北京邮电大学概率论期末考试试卷及答案
北邮离散数学期末复习题

北邮离散数学期末复习题第一章集合论一、判断题(1)空集是任何集合的真子集. ( 错 )(2){}φ是空集. ( 错 ) (3){}{}a a a },{∈ ( 对 ) (4)设集合{}{}{}{}AA 22,1,2,1,2,1⊆=则. ( 对 ) (5)如果B A a ⋃∉,则A a ∉或B a ∉. ( 错 )解 B A a ⋃∉则B A B A a ⋂=⋃∈,即A a ∈且B a ∈,所以A a ∉且B a ∉(6)如果A ∪.,B A B B ⊆=则 ( 对 )(7)设集合},,{321a a a A =,},,{321b b b B =,则},,,,,{332211><><><=⨯b a b a b a B A ( 错 )(8)设集合}1,0{=A ,则}1},0{,0},0{,1,,0,{><><><><=φφρ是A2到A 的关系. ( 对 )解 A 2}},1{},0{,{A φ=, =⨯A A 2}1,,0,,1},1{,0},1{,1},0{,0},0{,1,,0,{><><><><><><><><A A φφ(9)关系的复合运算满足交换律. ( 错 )(10).条件具有传递性的充分必要上的关系是集合ρρρρA = ( 错 )(11)设.~,上的传递关系也是则上的传递关系是集合A A ρρ ( 对 ) (12)集合A 上的对称关系必不是反对称的. ( 错 )(13)设21,ρρ为集合A 上的等价关系, 则21ρρ⋂也是集合A 上的等价关系( 对 )(14)设ρ是集合A 上的等价关系, 则当ρ>∈<b a ,时, ρρ][][b a = ( 对 )(15)设21,ρρ为集合 A 上的等价关系, 则 ( 错 )二、单项选择题(1)设R 为实数集合,下列集合中哪一个不是空集 ( A )A. {}R x x x ∈=-且,01|2 B .{}R x x x ∈=+且,09|2C. {}R x x x x ∈+=且,1|D. {}R x x x ∈-=且,1|2(2)设B A ,为集合,若φ=B A \,则一定有 ( C )A. φ=B B .φ≠B C. B A ⊆ D. B A ⊇(3)下列各式中不正确的是 ( C )A. φφ⊆ B .{}φφ∈ C. φφ⊂ D. {}}{,φφφ∈ (4)设{}}{,a a A =,则下列各式中错误的是 ( B )A. {}A a 2∈ B .{}A a 2⊆ C. {}A a 2}{∈ D. {}Aa 2}{⊆ (5)设{}2,1=A ,{}c b a B ,,=,{}d c C ,=,则)(C B A ⨯为 ( B ) A. {}><><c c ,2,1, B .{}><><c c ,2,,1C. {}><><2,,,1c cD. {}><><2,,1,c c(6)设{}b A ,0=,{}3,,1b B =,则B A 的恒等关系为 ( A ) A. {}><><><><3,3,,,1,1,0,0b b B .{}><><><3,3,1,1,0,0C. {}><><><3,3,,,0,0b bD. {}><><><><0,3,3,,,1,1,0b b(7)设{}c b a A ,,=上的二元关系如下,则具有传递性的为 ( D )A. {}><><><><=a b b a a c c a ,,,,,,,1ρB . {}><><=a c c a ,,,2ρC. {}><><><><=c b a b c c b a ,,,,,,,3ρD. {}><=a a ,4ρ(8)设ρ为集合A 上的等价关系,对任意A a ∈,其等价类[]ρa 为 ( B )A. 空集; B .非空集; C. 是否为空集不能确定; D. }|{A x x ∈.(9)映射的复合运算满足 ( B )A. 交换律 B .结合律 C. 幂等律 D. 分配律(10)设A ,B 是集合,则下列说法中( C )是正确的.A .A 到B 的关系都是A 到B 的映射B .A 到B 的映射都是可逆的C .A 到B 的双射都是可逆的D .B A ⊂时必不存在A 到B 的双射(11)设A 是集合,则( B )成立.A .A A #22#=B .A X X A⊆↔∈2 C .{}A2∈φ D .{}AA 2∈ (12)设A 是有限集(n A =#),则A 上既是≤又是~的关系共有(B ).A .0个B .1个C .2个D .n 个三、填空题1. 设}}2,1{,2,1{=A ,则=A2____________.填}}},2,1{,2{}},2,1{,1{},2,1{}},2,1{{},2{},1{,{2A A φ=2.设}}{,{φφ=A ,则A 2= . 填}}},{{},{,{2A A φφφ=3.设集合B A ,中元素的个数分别为5#=A ,7#=B ,且9)(#=⋃B A ,则集合B A ⋂中元素的个数=⋂)(#B A .34.设集合}4,1001|{Z x x x x A ∈≤≤=的倍数,是,}5,1001|{Z x x x x B ∈≤≤=的倍数,是,则B A 中元素的个数为 .405.设 },{b a A =, ρ 是 A2 上的包含于关系,,则有ρ= .},,},{,}{},{,},{,}{},{,,,}{,,}{,,,{><><><><><><><><><A A A b b b A a a a A b a φφφφφ6.设21,ρρ为集合 A 上的二元关系, 则=21ρρ .~1~2ρρ7.集合A 上的二元关系ρ为传递的充分必要条件是 .ρρρ⊆8. 设集合{}{}><><==0,2,2,02,1,01ρ上的关系A 及集合A 到集合{}4,2,0=B 的关系=2ρ{><b a ,|><b a ,A b a B A ∈⨯∈,且∩}=21,ρρ 则B ___________________.填 }2,2,0,2,2,0,0,0{><><><><四、解答题1. 设 A d c b a A },,,,{=上的关系 },,,,,,,,,,,,,,,{><><><><><><><><=c d d c a b b a d d c c b b a a ρ(1)写出ρ的关系矩阵;(2)验证ρ是A 上的等价关系;(3)求出A 的各元素的等价类。
北邮概率论与随机过程—学学期期末A卷

北京邮电大学2010——2011学年第2 学期3学时《概率论与随机过程》期末考试(A )一. 填空题.1 设随机事件,A B 满足()( )P AB P A B =, 且()P A p =, 则()P B = 1-p2. 设每次实验中事件A 出现的概率为p ,在三次独立重复试验中, A 至少出现一次的概率为1927, 则p = 1/3 3. 随机变量X 服从参数为1的泊松分布(1)π,则2(())P X E X ==112e - 4. 设随机变量X 服从正态分布2(10,0.02)N ,记22()u xx du -Φ=⎰,且已知(2.5)0.9938Φ=,则((9.95,10.05))P x ∈= 0.98765. 已知随机变量X 服从均匀分布(1,6)U ,则矩阵20001010A X⎛⎫⎪=- ⎪ ⎪-⎝⎭的特征值全为实根的概率为 4/56. 已知随机变量X 的密度函数为||1(),2x f x e x -=-∞<<+∞,则(01)P X <<= 11(1)2e -- 7. 设连续型随机变量X 的分布函数为()F x ,则0y >时,2ln(())Y F X =-的概率密度函数()Y f y = 212y e - 8. 已知随机变量X 服从均值为1的指数分布,则min{,2}Y X =的分布函数()F y =0,0,1,02,1, 2.xx e x x -≤⎧⎪-<<⎨⎪≥⎩9. 已知随机变量(,)X Y 服从二维正态分布22(1,2,1,2,0.5),则21Z X Y =++的概率密度函数()f z 2(5)x --10. 设,X Y 的联合概率密度为(2)2,0,0,(,)0,x y e x y f x y -+⎧>>=⎨⎩其它,, 则概率(1,2)P X Y ><=14(1)e e --- 11. 设随机过程2()X t X Yt Zt =++, 其中,,X Y Z 是相互独立的随机变量, 且均值都为零, 方差都为1, 则相关函数(,)X R s t = 221st s t ++12. 设{(),0}W t t ≤<+∞是参数为2σ的维纳过程, 则[((3)(1))((4)(1))]E W W W W --=22σ13. 设平稳高斯过程{().0}X t t ≥的均值为零, 相关函数为2||1()4X R e ττ-=, 则对任意固定的0t , 0()X t 的概率密度函数()f x 22x - 14. 设离散时间离散状态齐次马尔可夫链{}n X 的状态空间是{0,1,2},平稳分布为111,,244π⎧⎫=⎨⎬⎩⎭, 若000111(0),(1),(2)244P X P X P X ======, 则方差100()D X = 11/1615. 设}),({+∞<<-∞t t X 为平稳随机过程,功率谱密度为212)(ωω+=X S , 则其平均功率为 1二. (15分)设某餐厅每天接待300名顾客, 并设每位顾客的销费额(元)服从均匀分布(40,100)U , 且顾 客的消费相互独立. 求:(1) 该餐厅的日营业额的期望和方差; (2) 平均每天有多少位顾客消费额超过50元;(3) 用中心极限定理估计该餐厅日营业额超过21750的概率. 解. (1) 设,1,2,...,300i X i =是第i 位顾客的消费额, 则由题意,1,40100,()600,ix X f x ⎧<<⎪=⎨⎪⎩其它, 设X表示该餐厅的日消费额, 则3001.ii X X ==∑ 因为 ()70i E X =, 则21300300(60/12)90000.DY DX =⨯==21000EX =(5’) (2 ) 设Y 是消费额超过50元的顾客数. 则1(300,(50))(300,5/6)YB P X B >=, 所以300(5/6)250.EY =⨯= (5’)(3) 由中心极限定理得12300(...21750)1(2.5)0.0062.P X X X P +++>⎛⎫=>=-Φ= (5’) 三.(15分)设二维随机变量(,)X Y 具有概率密度(1), 0,0,(,)3x y k ex y f x y -+⎧>>⎪=⎨求(1)系数k ; (2)边缘概率密度(),()X Y f x f y ,并问,X Y 是否独立, 为什么? (3)求条件概率密度|(|)Y X f y x ,|(|)X Y f x y . 解.(1) 0,01(,)3x Y f x y dxdy k >>=⇒=⎰⎰(3’)(2) (1)0,0,()(,)0,0,x y x X xedy e x f x f x y dy x +∞-+-+∞-∞⎧=>⎪==⎨⎪≤⎩⎰⎰(1)201,0,(1)()(,)0,0,x y Y xe dx y y f y f x y dx y +∞-++∞-∞⎧=>⎪+==⎨⎪≤⎩⎰⎰(6’)由于(,)()()X Y f x y f x f y ≠,所以不独立.(3) 当0x >时, (1)|(,)(|)()x y xy Y X xX f x y xe f y x xe f x e-+--===, 当0y >时, (1)2(1)|2(,)(|)(1)1()(1)x y x y X Y Y f x y xe f x y y xe f y y -+-+===++ (6’)四.(15分)设齐次马氏链}0,{≥n X n 的状态空间为}2,1,0{=E ,一步转移概率矩阵为110221102211022P ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦, 初始分布为0001{0}{1}{2}3P X P X P X ====== (1) 求124 {1,1,2}P X X X ===;(2) 求02,X X 的相关系数02X X ρ;(3) 证明马氏链}0,{≥n X n 具有遍历性,并求其极限分布.解 (1) 2111244111(2)424111442P P ⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,124 {1,1,2}P X X X ====20111120()(2)0i i P X i p p p ===∑ (5’)(2) 2X 的分布率(2)(0)(2)(1/3,1/3,1/3)p p P ==02,X X 的联合分布率02021,2/3EX EX DX DX ==== 027/6EX X =1/4ρ== (5’)(3) 由P(2)知马氏链遍历,由01210,0,1,2,iP i ππππππ=⎧⎪++=⎨⎪≥=⎩得平稳分布为(1/3,1/3,1/3). (5’) 五.(10分)设某线性系统的脉冲响应函数为22,0()0,0t e t h t t -⎧≥=⎨<⎩,将平稳过程{})()(∞+-∞∈,,t t X 输入到该系统后, 输出平稳过程{})()(∞+-∞∈,,t t Y 的谱密度为424()1336Y S ωωω=++,求:(1)输入平稳过程的{})()(∞+-∞∈,,t t X 的谱密度)(ωX S ; (2)自相关函数)(τX R ; (3)输入与输出的互谱密度)(ωXY S .解: 2222,024()(),|()|240,0t e t h t H H i t ωωωω-⎧≥=↔==⎨++<⎩,(1) 22()1(),|()|(9)Y X S S H ωωωω==+ (4分) (2) 3||11()(),26i X X R S e d e ωτττωωπ+∞--∞==⎰ (3分) (3) 22()()()(2)(9)X Y X S H S i ωωωωω==++. (3分)。
北邮概率论与随机过程试题参考-3学分

3学时《概率论与随机过程》试题参考考试注意事项:学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效。
一. 简答(40分,每题4分)1.设A,B 为相互独立的随机事件,P(A)=0.2,P(B)=0.6,求P(A ⋃B).2.设X ~B(1,0.5),Y ~B(1,0.5),且X 与Y 相互独立,求P{X +Y =2}.3.已知随机变量X 的分布率为X−1012p k0.20.10.50.2 设Y=3X 2,求P {Y =3}.4.设随机变量ξ,η和X,Y 满足ξ=−2X +1,η=−3Y +2,已知X 与Y 的相关系数为ρXY =0.5,求ξ与η的相关系数为ρξη.5.已知随机变量X 服从正态分布N(μ,σ2),且二次方程y 2+4y +X =0无实根的概率为1/2,求μ.6. 设随机变量X 的概率密度函数为f(x)={1−|x |,−1<x <1,0,其他求随机变量Y =X 2+1的概率密度函数f Y (y)7.设随机变量X 1,X 2,…,X 100是相互独立的服从均值为10的指数分布,记Y =∑X i 100i=1,利用中心极限定理近似计算P(Y ≥1000)8.设{N(t),t ≥0}是强度为λ的泊松过程,求P (N (2)=2,N (3)=3|N (1)=1)= .在此处键入公式。
9.设平稳过程{X(t),t ≥0}的功率谱密度S X (ω)=11+ ω2,求其平均功率.10.设马氏链{X n ,n ≥0}的状态空间E ={0,1}, 转移矩阵为(14341323), 求lim n→∞p 11(n)一个系统中有三个相互独立的元件,元件损坏的概率都是0.2.当一个元件损坏时,系统发生故障的概率为0.25; 当两个元件损坏时,系统发生故障的概率为0.6; 当三个元件损坏时,系统发生故障的概率为0.95; 当三个元件都不损坏时,系统不发生故障. 求系统发生故障的概率.三.(15分)设随机变量X与Y相互独立,X在(0,1)上服从均匀分布,Y的密度函数为f Y(y)={12e−y2 , y>0 0,其它,(1)求X和Y的联合分布密度函数;(2)设关于a的二次方程为a2+2aX+Y=0,试求此方程有实根的概率(用标准正态分布的分布函数表出结果)。
概率论与数理统计期末试题与详细解答

《概率论与数理统计》期末试卷一、填空题(每题4分,共20分)1、假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是_______________。
2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。
3、设X 服从参数为1的指数分布,则=)(2X E ___________。
4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___________。
5、),16,1(~),5,1(~N Y N X 且X 与Y 相互独立,令12--=Y X Z ,则=YZ ρ____。
二、选择题(每题4分,共20分)1、将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )A 、323B 、83C 、161D 、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是( ) A 、)()()(Y D X D Y X D +=- B 、a X +与b Y -必相互独立 C 、X 与Y 可能服从二维均匀分布 D 、)()()(Y E X E XY E =3、样本nX X X ,,,21 来自总体X ,,)(,)(2σμ==X D X E 则有( )A 、2i X )1(n i ≤≤都是μ的无偏估计 B 、X 是μ的无偏估计C 、)1(2n i X i ≤≤是2σ的无偏估计D 、2X 是2σ的无偏估计 4、设nX X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列不是统计量的是( ) A 、ini X ≤≤1min B 、μ-X C 、∑=ni iX 1σ D 、1X X n -5、在假设检验中,检验水平α的意义是( ) A 、原假设0H 成立,经检验被拒绝的概率 B 、原假设0H 不成立,经检验被拒绝的概率 C 、原假设0H 成立,经检验不能拒绝的概率D 、原假设0H 不成立,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D 。
概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
北京邮电大学试卷-概率论03 05 10 12

2003级硕士生“概率论与随机过程”试题任课教师:唐碧华(请将答案写在答题纸上,否则一律无效)一、概念题:(每小题5分,共15分)1.简述可测函数的基本概念,并说明它与随机变量的区别与联系。
2.用数学语言描述马尔可夫过程。
3.用数学语言描述Lebesque-Stieltjes 积分。
二、填空题(每小题3分,共9分)1.在条件下,P(A/B)=P(A);在条件下,P(A ∪B)=P(A)+P(B)。
2.设ξ服从分布:{}⋯,2,1,0,1,10,=−=<<==k p q p p q k P kξ,则ξ的特征函数为。
3.在条件下,两个随机过程{X(t),t ∈T},{Y(t),t ∈T}相互正交;在条件下,两个随机过程互不相关。
三、(10分)设随机变量),(Y X 的联合分布律为:YX012311/4001/1621/161/401/4301/161/16(1)求Y X ,的边缘分布律;(2)判断X 与Y 是否相互独立;(3)求2=X 时Y 的条件分布律;(4)求2=X 时Y 的条件数学期望;(5)求2=X 时Y 的条件方差四、(12分)设(X,Y )的联合密度函数为:()[]()()()()()()代数。
代数之交仍为分)证明:两个五、(不独立。
,,但,试证:的特征函数为的特征函数,并令,分别表示, 以其它 −−⋅=+=⎪⎩⎪⎨⎧≤≤++=σσϕϕϕϕϕϕ701,11),(21212241Y X t t t t Y X Z Y X t t y x y x xy y x f八、(10分)有三个黑球和三个白球。
把这六个球任意等分给甲、乙两个袋中,并把甲袋中的白球数定义为该过程的状态,则有四个状态:0,1,2,3。
现每次从甲、乙两袋中各取一球,然后相互交换,即把从甲袋取出的球放入乙袋,把从乙袋取出的球放入甲袋,经过n 次交换,过程的状态为()⋯4,3,2,1,=n n X 。
(1)试问该过程是否为马尔可夫链;(2)计算它的一步转移概率矩阵。
概率论与数理统计的期末考试试卷答案详解

《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B =U ()A 、AB B 、A BC 、A BD 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P A B P A P B =+UC 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 CD、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==L ,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14D 、14-13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12 D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。
北京邮电大学概率论与随机过程 期末

北京邮电大学2016——2017学年第2 学期3学时《概率论与随机过程》期末考试 (A)考试注意事项:学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效。
一. 填空题(45分,每空3分)1. 设A ,B 为两个随机事件,()0.2P A =,(|)(|)0.5P A B P B A ==,则()P A B = . 0.92. 设~(,)X U a b ,则=2+5Y X 的概率密度函数()Y f y = .1, 2525,2()()0, Y a y b b a f y ⎧+<<+⎪-=⎨⎪⎩其他.3. 设X 的密度函数为2(1)()()x f x ae x --=-∞<<+∞,则a = _,()E X = ,()D X = .1,1/24. 设随机变量,X Y 独立,均服从参数为1的指数分布,则min(,)Z X Y =的密度函数()Z f z = .2()2, 0zZ f z e z -=>5. 设随机变量,X Y 独立,9~(18,), ~(2,2)2X N Y N , 则11632P X Y ⎛⎫-<= ⎪⎝⎭. ()(1)0.8143, (2)=0.9772Φ=Φ 0.81436. 设,X Y 相互独立,分别服从参数为1和2的泊松分布,则X Y +的分布律为 .33(),0,1,2,...!k P X Y k e k k -+===7. 设~(1,0.5)X b ,Y 服从期望为13的指数分布,0.4XY ρ=,则(-3+2)D X Y = .0.858.计算器的舍入误差是(0.5,0.5)-上的均匀分布,若将120个误差数值相加,则总误 差的绝对值超过10的概率近似为 . ()(1)0.8143, (2)=0.9772Φ=Φ 0.3714 9. 设()sin cos ,X t U t V t ωω=+其中ω为常数,22(,)~(,,,,0)U V N μμσσ, 则{()}X t 的一维概率密度函数(;)f x t =.22(sin cos )2,x t t x μωμωσ----∞<<∞10. 设{(),0}W t t ≥是参数为2的维纳过程,定义()(3)X t W t =, 则相关函数(2,7)X R = .1211. 设{(),0}N t t ≥是参数为1的泊松过程,则(3)N 与(5)N 的相关系数为 ,((1)1,(2)3)P N N ===.5, 212e- 12. 设齐次马氏链}0,{≥n X n 的状态空间{12}E =,,一步概率转移矩阵为14551122⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭, 则 lim (2)n n P X →∞== . 8/13二.(12分)设随机变量X 和Y 独立,=+Z X Y ,~(0,1)X U ,即(0,1)区间上的均匀分布,Y 为离散型随机变量,分布律为(1)=0.4, (2)=0.6P Y P Y ==,求解下列问题: (1) (), ()E Z D Z ;(2) 随机变量Z 的分布函数()Z F z 和密度函数()Z f z .解:(1)() 2.1()97/300E Z D Z ==(2分)(2分)(2)()()(1)(1)(2)(2)0.4(1)0.6(2)Z F z P X Y z P X z P Y P X z P Y P X z P X z =+≤=+≤=++≤==≤-+≤-(2分)0, 1;0.40.4, 12; ()0.60.8, 23;1, 3.Z z z z F z z z z <⎧⎪-≤<⎪=⎨-≤<⎪⎪≥⎩故 (2分)(3)()'()Z Z f z F z = (2分)0, 13; ()0.4, 12;0.6, 2 3.Z z z f z z z <>⎧⎪=≤<⎨⎪≤<⎩或故 (2分)三.(15分)设二维随机变量(,)X Y 的分布为单位圆上的均匀分布,求解下列问题: (1) 边缘概率密度(), ()X Y f x f y ;(2) 判断,X Y 是否相互独立,是否不相关,并给出理由; (3) 条件概率密度|(|)Y X f y x . 解:(1)111()(,)d d =,11 ()= (2)0 X X x f x f x y y y x f x π∞-∞-<<==-<<⎪⎩⎰当时,,故分,其他.111()(,)d d 11 ()= (2)0 Y Y y f y f x y x x y f y ∞-∞-<<==-<<⎪⎩⎰当时,,故分,其他.(2)(,)()(), X Y f x y f x f y X Y ≠因为 所以和不独立. (3分)(,)(,)d d 000 Cov X Y EXY EXEY xyf x y x y X Y =-=-=⎰⎰因为故和的相关系数为,不相关. (3分)(3)||11(,)(|)=)() (|)=)0 .Y X X Y X x f x y f y x y f x y f y x -<<=<<<<⎩当时,分故分,其他四.(15分)设齐次马氏链{, 0}n X n ≥的状态空间为{,,}E a b c =,转移概率矩阵为0 3/4 1/41/2 0 1/21/3 1/3 1/3P ⎛⎫⎪= ⎪ ⎪⎝⎭,初始分布为0() 1.P X a ==(1) 求2()P X b =;(2) 求134452(,,), (,|)P X b X c X a P X a X b X c ======; (3) 证明马氏链{, 0}n X n ≥具有遍历性,并求其极限分布. 解:(1)211/24 1/12 11/24(2) 1/6 13/24 7/24 (3)5/18 13/36 13/36P P ⎛⎫ ⎪== ⎪ ⎪⎝⎭分22000,,()(|)()=()(2)1/12. (2)ab i a b cP X b P X b X i P X i P X a p ========∑分(2)134131434524254(,,)()(|)(|)3717(2)**. (3)4244128(,|)=(|)(|)535(2)*. (2)18424ab bc ca ca ab P X b X c X a P X b P X c X b P X a X c p p p P X a X b X c P X a X c P X b X a p p ======================分分(3)2P 因为马氏链的状态有限,且没有零元素,故该马氏链遍历. (2分) ,,= (2)1i i a b c P πππ=⎧⎪⎨=⎪⎩∑极限分布满足方程分121415=. (1)414141π⎛⎫ ⎪⎝⎭解得分五.(13分)设平稳随机过程1()X t 和2()X t 相互独立,且1()0X t μ=. (1) 证明随机过程12()()+()X t X t X t =是平稳过程; (2) 设1()X t 和2()X t 功率谱密度为1224()()4S S ωωω==+,求随机过程()X t 的平均功率.(1) 证明:222()(())(), ()()()X X X X t E X t t X t t t μμμμ==因为是平稳过程,所以是常数,故是常数. (4分)1212(,)(()())(,)(,), ()()(,)()X X X X R t t E X t X t R t t R t t X t X t R t t X t ττττττ+=+=++++因为和是平稳过程,所以只与有关. (4分)故是平稳过程.(2) 解:12-2||-2||()()=e ()2e . (3)X X X R R R τττττ==因为,故分2=(())(0) 2. (2)X E X t R ==故平均功率分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京邮电大学概率论期末考试试卷及答案
第1章概率论的基本概念
§1 .1 随机试验及随机事件
1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ;
(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ;
2.(1) 丢一颗骰子. A:出现奇数点,则
A= ;B:数点大于2,则B= .
(2) 一枚硬币连丢2次, A:第一次出现正面,则A= ;
B:两次出现同一面,则= ; C:至少有一次出现正面,则C= .
§1 .2 随机事件的运算
1. 设A、B、C为三事件,用A、B、C的运算关
系表示下列各事件:
(1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: .
(5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .
2. 设}4
B
=x
≤
x
≤
A
S:则
x
x
=
x
<
3
1:
},
{
2:
{
},
≤
=
{≤<
5
0:
(1)=
A,(2)
⋃B
=
AB,(3)=B A,
(4)B
A⋃= ,(5)B
A= 。
§1 .3 概率的定义和性质
1.已知6.0
A
P
⋃B
=
P
A
B
P,则
(
,5.0
(
)
)
,8.0
(=
)
=
(1) =)
(AB
P,
(2)()
P)= ,
(B
A
(3))
P⋃= .
(B
A
2. 已知,
3.0
P
A
P则
=AB
(
(=
)
,7.0
)
P= .
A
)
(B
§1 .4 古典概型
1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,
(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.
2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.
§1 .5 条件概率与乘法公式
1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。
2. 已知,2/1
A
P
=B
A
P则
=
A
P
B
|
(
|
)
,3/1
)
)
,4/1
(
(=
P。
A
(B
=
⋃)
§1 .6 全概率公式
1.有10个签,其中2个“中”,第一人随机地抽
一个签,不放回,第二人再随机地抽一个签,说明两人抽“中‘的概率相同。
2. 第一盒中有4个红球6个白球,第二盒中有
5个红球5个白球,随机地取一盒,从中随
机地取一个球,求取到红球的概率。
§1 .7 贝叶斯公式
1.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。
2.将两信息分别编码为A和B传递出去,接收站收到时,A被误收作B的概率为0.02,B被误收作A的概率为0.01,信息A与信息
B传递的频繁程度为3 : 2,若接收站收到
的信息是A,问原发信息是A的概率是多
少?
§1 .8 随机事件的独立性
1. 电路如图,其中A,B,C,D为开关。
设各开关
闭合与否相互独立,且每一开关闭合的概率均为p,求L与R为通路(用T表示)的概率。
A B L R
C D
2.甲,乙,丙三人向同一目标各射击一次,命中
率分别为0.4,0.5和0.6,是否命中,相互独
立,求下列概率: (1) 恰好命中一次,(2) 至
少命中一次。
第1章作业答案
§1 .1 1:(1)}
THH
HTT
THT
HTH
HHT
TTH
S=;
HHH
,
,
,
{TTT
,
,
,
,
(2)}3
,0{
S
=
,2
,1
2:(1)}6
,1{=
=B
A;
,3
}5
,5
,4
,3{
(2){=A正正,正反{
},=
C正
B正正,反反{
},=
正,正反,反正}。
§1 .21:(1) ABC;(2) C
AB;(3) C B A;
(4)C
A⋃
⋃;(5) BC
B
⋃;
AC
AB⋃
(6) C B
⋃或
A⋃
B
A
C。