非正态分布过程能力分析
Minitab教程-过程能力分析

解释结果 所有测量值都位于规格限内。过程Cpm 均大于 1.33(这是 遍接受的对应于有能力过程的最小值)。 因此,工程师得出结论,锻造过程满足对 活塞环直径的要求。
正态能力分析 的数据注意事项
• 数据应当是连续的 • 收集足够的数据以获取过程能力的可靠估计值 • 如果可能,应当采用合理子组的形式收集数据 • 过程必须稳定且受控制 • 数据应该服从正态分布
在此直方图中,过程展开宽于规格展开, 这表明能力较差。虽然大部分数据都在 规格限内,但是也一些低于规格下限 (LSL) 或者高于规格上限 (USL) 的不合格 项。
• 步骤 3:评估过程的能力
评估潜在能力
可使用 Cpk 基于过程的位置和展开来评估该过程的潜在能力。潜在能力估计值表示在消除过程偏移 和漂移的情况下可实现的能力。 总体上讲,Cpk 值越高,过程的能力越高。Cpk 值低表明可能需要改进过程。 将 Cpk 与基准值(代表可接受的过程最小值)进行比较。许多行业使用基准值 1.33。如果 Cpk 低于 基准值,则考虑如何改进您的过程,例如减少其变异或改变其位置。 比较 Cp 和 Cpk。如果 Cp 和 Cpk 大致相等,则过程位于两个规格限制之间的中心位置。如果 Cp 和 Cpk 不同,则过程未处于中心位置。
对于这些过程数据,Cpk 为 1.09。因为 Cpk 小于 1.33,所以过程的潜在能力无 法满足要求。过程过于接近规格下限。 过程未处于中心位置,因此 Cpk 值不等 于 Cp (2.76)。
评估整体能力
可使用 Ppk 基于过程位置和过程展开来评估该过程的整体能力。整体能力表示您客户在一段时 间内体验到的实际过程性能。 总体上讲,Ppk 值越高,过程的能力越高。Ppk 值低表明可能需要改进过程。 将 Ppk 与基准值(代表可接受的过程最小值)进行比较。许多行业使用基准值 1.33。如果 Ppk 比基准值低,则考虑如何改进您的过程。 比较 Pp 和 Ppk。如果 Pp 和 Ppk 大致相等,则该过程位于两个规格限之间的中心位置。如果 Pp 和 Ppk 不同,则过程未处于中心位置。 比较 Ppk 和 Cpk。当过程在统计意义上受控制时,Ppk 和 Cpk 大致相等。Ppk 和 Cpk 之间的差异 代表在消除过程偏移和漂移的情况下预期可实现的过程能力提高。
质量控制中非正态分布数据过程能力算法研究

=
() 1
其 中 U L 为 规 范 - ,S 为 规 范 下 S t限 L L . 限 , 为 过 程 的 标 准差 。 ( ) 控 过 程 中 心与 规 范 中心 不 重合 时 , 2受
过 程 能力 指 数 ( ) 汁算公 式 为 : () 2
0 前 言
6 管 理 … 一 种 全 新 的 管 珲 手 段 和 方 . o 是
这 类 数 据 的 过 程 能 力 计 算 方 法 , 给 在 服 务 这 业 中推 行 6 管理 造 成 了严 重 困难 。为 了能 " o 在 服 务业 中推 行 6 管 理 ,必 须 解 决 评 估 和 " o 测 量 非 1 态 分 布 数 据 的 过 程 能 力 指 数 的 计 E 算 问 题 。本 文将 提 出一 种 针 时 非 正 态分 布 数
维普资讯
质量控制中非正态分布数据 过程 能力算法研 究
徐月芳 , 云苗 桂
( 南京航 空航 天 大学 民航 学 院, 苏 南京 2 0 1 ) 江 10 6
摘 要 : 程 能 力 是 6- 过 o 管理 中 质 量控 制 的重 要 指 标 , 控 制 过 程 中会 出现 各 种 类 型 数 据 , 6 管理 现 有控 制 系 在 而 o .
法 , 种 灵 活 的 综 合 性 系 统 方 法 。通 过 实 施 一
6 管理 , . o 企业 能 够 准 确 理 解 顾 客需 求 , 范 规 使 用 和 统计 处 理 事 实 和数 据 , 切 关 注 和优 密 化 企 业 流 程 , 企 业 获 得 和 保 持 在 经 营上 的 使 成 功 , 经 营业 绩 最 大 化 , 可 不 断 获 得 新 使 并 的 企业 知 识 , 建 企 业 的 核心 竞 争 力 。在 6- 创 o
六西格马——过程能力分析

(4)仅给出了规格下限和目标值, 望大特性值。
Cpm =
USL - T
∑∑(xij - T)2
( ) ∑ Toler * i j ni - 1
Cpm =
T - LSL
∑∑(xij - T)2
( ) ∑ Toler * i j ni - 1
东菱六西格玛推行委员会
长期能力和短期能力
所谓过程的短期能力是指过程仅受随机因素的影响时其输出特性波动的大 小,是过程的固有能力。而长期能力是指在较长的时间里表现出的过程输出波 动的大小,此时过程不仅受到随机因素的影响,而且受到其它特殊因素的影响。
σR = R/d2 , R = xmax - xmin
∑ σs = S/C4 ,S =
1 n-1
n i=1
(Xi
-
X)2
用极差估计的方法一般适用于样本量n≤10,标准差的方法则无此限制。
n
2
3
4
5
6
7
8
9
10
11
12
13
C4
0.7979 0.8862 0.9213 0.9400 0.9515 0.9594 0.9650 0.9693 0.9727 0.9754 0.9776 0.9794
总平方和=批内平方和+批间平方和
∑∑( ) ∑ ∑ ( ) k
Q=
ni
2
xij - x =
k
(ni - 1)si2 +
k
ni
xi - x 2
i=1 j=1
i =1
i =1
其中批内平方和表示批内产品品质量的波动或者说组内波动,而批间平方 和表示批与批之间质量波动的大小或者说组间波动。
过程能力与过程能力指数分析

过程能力与过程能力指数过程能力过程能力以往也称为工序能力。
过程能力是指过程加工质量方面的能力,它是衡量过程加工内在一致性的,是稳态下的最小波动。
而生产能力则是指加工数量方面的能力,二者不可混淆。
过程能力决定于质量因素,而与公差无关。
当过程处于稳态时,产品的计量质量特性值有99.73%落在μ±3σ的范围内,其中μ为质量特性值的总体均值,σ为质量特性值的总体标准差,也即有99.73%的产品落在上述6σ范围内,这几乎包括了全部产品。
故通常用6倍标准差(6σ)表示过程能力,它的数值越小越好。
过程能力指数(一)双侧公差情况的过程能力指数对于双侧公差情况,过程能力指数C p的定义为:C p= T =TU-TL (公式1);6σ 6σ式中,T为技术公差的幅度,T U、T L分别为上、下公差限,σ为质量特性值分布的总体标准差。
当σ 未知时,可用σˆ1=R/d2或σˆ2=s/c4估计,其中R为样本极差,R为其平均值,s占为样本标准差,s为其平均值,d2、c4为修偏系数,可查国标《常规控制图》GB/T4091—2001表。
注意,估计必须在稳态下进行,这点在国标GB/T4091—2001《常规控制图》中有明确的规定并再三强调,不可忽视。
在过程能力指数计算公式中,T反映对产品的技术要求,而σ反映过程加工的一致性,所以在过程能力指数C p中将6σ与T比较,就反映了过程加工质量满足产品技术要求的程度。
根据T与6σ的相对大小可以得到过程能力指数C p。
如下图的三种典型情况。
C p值越大,表明加工质量越高,但这时对设备和操作人员的要求也高,加工成本也越大,所以对于C p值的选择应根据技术与经济的综合分析来决定。
当T=6σ,C p=1,从表面上看,似乎这是既满足技术要求又很经济的情况。
但由于过程总是波动的,分布中心一有偏移,不合格品率就要增加,因此,通常应取C p大于1。
各种分布情况下的C p值一般,对于过程能力指数制定了如下表所示的评价参考。
过程能力研究(process capability study)

过程能力研究(process capability study)概述过程能力研究旨在分析稳定过程某一质量特性输出对其公差要求的满足程度,该研究结果以指数形式给出,这样的指数称为过程能力指数( PCI)。
过程能力指数是将过程的变异与公差相比较而得出的,虽然专家学者已经提出了为数众多的过程能力指数,但常用的仅有少数的几个。
适用场合·当过程处于统计受控时;·当过程输出服从正态分布时;·当测量过程是在多大程度上满足需求时;C p 和C pk 和P p·当较为关注极小化过程超出公差而导致的不合格情形,相对而言,并不过分强调极小化过程均值相对于目标值的偏移。
C pm 和C pmk·当较为关注极小化过程均值相对于目标值的偏移情形,相对而言,并不过分强调极小化过程超出公差而导致的不合格。
实施步骤1用控制图确定过程处于统计受控状态,如果不受控就不要再做下去。
2用正态概率图或适合的检验确定过程是否服从正态分布。
此时,若有统计软件以及统计学家的建议将会事半功倍。
如果过程不服从正态分布,不要继续往下做了,可以参考“注意事项”提及的处理办法。
3确定过程均值的估计量ˆμ,也即是控制图上的中心线:如果用X 控制图,则X ˆμ=;如果用单值控制图(X 图),则X ˆμ=。
4确定X ˆσ,即估计过程标准差。
该标准差是有全部样本数据计算得到的总标准差。
首选方法:由方差开方计算而得:X ˆs σ==其中,m 为样本含量。
统计软件和电子计算器通常就是使用这个公式来计算X ˆσ的。
有时把它称为总体( Overall)或者长期(Long-term)标准差。
备选方法:利用控制图计算。
对于单值控制图,直接使用单值控制图计算表中的X ˆσ (图表5.27)。
对于X-R 控制图,可利用下式计算得到:X 2R d ˆσ=÷其中,d 2可以查表A.2。
此时得到的X ˆσ称为组间(Within)或者短期(Short-term)标准差。
过程能力分析程序

过程能力分析程序(Process Capability Analysis,PCA)是一种用于评估过程能力的统计方法,可用于衡量一个过程的性能是否满足规定的要求。
它通过基本统计工具,如均值、标准差等指标,来确定一个过程的稳健程度和控制能力。
在现代制造和服务业中,过程可控性是实现品质管理和质量控制的关键因素之一。
本文将对进行深入探讨,包括其原理、应用、局限性以及未来发展方向。
一、原理是通过测量过程输出的偏差和分散程度,确定这个过程是否能够满足特定规格要求的能力。
其核心是确定该过程的六个参数:上限、下限、平均值、标准差、控制范围和过程漂移。
其中平均值和标准差是指样本平均值和标准差,上下限是指指定的上下限规格,控制范围是指在过程控制下允许的范围,过程漂移是指一个过程的平均值发生显著改变的程度。
在进行过程能力分析时,首先需要收集一组数据样本,然后通过计算样本的平均值和标准差,确定该过程的中心位置和稳健性。
接着使用正态分布的概率密度函数,计算该过程在指定范围内的百分比,以估算该过程的能力水平。
最后,通过对比该过程的能力指标和规格要求,可以确定该过程是否满足要求。
二、应用是在现代制造和服务业中广泛应用的一种质量控制工具。
它可以帮助企业实现以下目标:1. 帮助企业确定产品或服务的能力水平,以便制定合理的质量目标和规格要求;2. 识别过程中可能存在的问题,从而加以改进和优化;3. 帮助企业确定是否需要更改过程或提高所用的材料和设备的质量等;4. 为企业提供决策依据,帮助其评估供应商和监控其供应链。
三、局限性虽然在质量控制领域中应用广泛,但它存在一些局限性:1. 该方法只能测量特定过程输出的性能,不能识别质量问题的原因;2. 过程能力分析只是一种预测性指标,无法保证过程的控制能力始终得到维持;3. 该方法对过程中的随机性和自然偏差非常敏感,如果样本数量太小,会导致估算的能力水平不准确;4. 过程能力分析只能评估符合正态分布假设的过程,不能评估非正态分布或数据齐全度不足的过程。
过程能力分析CPK

过程能力分析CPKCPK(Capability Process Analysis)是一种用于衡量过程能力的指标。
它通过统计学方法来分析过程的稳定性和一致性,从而判断过程是否能够满足规定的要求。
在制造业中,CPK常用于评估产品的质量控制过程。
本文将介绍CPK的定义、计算方法,并探讨CPK的意义和应用。
首先,CPK是一个统计学指标,用于衡量过程的稳定性和一致性。
它是根据过程数据的均值、标准差和规格限制来计算的。
CPK的计算公式为:CPK = min((USL-μ)/(3σ),(μ-LSL)/(3σ)),其中USL为规格上限,LSL为规格下限,μ为过程的均值,σ为过程的标准差。
CPK的取值范围为[-1,1],其值越大表示过程能力越强,越接近于1表示过程能够满足规格要求的能力越高。
CPK的意义在于评估过程的质量控制能力。
一个具有良好过程能力的过程,可以稳定地产生符合规格要求的产品,减少次品品率和客户投诉的发生。
通过对过程能力的分析,企业可以及时发现并改进存在的问题,提高产品质量,降低生产成本。
此外,CPK还可以作为供应链管理中的一个指标,帮助企业评估供应商的能力和可靠性。
CPK的应用主要体现在以下几个方面。
首先,它可以用于制定质量控制标准。
通过分析过程能力,确定产品的规格上下限,有利于制定质量控制计划和控制界限,提高质量管理的科学性和有效性。
其次,CPK可用于评估和监控过程的改进效果。
对于已经进行过改进的过程,可以通过计算CPK的变化来衡量改进的效果,并及时进行调整和优化。
此外,CPK还可以用于制定持续改进的目标和策略,帮助企业实现品质管理的可持续发展。
在实际应用中,CPK的计算需要大量的数据支撑。
必须收集足够的过程数据,包括过程的样本数据和规格限制,才能准确计算CPK值。
此外,CPK的计算还要求过程数据服从正态分布。
如果过程数据不符合正态分布,可能会导致CPK值的计算误差。
因此,在使用CPK进行过程分析时,需要确保数据收集准确可靠,并对数据是否符合正态分布进行检验。
关于正态数据与非正态数据及其过程能力计算

关于正态数据与非正态数据及其过程能力计算摘要本文从企业生产现场的实际情况出发,提出数据呈正态或非正态分布时,如何对这些数据进行分析,并准确计算过程能力,将在本文进行讨论。
关键词正态;非正态数据;过程能力1 对数据的管控误区目前企业在流程中对所收集数据的统计、分析以及使用情况,较以前来说,规范性有了长足的进步,但与要求还是存在一定差距,可以通过以下几个方面来说明:1.1 数据来源可评价性差要想弄清楚一件事情,必须要获得现场数据,通过数据还原事实。
但现场数据并非是现存的,要经过人们的有效收集、传递,然后才有数据可以分析。
在此需要强调的是原始记录一定要整洁、规范,只有数据完整,后续才能进行推断性分析,但现实是部分数据在源头上就存在偏差。
这给后续的评价在客观上就带来极大影响。
因此,对数据进行策划和管理时务必确保数据来源的可靠。
1.2 异常数据混在正常数据中通常大家有这样的习惯,在对现场调查时,会对数据进行直接收集,完毕后,会对数据直接使用,所以在此就会存在一个误区,我们分析的数据能代表过程的正常情况吗?当你所收集的数据不能代表这个过程,也就是说数据来源于异常原因而非普通原因时,那所收集的数据就不能代表这个过程的正常情况,所以一定要将异常情况排除后,留下普通原因所引起的质量数据,这样就可以进行分析了。
我们可以通过箱线图进行数据的初步分析,如果数据跑到箱线图的两个尾巴之外的话,说明这样的数据属于异常数据,这样的数据要进行过程改善并予以剔除。
1.3 过程数据的‘伪’正态性在进行过程能力计算前,必须要看数据的分布情况是否符合正态。
在验证数据的时候,我们要关注子组容量的大小,因为子组容量的大小对我们数据的正态性研究也有一定的影响,我们可以通过模拟的125个数据来进行分析。
对于同样的125个数据,当子组容量分别为1和5时,我们可以看到数据正态性的表现情况。
当子组为1时,该125个数据的p值是小于0.05的,是呈非正态分布的。