解直角三角形的应用教案

合集下载

解直角三角形的应用教案

解直角三角形的应用教案

解直角三角形的应用建平中学西校 汪钧和一.教学目标:1. 认知目标:熟练掌握解直角三角形的基本条件和方法,能选择适当的边角关系合理解直角三角形,能运用解直角三角形的方法来解决生活实践中的某些问题。

2. 能力目标:(a ) 了解数形结合的思想方法,学会用代数方法列出方程解决几何问题。

(b ) 初步学会将某些实际问题通过数学建模把问题转化为数学问题。

3. 情感目标:(a ) 了解上海的发展变化,激发学生爱国、爱上海和民族自豪感。

(b ) 通过对问题的讨论、交流来提高学生的交往能力。

二.教学重点和难点:重点:将实际问题转化为解直角三角形问题。

难点:将实际问题中的数量关系如何转化为直角三角形中元素间关系进行解题的思想方法。

三.教学过程:先请大家欣赏屏幕上的一座美丽建筑(投影图片)请说出这座高楼的名称,它坐落在什么地方?(这座高楼的名称叫世茂国际广场,坐落在南京路、西藏路口,中百一店对面,这幢集五星级酒店和大型高档商场于一体的建筑共63层,总面积达17万平方米,2006年交付使用,建成后的世茂国际广场必将为繁华的南京路再添一条靓丽的风景线)问题一:你有什么方法测量出这座高楼的高度?请设计一个测量方案(分小组讨论) 提示:如果手中有测角仪、卷尺等工具呢?可能出现的方案一:用相似形法可能出现的方案二:用解直角三角形法等(重点讲评方案二)AB Ca 高楼只要知道BC 的长及角C 的度数就能解直角三角形求出AB 的长我们已经将实际问题转化为解直角三角形数学问题,你能说出解直角三角形所必须的条件吗?说明:在直角三角形中有三条边、三个角共六个元素,除直角外,我们还必须知道另外两个元素,其中至少有一个是边就能求出另外的边和角刚才我们用方案二解决了这个问题,现在将问题改变一下,请看问题二:学生小王在浦东某地,他想利用手中的测角仪、卷尺计算器工具不过江测量出世茂国际广场的高度(投影图片),的长度,于是向前走407米到达江边的C 处测得020=∠ACB ,但小王在计算中碰到困难,请大家一起帮助小王想想办法,求出AB 的长。

《解直角三角形的应用(第1课时)》优质教案

《解直角三角形的应用(第1课时)》优质教案
回顾
1.解直角三角形主要依据是什么
2.解直角三角形主要有哪两种类型
学生回忆并回答,为本课的学习提供迁移或类比方法.
活动
一:
创设
情境的二楼,一天,他站在教室的窗台前看操场上的旗杆,心想:站在地面上可以利用解直角三角形求得旗杆的高吗他望着旗杆顶端和旗杆底部,测得视线与水平视线之间的夹角各一个,但是,这两个角怎样命名区别呢如图4-4-15,∠CAE,∠DAE在测量中分别叫什么角呢
①[授课流程反思]
本课时在新课引入时以学生熟悉的校园生活为背景,提出了本节课要用到的仰角、俯角,并对这两种角进行了简单的描述,学生应用时应该是水到渠成的.
②[讲授效果反思]
应用仰角、俯角解决解直角三角形中的问题是本节课的重点,所以本节课选择了3个探究问题,比较基础,希望师生共同了解仰角、俯角的初步应用,接着又选择了4个中考题作为例题讲解,建议每道例题学生先做,然后教师再用多媒体展示答案,突出学生的主体地位和教师的主导作用.
反思,更进一步提升.
图4-4-19
变式如图4-4-20,线段AB,CD分别表示甲、乙两幢楼,AB⊥BD,CD⊥BD,从甲楼顶A测乙楼顶C的仰角α=30°,已知甲楼高15米,两楼水平距离为24米,求乙楼的高.
[答案:(8 +15)米]
图4-4-20
认真审题是解题的关键,通过运用一元一次方程的概念,学会解决简单的问题.采取启发式教学发挥学生的潜能.
图4-4-22
[答案:潜艇C离开海平面的下潜深度约为308米]
例3主要是利用俯角构建直角三角形和一次方程,从而求水下深度.
活动
四:
课堂
总结
反思
【当堂训练】
1.教材P126练习中的T1,T2.
2.教材P129习题中的T3,T4,T5.

解直角三角形教案(完美版)

解直角三角形教案(完美版)

解直角三角形一、教育目标(一)知识与技能使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. (三)情感态度与价值观 渗透数形结合的数学思想,培养学生良好的学习习惯. 二、重、难点重点:直角三角形的解法. 难点:三角函数在解直角三角形中的灵活运用. 三、教学过程(一)明确目标1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 sin ;cos ;t an ;cot b a b a B B B B c c a b ====; sin ;cos ;tan ;cot a b a bA A A A c c b a====如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 a 2 +b 2 =c 2 (勾股定理) (3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用. (二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt △ABC 的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题例1 在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=287.4,∠B=42°6′,解这个三角形.分析:解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B =90°-42°6′=47°54′,(2)cos ,aB c=∴a=c . cosB=28.74×0.7420≈213.3.(3) sin bB c=,∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例2 在Rt △ABC 中,a=104.0,b=20.49,解这个三角形. 在学生独立完成之后,选出最好方法,教师板书.(1)104.0tan 5.07620.49a b α=≈≈查表得A=78°51′;(2)∠B=90°-78°51′=11°9′(3)104.0sin ,.sin 0.9812106a a A c c A =∴==≈ .注意:例1中的b 和例2中的c 都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力.说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.出示图表,请学生完成注:上表中“√”表示已知。

《解直角三角形》教案

《解直角三角形》教案

《解直角三角形》教案一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。

(2)能够将实际问题转化为数学问题,建立解直角三角形的数学模型,并运用解直角三角形的方法解决实际问题。

2、过程与方法目标(1)通过对解直角三角形的学习,培养学生分析问题和解决问题的能力,以及数学建模的思想。

(2)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高学生的运算能力和逻辑推理能力。

3、情感态度与价值观目标(1)让学生在学习过程中体会数学与实际生活的紧密联系,激发学生学习数学的兴趣。

(2)通过解决实际问题,培养学生的应用意识和创新精神,让学生在成功中获得自信,在挫折中锻炼意志。

二、教学重难点1、教学重点(1)直角三角形中五个元素之间的关系。

(2)解直角三角形的方法。

2、教学难点(1)将实际问题转化为数学问题,建立解直角三角形的数学模型。

(2)正确选择合适的锐角三角函数关系式解直角三角形。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些与直角三角形相关的实际问题,如测量建筑物的高度、计算斜坡的长度等,引出解直角三角形的概念,激发学生的学习兴趣。

2、知识讲解(1)直角三角形的五个元素直角三角形有三条边和两个锐角,共五个元素,分别是两条直角边a、b 和斜边 c,以及两个锐角 A 和 B。

(2)五个元素之间的关系①三边关系(勾股定理):a²+ b²= c²②锐角关系:∠A +∠B = 90°③边角关系:sin A = a/c,cos A = b/c,tan A = a/b(3)解直角三角形由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。

3、例题讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求 b 和∠A、∠B 的度数。

解直角三角形初中三年级教案

解直角三角形初中三年级教案

教学目标:1.了解直角三角形的定义和性质;2.掌握直角三角形的判别方法;3.能够应用直角三角形的性质解决实际问题。

教学重点:1.直角三角形的定义和性质;2.直角三角形的判别方法。

教学难点:1.直角三角形的应用。

教学准备:教师:直角三角形的示意图、直角三角形的定义和性质的板书。

学生:直尺、量角器等。

教学过程:一、导入(10分钟)1.老师出示一张直角三角形的示意图,让学生观察并回答问题:你们看到这个图形有什么特点?2.学生回答后,教师引导学生总结:这个图形有一个直角和其他两个锐角。

3.教师板书直角三角形的定义:“一个三角形有一个角是直角,就叫做直角三角形。

”二、讲解直角三角形的性质(15分钟)1.教师出示直角三角形的定义的板书,解释直角三角形的性质:直角三角形的两条边相互垂直。

2.教师提问:在一个直角三角形中,直角和两条边的关系是什么?3.学生回答后,教师解释:直角和两条边的关系是直角三角形的基本性质之一,直角所对的边叫做斜边,其他两条边叫做直角边。

4.教师出示直角三角形的示意图,引导学生观察,总结直角边和斜边的关系。

三、直角三角形的判别方法(15分钟)1.教师出示几个图形,让学生观察并判断哪些是直角三角形。

2.学生回答后,教师引导学生总结直角三角形的判别方法:通过角的大小来判断。

3.教师出示两条边并标注角的示意图,解释判断直角三角形的方法:如果两条直角边的平方和等于斜边的平方,那么这个三角形就是直角三角形。

四、应用直角三角形的性质解决实际问题(30分钟)1.教师出示一些实际问题,让学生运用直角三角形的性质解决。

2.学生分小组或个人解答,并在黑板上展示答案。

3.教师对答案进行点评和讲解。

五、小结(10分钟)1.教师带领学生复习直角三角形的定义和性质。

2.教师总结本节课的重点和难点。

教学反思:通过本节课的教学,学生能够了解直角三角形的定义和性质,并掌握判断直角三角形的方法;同时,通过解决实际问题,学生能够应用直角三角形的性质解决实际问题。

解直角三角形的应用教案

解直角三角形的应用教案

解直角三角形的应用教案教案标题:解直角三角形的应用教学目标:1. 理解直角三角形的定义和性质。

2. 掌握解决直角三角形相关问题的方法和技巧。

3. 能够应用直角三角形的知识解决实际问题。

教学重点:1. 直角三角形的定义和性质。

2. 直角三角形的解题方法。

3. 直角三角形在实际问题中的应用。

教学难点:1. 将直角三角形的知识应用于实际问题的解决。

2. 理解并运用三角函数的概念和性质。

教学准备:1. 教材:包含直角三角形相关知识的教材。

2. 教具:直尺、量角器、计算器等。

3. 多媒体设备:投影仪、电脑等。

教学过程:一、导入(5分钟)1. 利用多媒体设备展示一张直角三角形的图像,引发学生对直角三角形的认知和兴趣。

2. 提出问题:你知道直角三角形的定义和性质吗?请简单介绍一下。

3. 学生回答问题,教师适时给予引导和补充。

二、知识讲解(15分钟)1. 通过多媒体设备展示直角三角形的定义和性质,并解释其含义。

2. 介绍三角函数的概念和性质,如正弦、余弦和正切等。

3. 通过示例演示如何利用三角函数求解直角三角形的边长和角度。

三、例题演练(20分钟)1. 提供一些直角三角形的例题,要求学生利用所学知识求解。

2. 学生独立完成例题,教师巡回指导和解答疑惑。

3. 学生互相交流解题思路和方法,加深对知识的理解。

四、应用拓展(15分钟)1. 提供一些实际问题,要求学生运用直角三角形的知识解决。

2. 学生独立或小组合作完成应用题,教师提供必要的指导和帮助。

3. 学生展示解题过程和结果,进行讨论和总结。

五、归纳总结(10分钟)1. 教师引导学生总结直角三角形的相关知识和解题方法。

2. 学生回答问题并进行讨论,教师进行点评和补充。

3. 教师给出解题技巧和注意事项,并提供相关练习题进行巩固。

六、作业布置(5分钟)1. 布置一些练习题,要求学生独立完成。

2. 强调作业的重要性,并提供解题思路和方法。

3. 确定下节课的教学内容和要求。

解直角三角形及其应用教案

解直角三角形及其应用教案

25.3 解直角三角形及其应用探究:测量底部不可到达物体的高度教学目标1.认知与技能:(1)用测角仪和皮尺等工具,并结合所学的解斜三角形中相关知识解决一些实际问题;(2)一步把数和形结合起来,提高学生分析问题和解决问题的能力.2.过程与方法:(1)设计实地测量方案,在设计过程中会灵活地运用三角函数关系,进行正确的边角互化;(2)学会将千变万化的实际问题转化为数学问题来解决的能力,要求学生善于将某些实际问题中的数量关系归结为直角三角形中元素之间的关系,培养学生用数学的意识.3.情感、态度与价值观:(1)体会改革开放以来马鞍山日新月异的变化,增强作马鞍山人的自豪感(2)在合作解决问题过程中体会理论源于实践,数学源于生活,培养学生学习数学的兴趣,通过对数学知识的应用加深对数学知识内涵的深入理解.重点1.重点:测量和计算底部不可到达物体的高度;2.难点:利用三角函数解决较复杂的物体高度的测量与计算问题.教与学互动设计巩固提高应用迁移学生讨论并设计方案问题:如何测量学校旗杆的高度?方法:用测角仪测得旗杆顶部A的仰角为α,用卷尺量出测点到旗杆的距离a,测角仪的高度为b在Rt△AED中,tanAEEDα=∴tanAB AE EB ED EBα=+=+即tanAB a bα=+(此为问题为底部可到达的物体高度的测量)合作交流解读探究情景问题:如果已知佳山电视塔塔身的高度为40米,如何利用测角仪得到佳山的高度?工具:卷尺、测角仪(此为问题为底部不可到达的物体高度的测量)方案一分析:1.计算结果cot cotDEBC ABβα=--2.进行测量的前提是必须保证点C、D、E三点共线拓展:如果不能保证在一个平面内找到共线的三点C、D、E,是否有其他的测量方案?方案二分析:1.计算结果cotcot cotABBCβαβ=-2.进行测量的前提必须保证电视塔的底部(即山的顶端)在视线范围内拓展:如果山的对面有一个建筑物,能否利用建筑物进行山高的测量?方案一方案二课堂小结底部不可到达的物体高度的测量方案:1.方案一需要保证三点共线,方案二需要保证被测物体的端点是清晰可视的,同学们需要根据具体的问题情景灵活选择2.测量的计算结果可以作为公式记忆,方便后期的学习使用发散思维探索实践在高为60米的山顶上,测得山底一建筑物的顶端与底端的俯角分别为30°、60°,则该建筑物高为米.[设置目的]探究问题利用了仰角对底部不可到达的物体的高度进行了测量和计算,练习题中设置了利用俯角,对于物体的高度进行测量和计算,以强化俯角的概念.[家庭作业]P120 B组复习题5、6、7省级课题《初中数学探究性教与学策略的研究》汇报课§25.3 解直角三角形及其应用教学设计探究:测量底部不可到达物体的高度教材选用: 沪科版《数学》九年级(上)授课班级:马鞍山市成功学校初三(9)班30°60°60米授课时间:2008年12月16日第六节课(本资料素材和资料部分来自网络,仅供参考。

28.2.2解直角三角形的应用(教案)

28.2.2解直角三角形的应用(教案)
2.创设更多生活情境,让学生在实际问题中发现数学的价值;
3.引导学生独立思考,培养他们解决问题的能力;
4.在小组讨论环节,加强引导,确保讨论内容紧扣主题;
5.不断反思和调整教学方法,以提高教学效果。
3.培养学生的逻辑思维和推理能力,通过解直角三角形的过程,学会运用正弦、余弦、正切函数进行论证和分析;
4.培养学生的团队协作和交流能力,通过小组讨论、分享解题思路,提高合作解决问题的能力,形成良好的学习氛围。
三、教学难点与重点
1.教学重点
(1)掌握直角三角形中各角度与边长的关系,尤其是正弦、余弦、正切函数的定义及其应用;
28.2.2解直角三角形的应用(教案)
一、教学内容
本节课选自八年级下册数学《解直角三角形的应用》章节,主要内容为28.2.2节,着重探讨以下知识点:
1.利用直角三角形的边角关系解决实际问题;
2.应用正弦、余弦、正切函数求解直角三角形中的未知角度;
3.通过具体案例,如测量高度、距离等,掌握解直角三角形的应用方法。
此外,在学生小组讨论环节,我注意到了一些有趣的现象。学生们在讨论中能够积极发表自己的观点,但有时候会出现偏离主题的情况。作为教师,我需要在讨论过程会倾听他人的意见,提高他们的交流与协作能力。
1.关注学生的个体差异,因材施教,确保每个学生都能跟上课程进度;
(2)在实际问题中,如何建立直角三角形模型,确定已知量和未知量,学生往往感到困惑;
(3)在进行计算时,学生可能会忽视单位换算或角度制与弧度制的转换,导致解答错误。
举例:
(1)在求解直角三角形中的未知角度时,学生需要根据已知边长和角度,选择合适的正弦、余弦、正切函数。例如,已知斜边和一个锐角,求解另一个锐角,学生应使用正弦或余弦函数,但容易混淆;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形的应用教案
解直角三角形的应用教案
―-俯角仰角问题教学目标:
1、了解仰角、俯角的概念。

2、能根据直角三角形的知识解决与仰角、俯角有关的实际
问题。

3、能够借助辅助线解决实际问题,掌握数形结合的思想方
法。

教学重点:
解直角三角形在实际中的应用。

教学难点:
将某些实际问题中的数量关系归结为直角三角形中元素之间的关系,从而解决问题。

教学方法:三疑三探
教学过程:
一、复习引入新课
如图:在△ABC中,∠C=90°,
∠A、∠B、∠C的对边分别为
a,b,c.
则三边之间关系为;
锐角之间关系为;边角之间关系(以锐角A为例)为。

看来大家对基础知识掌握得还是比较牢固的。

下面我们来看这样一个问题:
问题:小玲家对面新造
了一幢图书大厦,小玲心想:
“站在地面上可以利用解直角
三角形测得图书大厦的高,站
在自家窗口能利用解直角三角
形测出大厦的高吗?他望着大厦顶端和大厦底部,可测出视线与水平线之间的夹角各一个,但这两个角如何命名呢?
ο
46A B
C Cο
29
A
AE =DE ×tan a
=BC ×tan a
=22.7×tan 22°
≈9.17
AB =BE +AE
=AE +CD
=9.17+1.20
≈10.4(米)
答:旗杆的高度约为10.4米. 2、解:在ΔABC 中,∠ACB =90°
∵ ∠CAB =46° AC=32m
tan ∠CAB=
∴BC=AC ·tan46° ≈33.1
在ΔADC 中,∠ACD=90°
∵ ∠CAD=29° AC=32m
tan ∠CAD=
∴DC=AC ·tan29°
≈17.7
∴BD=BC+CD=33.1+17.7=50.8≈51
答:大厦高BD 约为51m.
二、 质疑再探
在本节课的探究和学习过程中你还有那些疑惑或问题?请大胆提出来,大家共同解决。

三、 运用拓展
1、 生自编题
2、 师补充题
1、一架飞机以300角俯冲400米,则飞机的高度变化情况是( c ) C ο29D A BC AC DC AC ο46A B C
A.升高400米
B.下降400米
C.下降200米
D.下降 米 2、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地平面控制点B 的俯角 =200,求飞机A 到控制点B 的距离.(精确到1米)
3、 课堂小结
(1)仰角、俯角的定义
(2)解决实际问题时,先将实物模型转化为几何图形,如果示意图不是直角三角形时,添加适当的辅助线,画出直角三角形来求解.
(3)数形结合的思想方法。

4、作业布置
教材p96练习第2题、
(提示:tan50°≈1.192 tan20°≈0.364) p98习题第3题
(提示:tan26°≈0.488)
选做题:
一位同学测河宽,如图,在河岸上一点A 观测河对岸边的一小树C,测得AC 与河岸边的夹角为450,沿河岸边向前走200米到达B 点,又观测河对岸边的小树C,测得BC 与河岸边的夹角为300,问这位同学能否计算出河宽?若不能,请说明理由;若能,请你计算出河宽.
200 3 B A
C
αα水平线 地面
板书设计:
解直角三角形的应用
―-俯角仰角问题1、仰角:在进行测量时,从下向上看,视线与水平线的夹角。

俯角:从上往下看,视线与水平线的夹角叫做俯角.
2、应用
(1)添加适当的辅助线,构造直角三角形
(2)转化数形结合的思想
解直角三角形的应用-----俯角仰角问题
教案
双龙二中李雁莎。

相关文档
最新文档