

一阶保持器实际很少使用!!
第七章 线性离散系统的分析与校正-7.2信号的采样与保持 小结
离散系统:系统中有一处或几处信号是脉冲串或数码
系统类型 采样系统 — 时间离散,数值连续
:
数字系统 — 时间离散,数值离散
A/D
t << T
字长足够
:
等效为理想采样开关
e*(t) e(t)T (t)
D/A 用 ZOH 实现
第七章 线性离散系统的分析与校正-7.1离散系统的基本概念
A/D过程 计算过程
计算过程描述与 D/A 过程
D/A 过程
零阶保持器 (ZOH)
第七章 线性离散系统的分析与校正-7.1离散系统的基本概念
计算机控制系统的描述方法
第七章 线性离散系统的分析与校正-7.2信号的采样与保持 信号采样
理想采样序列
信号的复现:把采样信号恢复为原来的连续信号 称为信号的复现。
保持器
零阶保持器(恒值外推) 一阶保持器(线性外推)
第七章 线性离散系统的分析与校正-7.2信号的采样与保持
零阶保持器的输入输出信号 主要特点:
1、输出信号是阶梯波,含有高次谐波。 2、相位滞后。
第七章 线性离散系统的分析与校正-7.2信号的采样与保持
第七章 线性离散系统的分析与校正-7.2信号的采样与保持 一阶保持器
一阶保持器是一 种按照线性规律 外推的保持器。
e(nT) e[(n 1)T ]
eh (t) e(nT)
T
(t T )
nT t (n 1)T
第七章 线性离散系统的分析与校正-7.2信号的采样与保持
Gh ( j) T
1
(T)2
1 eTs Gh(s) L[ k(t ) ] s
第七章 线性离散系统的分析与校正-7.2信号的采样与保持 小结
离散系统:系统中有一处或几处信号是脉冲串或数码
系统类型 采样系统 — 时间离散,数值连续
:
数字系统 — 时间离散,数值离散
A/D
t << T
字长足够
:
等效为理想采样开关
e*(t) e(t)T (t)
D/A 用 ZOH 实现
第七章 线性离散系统的分析与校正-7.1离散系统的基本概念
A/D过程 计算过程
计算过程描述与 D/A 过程
D/A 过程
零阶保持器 (ZOH)
第七章 线性离散系统的分析与校正-7.1离散系统的基本概念
计算机控制系统的描述方法
第七章 线性离散系统的分析与校正-7.2信号的采样与保持 信号采样
理想采样序列
信号的复现:把采样信号恢复为原来的连续信号 称为信号的复现。
保持器
零阶保持器(恒值外推) 一阶保持器(线性外推)
第七章 线性离散系统的分析与校正-7.2信号的采样与保持
零阶保持器的输入输出信号 主要特点:
1、输出信号是阶梯波,含有高次谐波。 2、相位滞后。
第七章 线性离散系统的分析与校正-7.2信号的采样与保持
第七章 线性离散系统的分析与校正-7.2信号的采样与保持 一阶保持器
一阶保持器是一 种按照线性规律 外推的保持器。
e(nT) e[(n 1)T ]
eh (t) e(nT)
T
(t T )
nT t (n 1)T
第七章 线性离散系统的分析与校正-7.2信号的采样与保持
Gh ( j) T
1
(T)2
1 eTs Gh(s) L[ k(t ) ] s
线性离散系统的分析

是连续输出 在c(t采) 样时刻的瞬时值。 脉冲传递函数给出的是两个离散信号之间的传
递关系。
➢ 例7-10:系统结构如下图所示,其中连续部分的 传递函数为
G(s) 1 s(0.1s 1)
求该系统的脉冲传递函数 G(z。)
➢ 解一:连续部分的脉冲响应函数为
g(t) (1 e10t )
(t 0)
c(t) r(0)g(t) r(T )g(t T ) L r(nT )g(t nT ) L
➢ 在t=kT 时刻,输出的脉冲值为
c(kT ) r(0)g(kT ) r(T )g[(k 1)T ] L r(nT )g[(k n)T ] L
g[(k - n)T ]r(nT ) ➢ 根据卷积定n理0 ,可得上式的z变换
自动控制原理
第七章 线性离散系统的分析
➢ 7.1 引言 ➢ 7.2 信号的采样与保持
➢ 7.3 z变换理论
➢ 7.4 脉冲传递函数 ➢ 7.5 离散系统的稳定性和稳态误差 ➢ 7.6 离散系统的动态性能分析
7-4 脉冲传递函数
一、脉冲传递函数的定义
1. 脉冲传递函数:零初始条件下,线性定常离散系
z2 )(z
ebT
)
(3)有零阶保持器时的脉冲传递函数(中间无采样开关)
Go
(s)
H
(s)G(s)
(1
eTs
)
G(s) s
(1 eTs )G1(s) G1(s) eTsG1(s)
go (t) L1[Go (s)] g1(t) g1(t T )
Go (z) G1(z) z1G1(z) 1 z1 G1(z)
g(kT ) 1 e10kT
脉冲传递函数为
G(z) g(kT )zk 1 e10kT zk
递关系。
➢ 例7-10:系统结构如下图所示,其中连续部分的 传递函数为
G(s) 1 s(0.1s 1)
求该系统的脉冲传递函数 G(z。)
➢ 解一:连续部分的脉冲响应函数为
g(t) (1 e10t )
(t 0)
c(t) r(0)g(t) r(T )g(t T ) L r(nT )g(t nT ) L
➢ 在t=kT 时刻,输出的脉冲值为
c(kT ) r(0)g(kT ) r(T )g[(k 1)T ] L r(nT )g[(k n)T ] L
g[(k - n)T ]r(nT ) ➢ 根据卷积定n理0 ,可得上式的z变换
自动控制原理
第七章 线性离散系统的分析
➢ 7.1 引言 ➢ 7.2 信号的采样与保持
➢ 7.3 z变换理论
➢ 7.4 脉冲传递函数 ➢ 7.5 离散系统的稳定性和稳态误差 ➢ 7.6 离散系统的动态性能分析
7-4 脉冲传递函数
一、脉冲传递函数的定义
1. 脉冲传递函数:零初始条件下,线性定常离散系
z2 )(z
ebT
)
(3)有零阶保持器时的脉冲传递函数(中间无采样开关)
Go
(s)
H
(s)G(s)
(1
eTs
)
G(s) s
(1 eTs )G1(s) G1(s) eTsG1(s)
go (t) L1[Go (s)] g1(t) g1(t T )
Go (z) G1(z) z1G1(z) 1 z1 G1(z)
g(kT ) 1 e10kT
脉冲传递函数为
G(z) g(kT )zk 1 e10kT zk
自动控制原理胡寿松第七章解析

1、线性定理 齐次性 Z [ae (t)] aE(z ) Z[e1 (t) e 2 (t)] E1 (z ) E 2 (z ) 叠加性 2、实数位移定理
Z[e(t- kT )] z -k E(z)
Z [e(t kT)] z k [E(z)- e(nT)z -n ]
n 0
k -1
z变换实际上是采样函数拉氏变换的变形,
因此又称为采样拉氏变换
z变换只适用于离散函数,或者说只能表征
连续函数在采样时刻的特性,而不能反映其 在采样时刻之间的特性。
24
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
25
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
二、Z变换的性质
0T
*
采样器可以用一个周期性闭合的采样开关S来表示。
理想采样开关S: T (t ) (t nT )
n 0
11
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
理想单位脉冲序列 采样过程可以看成是一个幅值调制过程。
12
成都信息工程学院控制工程系
第七章 线性离散系统的分析与校正
1 jns t T ( t ) e T n -
1 jns t * 代入采样信号表达式:e ( t ) e( t ) T (t ) e( t )e T n
对采样信号表达式取拉氏变换: 1 E* (s) E(s jns ) T n 采样信号的付氏变换: 1 E* ( j ) E[j( ns )] T n
T (t)的付氏级数形式:
T (t)
n -
(t - nT) C e
自动控制原理(第三版)第七章线性离散系统分析与设计

离散系统稳态误差是指系统在稳态时输出与输入之间的误 差。
要点二
离散系统稳态误差的计算方法
离散系统稳态误差的计算方法包括解析法和仿真法,其中 解析法是通过求解差分方程得到稳态误差,仿真法则是通 过模拟系统的动态过程得到稳态误差。
05
线性离散系统的控制器设计
离散系统的状态反馈控制
01
状态反馈控制
通过测量系统的状态变量,并利 用这些信息来产生控制输入,以 实现系统的期望性能。
THANKS
感谢观看
01
离散系统响应的分类
离散系统的响应可以根据不同的标准进行分类,如根据时间响应可以分
为瞬态响应和稳态响应,根据系统参数可分为超调和调节时间等。
02
离散系统响应的数学模型
离散系统的数学模型通常采用差分方程或状态方程表示,通过求解这些
方程可以得到系统的响应。
03
离散系统响应的分析方法
离散系统响应的分析方法包括时域分析和频域分析,其中时域分析主要
基于系统的输出方程和性能指标,通过设计适当的观测器来估计状 态变量,并利用这些估计值来设计输出反馈控制器。
输出反馈控制的局限性
对于非线性系统和不确定性可能存在较大的误差,并且对于状态变 量的测量可能存在噪声和延迟。
离散系统的最优控制
最优控制
01
通过优化性能指标来选择控制策略,以实现系统性能的最优化。
自动控制原理(第三版)第七章 线性离散系统分析与设计
• 线性离散系统概述 • 线性离散系统的数学模型 • 线性离散系统的稳定性分析 • 线性离散系统的动态性能分析
• 线性离散系统的控制器设计 • 线性离散系统设计案例分析
01
线性离散系统概述
定义与特点
要点二
离散系统稳态误差的计算方法
离散系统稳态误差的计算方法包括解析法和仿真法,其中 解析法是通过求解差分方程得到稳态误差,仿真法则是通 过模拟系统的动态过程得到稳态误差。
05
线性离散系统的控制器设计
离散系统的状态反馈控制
01
状态反馈控制
通过测量系统的状态变量,并利 用这些信息来产生控制输入,以 实现系统的期望性能。
THANKS
感谢观看
01
离散系统响应的分类
离散系统的响应可以根据不同的标准进行分类,如根据时间响应可以分
为瞬态响应和稳态响应,根据系统参数可分为超调和调节时间等。
02
离散系统响应的数学模型
离散系统的数学模型通常采用差分方程或状态方程表示,通过求解这些
方程可以得到系统的响应。
03
离散系统响应的分析方法
离散系统响应的分析方法包括时域分析和频域分析,其中时域分析主要
基于系统的输出方程和性能指标,通过设计适当的观测器来估计状 态变量,并利用这些估计值来设计输出反馈控制器。
输出反馈控制的局限性
对于非线性系统和不确定性可能存在较大的误差,并且对于状态变 量的测量可能存在噪声和延迟。
离散系统的最优控制
最优控制
01
通过优化性能指标来选择控制策略,以实现系统性能的最优化。
自动控制原理(第三版)第七章 线性离散系统分析与设计
• 线性离散系统概述 • 线性离散系统的数学模型 • 线性离散系统的稳定性分析 • 线性离散系统的动态性能分析
• 线性离散系统的控制器设计 • 线性离散系统设计案例分析
01
线性离散系统概述
定义与特点
第7章线性离散控制系统(自动控制原理)

◆
5
7.1 引言
◆ 时间上离散的信号,其幅值可能是连续的,亦可能是离散
的。将时间上、幅值上都连续的模拟信号,转换成时间上离 散、但幅值上仍然连续的离散模拟序列信号的过程,而这一 过程就称为采样,又称为波形的离散化过程,相应的控制系 统则称为采样控制系统。
若由数字计算机实现控制,受计算机字长限制,还需要进 一步将幅值连续的理想化序列信号量化为数字序列信号,进 一步得到时间和幅值上都是离散的数字序列信号,相应的控 制系统则称为数字控制系统。
采样定理:为使离散信号不失真的还原成连续信号,采样频 率必须大于等于原连续信号所含最高频率的两倍: s 2max
3
7.1 引言
4
7.1 引言
◆ 采样控制系统由于其控制对象本身是连续信号部件,因而
它与离散系统有所区别;又由于其输出信号及控制作用的给 定都是以数码形式出现的,因而它与连续系统有所区别。总 的来说,采样系统的分析与设计是按离散系统的方法来处理 的,所以常把它归结为离散系统。
严格地说,这两者是有区别的,主要表现在采样信号与离 散信号的描述上。采样信号(或函数)是在整个实数轴上取值 其定义域是一维数集,而离散信号(或函数)则是实数轴上取 正整数,其定义域是孤立点集。离散信号是客观存在的信号, 而采样信号是连续信号经采样器采样后人为得到的。
第 7章 线性离散控制系统
1
主要内容 7.1 引言
7.2 采样与保持
7.3 Z 变换
7.4 脉冲传递函数
7.5 离散控制系统的稳定性分析
7.6 离散控制系统的时间响应
7.7 离散控制系统的校正
2
7.1 引言
◆ 由于电子计算机进入自动控制领域,出现了数字计算机控
制系统。出入计算机的信号都是断续的数字信号,故必须将 原来的连续信号变成断续信号,即采样信号。从某种意义上 说采样信号具有人为的性质。这样的系统必然在某一处或几 处出现脉冲信号或数码信号,通常称为采样控制系统。
5
7.1 引言
◆ 时间上离散的信号,其幅值可能是连续的,亦可能是离散
的。将时间上、幅值上都连续的模拟信号,转换成时间上离 散、但幅值上仍然连续的离散模拟序列信号的过程,而这一 过程就称为采样,又称为波形的离散化过程,相应的控制系 统则称为采样控制系统。
若由数字计算机实现控制,受计算机字长限制,还需要进 一步将幅值连续的理想化序列信号量化为数字序列信号,进 一步得到时间和幅值上都是离散的数字序列信号,相应的控 制系统则称为数字控制系统。
采样定理:为使离散信号不失真的还原成连续信号,采样频 率必须大于等于原连续信号所含最高频率的两倍: s 2max
3
7.1 引言
4
7.1 引言
◆ 采样控制系统由于其控制对象本身是连续信号部件,因而
它与离散系统有所区别;又由于其输出信号及控制作用的给 定都是以数码形式出现的,因而它与连续系统有所区别。总 的来说,采样系统的分析与设计是按离散系统的方法来处理 的,所以常把它归结为离散系统。
严格地说,这两者是有区别的,主要表现在采样信号与离 散信号的描述上。采样信号(或函数)是在整个实数轴上取值 其定义域是一维数集,而离散信号(或函数)则是实数轴上取 正整数,其定义域是孤立点集。离散信号是客观存在的信号, 而采样信号是连续信号经采样器采样后人为得到的。
第 7章 线性离散控制系统
1
主要内容 7.1 引言
7.2 采样与保持
7.3 Z 变换
7.4 脉冲传递函数
7.5 离散控制系统的稳定性分析
7.6 离散控制系统的时间响应
7.7 离散控制系统的校正
2
7.1 引言
◆ 由于电子计算机进入自动控制领域,出现了数字计算机控
制系统。出入计算机的信号都是断续的数字信号,故必须将 原来的连续信号变成断续信号,即采样信号。从某种意义上 说采样信号具有人为的性质。这样的系统必然在某一处或几 处出现脉冲信号或数码信号,通常称为采样控制系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散控制系统的特点:从信号上看存在离散时间信号 (离散信号、采样信号、脉冲序列或数字序列);从元件上看 有采样开关与信号恢复器。
7.1 概述 2. 离散控制系统的定义
LOGO
离散控制系统的定义:当系统中某处或多处的信号 为在时间上离散的脉冲序列或数码形式时,这种系统称 为离散控制系统或离散时间控制系统。
t
0
5T6T7T T 2T 3T4T
t
7.2 信号采样和保持
LOGO
1. 信号采样 离散信号x*(t)为一理想脉冲序列,脉冲仅在采样时
刻t=nT(n=0,1,2···)出现,而脉冲强度由nT时刻的连 续函数x (nT)值来确定。
数学描述:
在数字式仪表或计算机中,离散信号x*(t)为一数字 序列,而数字序列可以看作是以数字表示其幅值的脉冲 序列,它与上述脉冲序列并没有本质区别。
11
7.2 信号采样和保持
LOGO
2. 采样定理 采样周期的选择:
工程实践表明,根据表8.1给出的参考数据选择采样 周期T,可以取得满意的控制效果。
表 8.1 采样周期的T参考数据
控制过程
采样周期T
流量
1~3
压力
1~5
液位
5~10
温度
10~20
成分
10~20
7.2 信号采样和保持 2. 采样定理
7.3 Z变换与Z反变换
LOGO
2. Z变换的基本定理 在Z变换中有一些与拉氏变换类似的基本定理,应用这些
定理可使Z变换的运算变得简单方便。
设x1(z)=Z[x1(t)],x2(z)=Z[x2(t)],x (z)=Z[x(t)]。
1) 线性定理:离散信号线性组合的Z变换等于它 们的Z变换的线性组合。
7.2 信号采样和保持
1. 信号采样 2. 采样定理 3. 信号恢复
LOGO
7.2 信号采样和保持
LOGO
1. 信号采样
采样过程:通过采样开关将连续信号变为离散信号 (采样信号)的过程。
x(t)
x(t)
x*(t)
输入连续信号T
T 输出离散信号
–
采样周期
x*(t)
采样后
0
5T6T7T T 2T 3T4T
7.1 概述
1. 离散控制系统的 特点
LOGO
(a) 数字信
号
图 8.3
(b) 连续信号 D/A转换过程
D/A转换过程是将数字信号恢复成连续信号。
7.1 概述
➢ 数字控制系统的典型结构图
LOGO
图 8.4 与图 8.1 等效的离散系统结构图
Gc(s) Gh(s) Gp(s) H(s)
数字控制器的等效传递函数 信号恢复器的传递函数 被控对象的传递函数 测量元件的传递函数
控制工程基础 (第七章)
主讲:XZIT 2017
• 7.1 概述 • 7.2 信号采样和保持 • 7.3 Z变换与Z反变换 • 7.4 离散系统的数学模型 • 7.5 离散系统分析 • 7.6 离散系统分析的MATLAB方法
LOGO
7.1 概述
LOGO
1. 离散控制系统的特 点
r( t)
e( t)
1. 离散控制系统的特点 8.1 概述
LOGO
(a) 连续信号
(b) 离散信号
(c) 数字信
图 8.隔一个采样周期对输入的连续信
号采样一次,使其变为离散时间信号,再通过量化变成以(二进
制表示的)数字信号。通常,采用采样周期为常数即等速(单速)
采样的采样方式。
kT t (k 1)T 时, e(nT t) a0 a1t a2t 2 amt m
14
7.2 信号采样和保持
3. 信号恢工复程实践中普遍采用零阶保持器。 x*(t) 零阶保持器 xh(t)
LOGO
零阶保持器:将离散信号转换成在两个连续采样时刻 之间保持常量的信号。
常值外推 x(nT+τ)=x(nT) (0<τ<T)
7.2 信号采样和保持
LOGO
2. 采样定理
香农(Shannon)采样定理:如果采样器的输入信号x(t) 具有有限带宽,并且有直到ωmax的频率分量,如果采样 频率满足
则采样信号x*(t)可以完全复现连续信号x(t)。其中,ωs为采样 频率,T为采样周期,ωmax为连续信号中最高次谐波的角频率。
采样定理是从离散信号完全复现原连续信号的必要条件。 该定理给出了信号采样的最小采样频率。
7.2 信号采样和保持 3. 信号恢复
LOGO
① T取得越小,xh(t)与x(t)的差别越小; ② 相位滞后,xh(t)比x(t)平均滞后半个采样周期; ③ 时域特性(单位脉冲响应)为 gh(t)=1(t)-1(t-T);
④ 零阶保持器的传递函数为
7.3 Z变换与Z反变换
1. Z变换的定义 2. Z变换的基本定理 3. 求Z变换 4. 求Z反变换
A/D
数字 计算
u *(t) D/A
uk( t)
被控 对象
c( t)
b(
机
t)
测量元
图 8.1 (数字件)计算机控制系统方框图
数字控制系统是一种以数字计算机为控制器去控制具有连续 工作状态的被控对象的闭环控制系统。
A/D:经采样、量化、编码转换把模拟信号变成数字信 号。
D/A:经保持、解码(信号恢复)将数字信号转化成模拟 信号。
LOGO
采样周期的选择:
根据工程实践经验,随动系统的采样频率可近似取 为
即采样周期可按下式选取为
通过单位阶跃响应的上升时间tr或调节时间ts,按下 列经验公式选取:
或者
7.2 信号采样和保持
LOGO
3. 信号恢复
信号的恢复是指将采样信号恢复为连续信号的过程, 能够实现这一过程的装置称为保持器。
保持器是具有外推功能的元件,保持器的外推 作用,表现为现在时刻的输出信号取决于过去时刻离散 信 号的外推。
式中a1、a2为常数。 2) 滞后定理(负偏移定理、右偏移定理)
上式表明时域信号滞后k个采样周期,其Z变换需乘以z-k。
7.3 Z变换与Z反变换
LOGO
2. Z变换的基本定理
3) 超前定理(正偏移定理、左偏移定理)
k 1
LOGO
7.3 Z变换与Z反变换 1. Z变换的定义 离散信号x*(t)表示为
作拉氏变换可得
令z=eTs,则得离散信号x*(t)的Z变换,并记为
LOGO
Z变换的定义:上式中的X(z)称为x*(t)的Z变换。 ① z=eTs, z是一个复变量;
② Z变换是对离散信号(采样脉冲序列)进行的一种变换;
③ X(z)=Z[x*(t)]=Z[x(t)] ,同一信号不同表示形式对应的脉冲 序列的Z变换。