电抗器无功补偿
电力系统无功补偿设备的选用规定

电力系统无功补偿设备的选用规定
1、并联电容器和并联电抗器是电力系统无功补偿的重要设备,应优先选用此种设备。
2、当发电厂经过长距离的线路(今后不再П接中间变电所)送给一个较强(短路容量较大)的受端系统时,为缩短线路的电气距离,宜选用串联电容器,其补偿度一般不宜大于50%,并应防止次同步谐振。
3、当220~500kV电网的受端系统短路容量不足和长距离送电线路中途缺乏电压支持时,为提高输送容量和稳定水平,经技术经济比较合理时,可采用调相机。
1)新装调相机组应具有长期吸收70%~80%额定容量无功电力的能力。
2)对已投入运行的调相机应进行试验,确定吸收无功电力的能力。
4、电力系统为提高系统稳定、防止电压崩溃、提高输送容量,经技术经济比较合理时,可在线路中点附近(振荡中心位置)或在线路沿线分几处安装静止补偿器;带有冲击负荷或负荷波动、不平衡严重的工业企业,本身也应采用静止补偿器。
1。
无功补偿元件的选型与应用电容电抗

无功补偿元件的选型与应用电容电抗无功补偿是电力系统中的一项重要技术,通过补偿系统的无功功率,可以提高电力系统的功率因数,减少传输损耗,改善电压质量,提高系统的稳定性和运行效率。
其中,无功补偿元件在无功补偿系统中起着至关重要的作用,选型合适的无功补偿元件对于实现系统的无功补偿效果至关重要。
本文将就无功补偿元件的选型与应用电容电抗展开论述。
一、电容器与电抗器的作用与特点电容器和电抗器是无功补偿中常用的两种元件,它们在电力系统中具有各自独特的作用与特点。
1. 电容器的作用与特点电容器是一种能够提供无功功率的无源元件,其主要作用是通过供给感性无功功率来补偿系统中所需要的容性无功功率。
其特点如下:(1)电容器对系统的电压有一定的提高作用,可以改善供电电压质量。
(2)电容器可以提供快速的无功功率响应,对于电压波动较大的电力系统特别适用。
(3)电容器的无功功率消耗低,效率高,对于降低系统的无功功率损耗有明显的作用。
2. 电抗器的作用与特点电抗器是一种能够吸收无功功率的支路元件,其主要作用是通过消耗容性无功功率来补偿系统中所需要的感性无功功率。
其特点如下:(1)电抗器可以阻碍无功功率的传输,减少无功功率的流动。
(2)电抗器可以起到稳压作用,抑制电压的过高或过低;同时,也可以减轻电压波动对系统的影响。
(3)电抗器的无功功率消耗较大,效率相对较低,但其信号响应时间短,对电压波动有较好的抑制作用。
二、无功补偿元件的选型原则在进行无功补偿系统设计时,正确选型无功补偿元件是确保系统性能的关键一步。
以下是无功补偿元件选型的原则:1. 功率匹配原则无功补偿元件选型时,应根据系统的无功功率需要进行功率匹配。
对于容性无功功率,应选用电容器进行补偿;对于感性无功功率,应选用电抗器进行补偿。
2. 频率适应原则无功补偿元件的选型应考虑其在系统频率下的特性参数,确保其与系统频率相匹配。
一般情况下,无功补偿元件的频率适应范围应在±0.5%之内。
无功补偿装置的作用及工作原理

无功补偿装置的作用及工作原理无功补偿装置是用于改善电力系统无功功率的设备,其作用是提高电力系统的功率因数,降低无功功率的流动以减少电力系统的无用能量损耗、提高系统的供电质量以及稳定运行。
无功补偿装置通常是由无功补偿电容器或者无功补偿电抗器构成,根据电力系统需要的补偿类型安装相应的补偿装置。
无功补偿装置的工作原理主要基于电流和电压之间的相位差。
功率因数是电流和电压之间相位差的函数,当电流和电压的相位差为零时,功率因数为1,这时电力系统处于纯阻性负载状态,所有的电能都被有效地转换为有用功。
然而,在现实情况下,电力系统中通常存在着诸如感性负载和容性负载等非纯阻性负载,导致电流和电压之间存在一定的相位差,功率因数小于1、当电流的相位落后于电压相位时,这被称为感性载荷,而当电流的相位超前于电压相位时,这被称为容性负载。
1.无功补偿电容器补偿:电容器具有存储能量的特性,当电容器与电力系统并联时,它可以吸收电流中的无功功率。
当系统的功率因数较低时,通过将无功补偿电容器与系统并联,可以吸收电流中的无功功率,并提高功率因数。
电容器通过补偿无功功率,降低系统中的无功损耗,提高电力系统的效率。
2.无功补偿电抗器补偿:电抗器和电容器相反,它消耗无功功率。
当系统的功率因数过高时,通过将无功补偿电抗器与系统并联,可以消耗电流中的无功功率,并提高功率因数。
电抗器通过消耗无功功率,减少系统中的无功损耗,提高电力系统的效率。
无功补偿装置通常使用自动补偿装置来监测系统的功率因数,并根据实际需求控制补偿装置的投入和退出。
当系统的功率因数较低时,自动补偿装置会投入补偿电容器来提高功率因数;当系统的功率因数较高时,自动补偿装置会退出补偿电容器,防止系统过补偿,从而实现自动无功补偿。
总而言之,无功补偿装置通过调整电流和电压之间的相位差来提高功率因数,降低系统的无功功率流动,减少无用能量损耗,并保证电力系统的稳定运行。
无功补偿装置的应用可以提高电力系统的供电质量,减少系统的能耗,对于提高电力系统的效率和可靠性具有重要作用。
并联电抗器无功补偿

并联电抗器1.并联电抗器在电力系统中的作用并联电抗器无功功率补偿装置常用于补偿系统电容。
它通过向超高压、大容量的电网提供可阶梯调节的感性无功功率,补偿电网的剩余容性充电无功功率控制无功功率潮流,保证电网电压稳定在允许范围内。
实践证明,对于一些电压偏高的电网,安装一定数量的并联电抗器是解决系统无功功率过剩,降低电压的有效措施,特别是限制由于线路开路或轻载负荷所引起的电压升高。
所以在一定的运行工况中,在超高压输电线路手段装设并联电抗器以吸收输电线路电容所产生的无功功率,称为并联电抗器补偿。
由于目前应用于电力系统的电抗器大都为固定容量的电抗器,其容量不能改变,无法随时跟踪运行工况的无功功率变化,造成电抗器容量的浪费,与目前节能减排的主题不相符合,所以,有必要研究可控电抗器这个热门话题,使得电抗器的容量可控可调,这也在一定程度上符合我国发展智能电网的要求。
2.可控并联电抗器的分类、基本原理和优缺点图1可控并联电抗器的分类2.1 传统机械式可调电抗器调匝式和调气隙式是最早出现并广泛应用的可调电抗器。
其基本原理是通过调节线圈匝数或调节铁芯气隙的长度来改变电抗器的磁路磁导,从而改变电抗值。
调匝式可控电抗器较易实现,但是电抗值不能做的无级调整。
调气隙式由于机械惯性和电机的控制问题无法在工程上应用。
2.2 晶闸管可控电抗器(TCR)晶闸管可控电抗器,是随着电力电子技术发展起来的一种新型的可控电抗器,它采用线性电抗器与反并联晶闸管串联的接线方式,通过控制晶闸管的触发角就可以控制电抗器的等效电抗值。
TCR的控制灵活,响应速度快,缺点是在调节时会产生大量的谐波,需要加装专门的滤波装置。
在高电压大容量的场合下,必须采用多个晶闸管串联的方式,造价昂贵,这使得它在超高压电网中的应用受到了相当大的限制,目前主要应用范围是35kV和10kV的配电网中。
2.3 磁控电抗器磁控电抗器是通过改变铁芯的磁阻来实现电感值可调。
磁阻大,电感小;磁阻小,电感大,改变磁阻的方法一般有两种:一种是外加直流助磁来改变磁路的饱和程度;另一种是在控制绕组外加交流电流调节电抗器铁芯中的来实现电抗值可调的目的。
无功补偿ck比值计算方法

无功补偿ck比值计算方法我们需要了解无功补偿ck比值的定义。
无功补偿ck比值是指电容器和电抗器在无功补偿中所起作用的比例关系。
根据无功补偿ck比值的不同,无功补偿可以分为电容器补偿和电抗器补偿。
当ck比值为正时,电容器补偿起主要作用;当ck比值为负时,电抗器补偿起主要作用。
接下来,我们将介绍无功补偿ck比值的具体计算方法。
无功补偿ck比值的计算公式如下:ck比值 = (Qc - Qd) / Qd其中,Qc表示电容器补偿的无功功率,Qd表示电抗器补偿的无功功率。
在实际计算中,我们可以通过测量电容器和电抗器的无功功率来得到这两个值。
对于电容器补偿,我们可以通过测量电容器的电流和电压来计算其无功功率。
电容器的无功功率可以表示为:Qc = √3 * Uc * Ic * sin(φc)其中,Uc表示电容器的电压,Ic表示电容器的电流,φc表示电容器的功率因数。
然后,对于电抗器补偿,我们可以通过测量电抗器的电流和电压来计算其无功功率。
电抗器的无功功率可以表示为:Qd = √3 * Ud *Id * sin(φd)其中,Ud表示电抗器的电压,Id表示电抗器的电流,φd表示电抗器的功率因数。
将Qc和Qd代入无功补偿ck比值的计算公式中,即可得到无功补偿ck比值。
除了通过测量得到Qc和Qd来计算ck比值,还可以通过进行仿真计算来得到ck比值。
在仿真计算中,我们可以根据电力系统的参数和负荷情况,模拟电容器和电抗器的无功功率,然后代入ck比值的计算公式中进行计算。
无功补偿ck比值的计算方法是通过测量或仿真得到电容器补偿和电抗器补偿的无功功率,然后代入ck比值的计算公式中进行计算。
通过计算得到的ck比值可以用来评价无功补偿的效果,为电力系统的运行和调节提供重要参考。
希望本文能够帮助读者更好地理解无功补偿ck比值的计算方法,并在实际应用中发挥作用。
同时,也希望读者能够深入学习和研究无功补偿的相关知识,为电力系统的优化和提高做出贡献。
无功补偿串联电抗器的作用

无功补偿串联电抗器的作用
无功补偿串联电抗器以其独特的功能而闻名,它既能补偿电流系统中由于电压变低、相位调制而消失的无功功率变化,又能控制系统中的电流波动,降低系统中的过载状态,以满足系统安全运行的要求。
无功补偿串联电抗器可以有效地改善电网的供电可靠性和电网安全性,提高了线路服务质量,避免了由电压降低而导致的线路负荷及资源浪费现象。
无功补偿串联电抗器能够维持电压的稳定性,帮助线路运行更稳定,减少停电情况,满足线路安全运行的标准。
此外,无功补偿串联电抗器还能有效降低交流负荷的变动对电压的影响,防止潮流的失衡状态,避免发生瞬间大电流的短路故障,并减少电流暂态过大的损失,降低了受损设备的维护成本,从而提高系统的运行可靠性。
此外,由于无功补偿串联电抗器可将系统中的负载分布在不同的节点从而减小线路损耗,有助于提高系统的能量效率,保证系统中电能最大限度地得到利用。
另外,无功补偿串联电抗器还可以保护负载设备,实现系统负载的限电、软启动和保护,从而提升系统的安全性。
总之,无功补偿串联电抗器具有多项功能和多种优势,既可改善电网的供电可靠性,降低线路服务质量的不稳定性,又可增强系统的能量效率,保护负载设备,提升系统的安全性。
因此,无功补偿串联电抗器可以说是现代电网综合运行技术中不可或缺的重要组成部分。
无功补偿装置串联电抗器及补偿容量的优化算法

无功补偿装置串联电抗器及补偿容量的优化算法摘要:高次谐波对并联电容器的影响表现在三个方面:增加电容器损耗、增加无功输出、引起谐波过电压或过电流,这些现象均可引起电容器过热,从而导致电容器损坏。
为减少和避免高次谐波对电容器的危害,应从供电系统和无功补偿装置设计上采取措施。
本文就对低压并联电容器装置串联电抗器及补偿容量进行分析和讨论,并进行补偿容量的准确计算,作为低压并联电容器装置的容量设计和配置的参考。
关键词:低压补偿;无功功率;功率因数;电容器;电抗率1.引言一般工业企业消耗的无功功率中,异步电动机约占70%,变压器占20%,线路占10%,设计中应正确选择电动机和变压器的容量,减少线路感抗。
在功率条件适当时,采用同步电动机以及选用带空载切除的间隙工作制设备等措施,以提高用电单位自然功率因数。
当自然功率因数不满足要求时,可采用并联电容器补偿装置进行无功补偿。
2.用户自然平均功率因数的计算由式(4-7)可以看出,相同的电容器在串联电抗器后,不仅有滤波的作用,对外输出容量也会随着电抗器的电抗率增加而增大。
但必须要注意的是,因为串联电抗器后电容器的端电压会被抬升,对电容器的额定电压要求也相应提升,电容器的额定电压不能低于串联电抗器后的计算电压。
结语(1)为了抑制谐波对电容器工作电流,可串联适当比率的电抗器,串联电抗器后会对电容器的输出容量及补偿单元的输出容量产生影响。
(2)本文对实际工程中无功补偿的补偿容量提出了具体的配置方法,分析计算了无功补偿装置串联电抗器后的补偿容量,并推导出了具体的计算公式。
(3)本文分别对串联电抗器前后的补偿输出容量进行了推导,工程设计人员可根据电抗率的大小精确计算出补偿容量。
(4)本文提及的补偿装置的合理设计方法,已获国家知识产权局多项发明专利,并在实际工程中大面积推广应用,对工程设计和具体应用有良好的实践意义。
参考文献:[1] 《并联电容器装置设计规范》GB50227-2008。
电抗器工作原理

电抗器工作原理一、引言电抗器是一种被广泛应用于电力系统中的电气设备,它在电力系统中起到了重要的作用。
本文将详细介绍电抗器的工作原理,包括电抗器的定义、分类、工作原理及其在电力系统中的应用。
二、电抗器的定义和分类电抗器是一种电气设备,它用于改变电路中的电流和电压的相位关系,以及对电流的限制和控制。
根据其工作原理和结构特点,电抗器可分为电感电抗器和电容电抗器两种类型。
1. 电感电抗器电感电抗器是利用线圈的自感作用产生电感电抗来实现对电流和电压的相位关系的改变。
它由线圈和磁性材料组成,当电流通过线圈时,产生的磁场会使得电感电抗器对电流具有阻抗作用,从而改变电路中电流和电压的相位关系。
2. 电容电抗器电容电抗器是利用电容器的电容作用产生电容电抗来实现对电流和电压的相位关系的改变。
它由电容器和绝缘材料组成,当电流通过电容器时,电容电抗器对电流具有阻抗作用,从而改变电路中电流和电压的相位关系。
三、电抗器的工作原理电抗器的工作原理基于电感和电容的特性,通过改变电流和电压的相位关系来实现对电路的控制。
下面将详细介绍电感电抗器和电容电抗器的工作原理。
1. 电感电抗器的工作原理电感电抗器的工作原理是基于线圈的自感作用。
当电流通过线圈时,产生的磁场会使得电感电抗器对电流具有阻抗作用。
具体来说,当电流通过电感电抗器时,电感电抗器会产生一个与电流方向相反的电动势,从而限制电流的流动。
2. 电容电抗器的工作原理电容电抗器的工作原理是基于电容器的电容作用。
当电流通过电容器时,电容电抗器对电流具有阻抗作用。
具体来说,电容电抗器会产生一个与电流方向相反的电压,从而限制电流的流动。
四、电抗器在电力系统中的应用电抗器在电力系统中有广泛的应用,主要包括以下几个方面。
1. 电抗器的无功补偿电抗器可以用于无功补偿,即通过调节电抗器的阻抗来改变电流和电压的相位关系,从而实现对无功功率的控制。
无功补偿可以提高电力系统的功率因数,减少线路的电压损耗,提高电力系统的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容器选取电压
≧ 0.42553 kv IC ICL = =
= 138.15533 A A A A A = 电抗 器设 计值
未串电抗前电容电流 串入电抗后电容电流
电抗器三相额定容量 电抗器每相额定压降 电抗器每相额定电流值 电抗器每相额定电感值 电抗器正常工作时电流
v A mh A Hz
电流计算部 分
ICLH = I I = =
验算部分
电抗率 K
=
7%
谐振频率f 设计值
188.98
Hz
谐振频率f 实际值
串联电抗器计算---电抗器角内接参数计算部分
电容器安装容量Qc 容抗 电容计算部 分 感抗 30 kvar 23.04 1.3824 电抗率 Ω Ω 6.0% 系统电压 L I = = 0.4 kv mh A uf 电容器电压 0.48 kv 频率 50 kvar kvar kvar
kvar
XC = XL =
相电感值 相电流值 容值 17.37 18.48 20.7 22.77 25.05
4.401 18.47
三相补偿容量 三相使用容量 三相安装容量 QL UL IN LN I = = = = =
22.164 23.578723 30 1.8 28.8 20.7 4.401 18.48 204.11
串联电抗器计算----电抗器角外接参数计算部分
电容器安装容量Qc 容抗 电容计算部 分 感抗 30 kvar 7.68 0.5376 电抗率 Ω Ω 7.0% 系统电压 L I = = = A A A A A = 电抗 器设 计值 0.4 kv mh A uf 电容器电压 0.48 kv 频率 50 kvar kvar kvar
最大(35%)谐波后电流 考虑电网电压波动+10% 考虑电容允许差值+10%
ICLH = I I = =
验算部分
电抗率 K
=
6%
谐振频率f 设计值
204.12
Hz
谐振频率f 实际值Biblioteka kvar电容电抗接线图
XC = XL =
相电感值 相电流值 容值 30.08 32.35 36.59 40.25 44.28
1.712 32.34 414.466
三相补偿容量 三相使用容量 三相安装容量 QL UL IN LN I = = = =
22.405809 24.092268 30 2.1 19.4 36.59 1.712 32.35 = 188.94
电容器选取电压
≧ 0.43011 kv IC ICL = =
未串电抗前电容电流 串入电抗后电容电流
电抗器三相额定容量 电抗器每相额定压降 电抗器每相额定电流值 电抗器每相额定电感值 电抗器正常工作时电流
v A mh A Hz 电容电抗接线图
电流计算部 分
最大(35%)谐波后电流 考虑电网电压波动+10% 考虑电容允许差值+10%