初中数学九年级下册解直角三角形(教案)教学设计
解直角三角形教案(完美版)

解直角三角形一、教育目标(一)知识与技能使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程(一)明确目标1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a bA A A A c c b a====如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例1 在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=287.4,∠B=42°6′,解这个三角形.分析:解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B =90°-42°6′=47°54′,(2)cos ,aB c=∴a=c . cosB=28.74×0.7420≈213.3.(3) sin bB c=,∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例2 在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. 在学生独立完成之后,选出最好方法,教师板书.(1)104.0tan 5.07620.49a b α=≈≈查表得A=78°51′;(2)∠B=90°-78°51′=11°9′(3)104.0sin ,.sin 0.9812106a a A c c A =∴==≈ .注意:例1中的b 和例2中的c 都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生完成注:上表中“√”表示已知。
《解直角三角形》教案

《解直角三角形》教案一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)能够将实际问题转化为数学问题,建立解直角三角形的数学模型,并运用解直角三角形的方法解决实际问题。
2、过程与方法目标(1)通过对解直角三角形的学习,培养学生分析问题和解决问题的能力,以及数学建模的思想。
(2)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高学生的运算能力和逻辑推理能力。
3、情感态度与价值观目标(1)让学生在学习过程中体会数学与实际生活的紧密联系,激发学生学习数学的兴趣。
(2)通过解决实际问题,培养学生的应用意识和创新精神,让学生在成功中获得自信,在挫折中锻炼意志。
二、教学重难点1、教学重点(1)直角三角形中五个元素之间的关系。
(2)解直角三角形的方法。
2、教学难点(1)将实际问题转化为数学问题,建立解直角三角形的数学模型。
(2)正确选择合适的锐角三角函数关系式解直角三角形。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些与直角三角形相关的实际问题,如测量建筑物的高度、计算斜坡的长度等,引出解直角三角形的概念,激发学生的学习兴趣。
2、知识讲解(1)直角三角形的五个元素直角三角形有三条边和两个锐角,共五个元素,分别是两条直角边a、b 和斜边 c,以及两个锐角 A 和 B。
(2)五个元素之间的关系①三边关系(勾股定理):a²+ b²= c²②锐角关系:∠A +∠B = 90°③边角关系:sin A = a/c,cos A = b/c,tan A = a/b(3)解直角三角形由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
3、例题讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求 b 和∠A、∠B 的度数。
《解直角三角形》教学设计 【完整版】

小组合作问题1:
你能否编一道“解直角三角形”的问题,让别的同学验证一下,看是否能求出其它元素?
小组合作问题2:
组织学生分析生活中的实际问题。
(方向角问题) 各小组汇总、归纳解题方法。
三、能力拓展
近日,A 城气象局测得龙卷风中心在A 城的正西方向240公里的B 处,正以每小时12公里的速度向北偏东60º的方向转移。
距离沙尘暴中心150公里的范围为受影响区域。
问:A 城是否受这次龙卷风的影响? 遵循巩固与发展相结合的原则,培养学生的创新意识
四、归纳总结 学生归纳总结
西 东
北
B
A
O。
初中数学教学课例《解直角三角形》教学设计及总结反思

学科
初中数学
教学课例名
《解直角三角形》
称
本课内容是在学习锐角三角函数及特殊角三角函
数的基础上,结合三角形内角和、勾股定理、直角三角
形两锐角互余,打破以往由边求边,由角求角的模式,
解直角三角形.问题是通过一个实际问题引出已知直角
三角形的一个锐角和斜边求另一条直角边,以及已知斜
再让学生分别解这两个直角三角形,最后总结解直角三 角形实际上就是求两类问题:一是已知两边,解直角三 角形;二是已知一边和一角,解直角三角形.让学生在 独立思考的基础上进行交流展示,教师对学生中出现的 不同解法给予点评,并规范书写过程.
【设计意图】分别给出已知一角一边和已知两边解 直角三角形的例题,发散学生思维,让学生选择不同的 方法解直角三角形,在对比各种方法后体会如何灵活运 用边角的关系解直角三角形.
【设计意图】让学生体会三角函数在解直角三角形
中的应用,体会用勾股定理或者三角函数都可以求边
长,感受数学方法的多样性.
2.如图,已知在△ABC 中,∠A=60゜,∠B=45゜,
AC=12,求 AC,BC 以及△ABC 的周长.
【设计意图】检测学生能否根据图象,添加辅助线,
找出要解的直角三角形,求出答案.
如果要你根据上述信息,用“塔身中心线与垂直中 心线所成的角θ”来描述比萨斜塔的倾斜度,你能完成 吗?
师生活动:学生思考,教师引导学生将实际问题转 化为数学问题,建立模型,画出图形,标出已知量和未 知量.
【设计意图】从实际情境中引出解直角三角形,建 立数学模型,将实际问题抽象数学问题.
2.共同探究,获取新知 问题 2(1)在直角三角形中,除直角外的五个元 素之间有哪些关系? (2)知道五个中的几个,就可以求其余元素? 师生活动:学生独立思考,弄清这是一个关于解直 角三角形的问题,回忆勾股定理、三角函数及直角三角 形两个锐角互余,它们分别体现了直角三角形中哪些元 素之间的关系,尝试借助这些关系解直角三角形.教师
九年级数学下册《解直角三角形》教案【DOC范文整理】

九年级数学下册《解直角三角形》教案一、教学目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点.重点:直角三角形的解法..难点:三角函数在解直角三角形中的灵活运用.三、教学步骤复习引入.在三角形中共有几个元素?.直角三角形ABc中,∠c=90°,a、b、c、∠A、∠B 这五个元素间有哪些等量关系呢?解直角三角形教案边角之间关系解直角三角形教案解直角三角形教案如果用解直角三角形教案表示直角三角形的一个锐角,那上述式子就可以写成.解直角三角形教案三边之间关系a2+b2=c2锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.教学过程.我们已掌握RtABc的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情..教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?..例题例1在ABc中,∠c为直角,∠A、∠B、∠c所对的边分别为a、b、c,且b=解直角三角形教案,a=解直角三角形教案,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解tanA=解直角三角形教案=解直角三角形教案=解直角三角形教案∴解直角三角形教案∴解直角三角形教案∴c=2b=解直角三角形教案例2在RtABc中,∠B=35,b=20,解这个三角形.引导学生思考分析完成后,让学生独立完成在学生独立完成之后,选出最好方法,教师板书.解直角三角形教案解直角三角形教案解直角三角形教案解直角三角形教案完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止步错导致一错到底.巩固练习P91说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.总结与扩展.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素,就可以求出另三个元素.解直角三角形教案.出示图表,请学生完成abcAB√√解直角三角形教案解直角三角形教案解直角三角形教案√解直角三角形教案√解直角三角形教案解直角三角形教案√b=a•cotA解直角三角形教案√解直角三角形教案√b=a•tanB解直角三角形教案解直角三角形教案√解直角三角形教案√√解直角三角形教案解直角三角形教案a=b•tanA√解直角三角形教案√解直角三角形教案a=b•cotB√解直角三角形教案解直角三角形教案√a=c•sinAb=c•cosA√√解直角三角形教案a=c•cosBb=c•sinB√解直角三角形教案√不可求不可求不可求√√注:上表中“√”表示已知。
解直角三角形 优秀教案

《解直角三角形》教学设计说明一、教材分析《解直角三角形》是北师大版九年级下册第一章第四节的内容. 在此之前,学生已经具备了勾股定理、锐角三角函数的基本知识,会求任意一个锐角的三角函数值. 本节课是三角函数应用之前的准备课,旨在建立好解直角三角形的数学模型,以便有效的为现实生活服务.培养学生解答实际应用题的技能,掌握如何构建解直角三角形的思想方法、技巧.把勾股定理和锐角三角函数的前期准备知识有机的组织起来,使学生能承前启后、有思想性和可操作性. 因此,本节课在教材教学计划中起着一发牵制全局的重要作用.二、学情分析1、九年级学生已经掌握了勾股定理,刚刚学习过锐角三角函数,能够用定义法求三角函数sinα、cosα、tanα值.2、在计算器的使用上,学生学习了用计算器求任意锐角的三角函数值,并对计算器的二次功能有所了解.有上述知识技能作基础为学生进一步学习“解直角三角形”创造了必要条件.3、但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养.三、教学任务分析本节内容是在学习了“锐角三角函数”“勾股定理”等内容的基础上进一步探究如何利用所学知识解直角三角形.通过直角三角形中边角之间关系的学习,整合三角函数的知识,归纳解直角三角形的一般方法.在呈现方式上,显示出实践性与研究性,突出了学数学、用数学的意识与过程,注重联系学生的生活实际,同时还有利于数形结合.通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解决问题的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系.掌握将实际问题转化为数学模型的思想方法.所以教学目标如下:知识技能:初步理解解直角三角形的含义,掌握运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形的未知元素.数学思考:在研究问题中思考如何把实际问题转化为数学问题,进而把数学问题具体化.解决问题:解直角三角形的对象是什么?在解决与直角三角形有关的实际问题中如何把问题数学模型化.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和分析问题解决问题的能力情感态度:在解决问题的过程中引发学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.从而增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.通过获取成功的体验和克服困难的经历,增进学习数学的信心,养成良好的学习习惯.教学重难点:重点:理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形的未知元素.难点:从已知条件出发,正确选用适当的边角关系或三角函数解题.四、教学过程 1. 知识回顾1、在一个直角三角形中,共有几条边?几个角?(引出“元素”这个词语)2、在Rt ΔABC 中,∠C=90°.a 、b 、c 、∠A 、∠B 这些元素间有哪些等量关系呢?讨论复习:Rt ΔABC 的角角关系、三边关系、边角关系分别是什么?总结: 直角三角形的边角关系(1) 两锐角互余:∠A+∠B=90°(2) 三边满足勾股定理:a 2+b 2=c 2(3) 边与角的关系:.tan cot ,cot tan ,sin cos ,cos sin ab B A ba B A cb B A ca B A ======== 定义:在直角三角形中由已知元素求出未知元素的过程就是解直角三角形.2. 探究新知在Rt △ABC 中,(1)根据∠A= 60°,斜边AB=30,你能求出这个三角形的其他元素吗?(2)根据AC=2,BC= 6 ,你能求出这个三角形的其他元素吗?(3)根∠A=60°,∠B=30°, 你能求出这个三角形的其他元素吗?从以上关系引导学生发现,在直角三角形中,只要知道其中两个元素(至少有一个是边)就可以求出其余的几个元素,从而引出解直角三角形的定义:在直角三角形中由已知元素求出未知元素的过程就是解直角三角形. 3. 例题讲解例1 在Rt △ABC 中,∠C 为直角,∠A ,∠B ,∠C 所对的边分别为 a ,b,c,且a =15,b =5,求这个三角形的其他元素.解;例2:如图:在Rt ΔABC 中,∠C=90°,∠B=25°,b=30.解这个直角三角形(结果保留小数点后一位).注意强调:在解决直角三角形的过程中,常会遇到近似计算,尽量选择原始数据,避免累积误差.B6A C4. 知识应用1、在Rt△ABC 中,∠C =90°,根据下列条件求出直角三角形的其他几个元素(角度精确到 1°)(1)已知 a=4,b=8;(2)已知 b=10,∠B=60°;(3)已知 c=20,∠A=60°.(1)中已知两条边如何解直角三角形,(2)(3)已知一条边及一个角解直角三角形,本题的设计重在引导学生体会并归纳常规解直角三角形的常规方法:解直角三角形的方法遵循“有斜用弦,无斜用切;宁乘勿除,化斜为直”五、课堂小结一、通过本节课的学习,大家有什么收获?六、作业布置:1、习题1.5 1、2.2、预习下一节内容,要求了解什么是仰角和俯角3、补充作业:如图,根据图中已知数据,求△ABC其余各边的长,各角的度数和△ABC的面积.七、板书设计:八、教学反思本节课,为解直角三角形应用题之前的准备课,旨在建立好解直角三角形的数学模型,以便有效的为现实生活服务.培养学生解答实际应用题的技能,掌握如何构建解直角三角形的思想方法、技巧.把勾股定理和锐角三角函数的前期准备知识有机的组织起来,使学生能承前启后、有思想性和可操作性.因此,本节课在教材教学计划中起着一发牵制全局的重要作用.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.。
人教版九年级数学下28.2解直角三角形(教案)

3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了解直角三角形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解直角三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过测量物体高度或距离的情况?”(如测量旗杆的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解直角三角形的奥秘。
人教版九年级数学下28.2解直角三角形(教案)
一、教学内容
人教版九年级数学下册第28.2节“解直角三角形”。本节课我们将学习以下内容:
1.直角三角形的定义及特点;
2.解直角三角形的方法ห้องสมุดไป่ตู้正弦、余弦和正切函数;
3.应用解直角三角形的方法解决实际问题;
4.掌握特殊角的三角函数值;
5.利用三角函数间的关系进行变形和计算。
五、教学反思
在今天的课程中,我们探讨了解直角三角形的相关知识。回顾整个教学过程,我觉得有几个方面值得反思。
人教版数学九年级下册-28.2.1 解直角三角形-教案

28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。
本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。
教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。
本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。
通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。
二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。
(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。
并让学生体验到学习是需要付出努力和劳动的。
三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。
四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。
2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.2.1 解直角三角形
教学目标
1.理解解直角三角形的意义和条件;(重点)
2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)
教学过程
一、情境导入
世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A,过点B向垂直中心线引垂线,垂足为点C.在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,求∠A的度数.在上述的Rt△ABC中,你还能求其他未知的边和角吗?
二、合作探究
探究点一:解直角三角形
【类型一】利用解直角三角形求边或角
已知在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a,b,c,按下列条件解直角三角形.
(1)若a=36,∠B=30°,求∠A的度数和边b、c的长;
(2)若a=62,b=66,求∠A、∠B的度数和边c的长.
解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.
解:(1)在Rt△ABC中,∵∠B=30°,a=36,∴∠A=90°-∠B=60°,
∵cos B=a
c
,即c=
a
cos B
=
36
3
2
=243,∴b=sin B·c=
1
2
×243=123;
(2)在Rt△ABC中,∵a=62,b=66,∴tan A=a
b
=
3
3
,∴∠A=30°,
∴∠B =60°,∴c =2a =12 2. 方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解. 【类型二】 构造直角三角形解决长度问题
一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长.
解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.
解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×22=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM
tan60°=43,∴CD =CM -MD =12-4 3.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
【类型三】 运用解直角三角形解决面积问题
如图,在△ABC 中,已知∠C =90°,sin A =37,D 为边AC 上一点,∠BDC =45°,DC =6.求△ABC 的面积.
解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解.
解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37
,设BC =3k ,则AB =7k (k >0),在Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,
∴BC=CD=3k=6,∴k=2,∴AB=14.在Rt△ABC中,AC=AB2-BC2=142-62
=410,∴S△ABC=1
2
AC·BC=
1
2
×410×6=1210.所以△ABC的面积是1210.
方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.
探究点二:解直角三角形的综合
【类型一】解直角三角形与等腰三角形的综合
已知等腰三角形的底边长为2,周长为2+2,求底角的度数.解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.
解:如图,在△ABC中,AB=AC,BC=2,∵周长为2+2,∴AB=AC=1.
过A作AD⊥BC于点D,则BD=
2
2
,在Rt△ABD中,cos∠ABD=
BD
AB
=
2
2
,∴∠ABD
=45°,即等腰三角形的底角为45°.
方法总结:求角的度数时,可考虑利用特殊角的三角函数值.
【类型二】解直角三角形与圆的综合
已知:如图,Rt△AOB中,∠O=90°,以OA为半径作⊙O,BC切⊙O 于点C,连接AC交OB于点P.
(1)求证:BP=BC;
(2)若sin∠PAO=1
3
,且PC=7,求⊙O的半径.
解析:(1)连接OC,由切线的性质,可得∠OCB=90°,由OA=OC,得∠OCA =∠OAC,再由∠AOB=90°,可得出所要求证的结论;(2)延长AO交⊙O于点E,连接CE,在Rt△AOP和Rt△ACE中,根据三角函数和勾股定理,列方程解答.解:(1)连接OC,∵BC是⊙O的切线,∴∠OCB=90°,∴∠OCA+∠BCA=
90°.∵OA =OC ,∴∠OCA =∠OAC ,∴∠OAC +∠BCA =90°,∵∠BOA =90°,∴∠OAC +∠APO =90°,∵∠APO =∠BPC ,∴∠BPC =∠BCA ,∴BC =BP ;
(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 中,∵sin ∠PAO =13
,设OP =x ,AP =3x ,∴AO =22x .∵AO =OE ,∴OE =22x ,∴AE =42x .∵sin ∠PAO =13,∴在Rt △ACE 中CE AE =13,∴AC AE =223,∴3x +742x
=223,解得x =3,∴AO =22x =62,即⊙O 的半径为6 2.
方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.
三、板书设计
1.解直角三角形的基本类型及其解法;
2.解直角三角形的综合.
教学反思
本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.。