北师大版八年级平行四边形提高题

合集下载

(常考题)北师大版初中数学八年级数学下册第六单元《平行四边形》检测卷(包含答案解析)(4)

(常考题)北师大版初中数学八年级数学下册第六单元《平行四边形》检测卷(包含答案解析)(4)

一、选择题1.下列命题是假命题的是( )A .三角形的外角和是360°B .线段垂直平分线上的点到线段两个端点的距离相等C .有一个角是60°的等腰三角形是等边三角形D .有两边和一个角对应相等的两个三角形全等2.下面关于平行四边形的说法中,不正确的是( )A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D .有两组对角相等的四边形是平行四边形3.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是( ) A .6 B .8 C .10 D .124.如图,在周长为20厘米的平行四边形ABCD 中,AB ADAC BD ≠,,相交于点O ,OE BD ⊥交AD 于点E ,则ABE △的周长为( )A .10厘米B .12厘米C .14厘米D .16厘米 5.如图,AD 、BE 分别是ABC 的中线和角平分线,AD BE ⊥,4AD BE ==,F 为CE 的中点,连接DF ,则AF 的长等于( )A .2B .3C .5D .256.如图,在ABCD 中,AD= 10,点M 、N 分别是BD 、CD 的中点,则MN 等于( )A .4B .5C .6D .不能确定 7.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交CD 边于E ,AD =3,EC =2,则AB的长为( )A.1 B.2 C.3 D.58.如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12 AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD,下列结论错误的是()A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB 9.一个多边形每个外角都等于30°,则这个多边形是几边形( )A.9 B.10 C.11 D.1210.如图,在□ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )A.7 B.10 C.11 D.1211.正多边形的一个外角的度数为72°,则这个正多边形的边数为()A.4 B.5 C.6 D.712.如图,平行四边形ABCD的对角线,AC BD相交于点O,且14,5AC BD CD+==,则ABO∆周长是()A.10B.14C.12D.22二、填空题13.如图,小亮从点A出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°…… 照这样走下去,他第一次回到出发地点A时,共走了_____米.14.如图,在平行四边形ABCD中,∠B=60°,∠BCD的平分线交AD点E,若CD=3,四边形ABCE 的周长为13,则BC 长为__.15.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.16.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).17.如图,在ABCD 中,E 为边BC 延长线上一点,且2CE BC =,连结AE 、DE .若ADE 的面积为1,则ABE △的面积为____.18.一个多边形的内角和是1080°,则这个多边形是边形__________边形.19.如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.20.如图,将平行四边形OABC 放置在平面直角坐标系xoy 中,O 为坐标原点,若点C 的坐标是()1,3,点A 的坐标是()5,0,则点B 的坐标是________.三、解答题21.如图1,在△ABC 中,∠ABC 、∠ACB 的平分线相交于点O ,过点O 作MN ∥BC .分别交AB 、AC 于M 、N .(1)求证:BM+CN=MN.(2)如图2,若△ABC是等边三角形,请从以下两个问题任选一题作答.若两题都作答,以问题①计分.问题①BC=6,求MN的长.问题②求证:O是MN的中点.22.已知一个多边形,它的内角和等于1800︒,求这个多边形的边数.=.求23.已知:如图,在BEDF中,点A、C在对角线EF所在的直线上,且AE CF证:四边形ABCD是平行四边形.OA=,24.如图,平行四边形ABCD在直角坐标系中,点B、点C都在x轴上,其中4 OB=,63AD=,E是线段OD的中点.(1)直接写出点C,D的坐标;(2)平面内是否存在一点N,使以A、D、E、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.25.如图1在Rt△ABC中,∠ACB=90°,CA=CB=2,P为AB上一个点,将线段CP绕点C逆时针旋转90°得到线段CD,连接PD,BD .(1)判断BD与AP的关系,并证明你的结论.(2)如图2,设点B关于直线CP的对称点为E,连接BE,CE.① 依题意补全图2;② 证明:BE∥CD;③ 当四边形CDBE为平行四边形时,求AP的长.26.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE= .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三角形外角和的性质即可对A进行判断;根据垂直平分线的性质即可对B进行判断;根据等边三角形的判定即可对C进行判断;根据三角形全等的证明即可对D进行判断;【详解】A、三角形的外角和为360°,故A正确;B、垂直平分线上的点到线段两端的距离相等,故B正确;C、有一个角是60°的等腰三角形是等边三角形,故C正确;D、由两边和它们的夹角对应相等的两个三角形全等,故D错误;故选:D.【点睛】本题考查了命题与定理,命题的真假是就命题的内容而言,正确掌握定理是解题的关键.2.C解析:C【分析】根据平行四边形的判定分别对各个选项进行判断即可.【详解】A、∵对角线互相平分的四边形是平行四边形,∴选项A 不符合题意;B 、∵有一组对边平行,一组对角相等的四边形是平行四边形,∴选项B 不符合题意;C 、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C 符合题意;D 、∵有两组对角相等的四边形是平行四边形,∴选项D 不符合题意;故选:C .【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键. 3.B解析:B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B .【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.4.A解析:A【分析】由平行四边形求出OB=OD ,再利用等腰三角形的三线合一求出BE=DE 由此即可求出ABE △的周长.【详解】∵四边形ABCD 是平行四边形,∴OB OD =.∵OE BD ⊥,∴BE DE =,∴ABE △的周长为20210AB AE BE AB AE DE AB AD ++=++=+=÷=(厘米),故选:A.【点睛】此题考查平行四边形的对角线互相平分、对边相等的性质,等腰三角形的三线合一的性质. 5.D解析:D【分析】已知AD是ABC的中线,F为CE的中点,可得DF为△CBE的中位线,根据三角形的中位线定理可得DF∥BE,DF=12BE=2;又因AD BE⊥,可得∠BOD=90°,由平行线的性质可得∠ADF=∠BOD=90°,在Rt△ADF中,根据勾股定理即可求得AF的长.【详解】∵AD是ABC的中线,F为CE的中点,∴DF为△CBE的中位线,∴DF∥BE,DF=12BE=2;∵AD BE⊥,∴∠BOD=90°,∵DF∥BE,∴∠ADF=∠BOD=90°,在Rt△ADF中,AD=4,DF=2,∴22224225AD DF+=+=故选D.【点睛】本题考查了三角形的中位线定理及勾股定理,利用三角形的中位线定理求得DF∥BE,DF=12BE=2是解决问题的关键.6.B解析:B【分析】利用平行四边形的性质和三角形的中位线定理即可解决问题.【详解】∵四边形ABCD是平行四边形,∴BC=AD=10,∵点M、N分别是BD,CD的中点,∴MN=12BC=5,故选:B.【点睛】本题考查了平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握基本知识.7.D解析:D【分析】首先证明DA=DE,再根据平行四边形的性质即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴BA∥CD,AB=CD,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴DE=AD=3,∴CD=CE+DE=2+3=5,∴AB=5.故选:D.【点睛】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.8.D解析:D【分析】根据题意可知DE是AC的垂直平分线,由此即可一一判断.【详解】∵DE是AC的垂直平分线,∴DA=DC,AE=EC,故A正确,∴DE∥BC,∠A=∠DCE,故B正确,∴∠ADE=∠CDE=∠DCB,故C正确,故选D.【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题.9.D解析:D【分析】根据正多边形的性质,边数等于360°除以每一个外角的度数计算即可.【详解】∵一个多边形的每个外角都等于30°,外角和为360°,∴n=360°÷30°=12,故选D.【点睛】本题主要考查了多边形外角和、利用外角求正多边形的边数的方法,解题的关键是掌握任意多边形的外角和都等于360度.第II卷(非选择题)请点击修改第II卷的文字说明10.B解析:B【分析】由平行四边形的性质得出DC=AB=4,AD=BC=6,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【详解】∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故选:B.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.11.B解析:B【分析】正多边形的外角和是360°,且正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】∵正多边形的外角和是360°,∴360÷72=5,那么它的边数是5.故选B.【点睛】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟练掌握.12.C解析:C【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,AB=CD=5,再利用已知求出AO+BO的长,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD=5,∵AC+BD=14,∴AO+BO=7,∴△ABO的周长是:AO+BO+ AB=7+5=12.故选:C.【点睛】本题主要考查了平行四边形的性质,正确得出AO+BO的值是解题关键.二、填空题13.【分析】根据多边形的外角和=360°求解即可【详解】解:∵多边形的外角和为360°∴边数==12即12×15米=180米故答案为:180【点睛】本题考查了多边形的外角和能熟记多边形的外角和定理是解此解析:【分析】根据多边形的外角和=360°求解即可.【详解】解:∵多边形的外角和为360°,∴边数=360=12,30即12×15米=180米,故答案为:180.【点睛】本题考查了多边形的外角和,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和等于360°.14.5【分析】利用平行四边形的对边相等且互相平行进而得出DE=CD=3再求出AE+BC=7BC-AE=3即可求出BC的长【详解】∵CE平分∠BCD交AD边于点E∴∠ECD=∠ECB∵在平行四边形ABCD解析:5【分析】利用平行四边形的对边相等且互相平行,进而得出DE=CD=3,再求出AE+BC=7,BC-AE=3,即可求出BC的长.【详解】∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,∵在平行四边形ABCD中,AD∥BC,AB=CD=3,AD=BC,∠D=∠B=60°,∴∠DEC=∠ECB,∴∠DEC=∠DCE,∴DE=CD=3,∴△CDE是等边三角形,∴CE=CD=3,∵四边形ABCE的周长为13,∴AE+BC=13-3-3=7①,∵AD-AE═DE=3,即BC-AE=3②,由①②得:BC=5;故答案为:5.【点睛】此题主要考查了平行四边形的性质,等腰三角形的判定;熟练掌握平行四边形的性质,证出∠DEC=∠DCE是解题关键.15.720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数然后求内角和【详解】∵多边形的一个顶点出发的对角线共有(n-3)条∴n-3=3∴n=6∴内角和=(6-2)×180°=720°故解析:720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和=(6-2)×180°=720°,故答案是:720.【点睛】本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.16.③【分析】根据正多边形的内角度数解答即可【详解】∵正三角形的每个内角都是60度能将360度整除故可以用其镶嵌地面;∵正方形的每个内角都是90度能将360度整除故可以用其镶嵌地面;∵正五边形的每个内角解析:③【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面,故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.17.3【分析】首先根据平行四边形的性质可得AD=BC 又由可得BE=3BC=3AD 和的高相等即可得出的面积【详解】解:∵∴AD=BCAD ∥BC ∴和的高相等设其高为又∵∴BE=3BC=3AD 又∵∴故答案为3解析:3【分析】首先根据平行四边形的性质,可得AD=BC ,又由2CE BC =,可得BE=3BC=3AD ,ADE 和ABE △的高相等,即可得出ABE △的面积.【详解】解:∵ABCD , ∴AD=BC ,AD ∥BC , ∴ADE 和ABE △的高相等,设其高为h ,又∵2CE BC =,∴BE=3BC=3AD ,又∵1=12ADE S AD h =△,1=2ABE S BE h △ ∴11=3322ABE S BE h AD h =⨯=△ 故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.18.八【分析】首先设这个多边形的边数为n 由n 边形的内角和等于180(n-2)即可得方程180(n-2)=1080解此方程即可求得答案【详解】解:设这个多边形的边数为n 根据题意得:180(n-2)=108解析:八【分析】首先设这个多边形的边数为n,由n 边形的内角和等于180︒(n-2),即可得方程180(n-2)=1080,解此方程即可求得答案.【详解】解:设这个多边形的边数为n,根据题意得:180(n-2)=1080,解得:n=8,故答案为:八.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.19.140°【分析】先根据多边形内角和定理:求出该多边形的内角和再求出每一个内角的度数【详解】解:该正九边形内角和=180°×(9-2)=1260°则每个内角的度数=故答案为:140°【点睛】本题主要考解析:140°【分析】先根据多边形内角和定理:180(2)n ︒•-求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和=180°×(9-2)=1260°,则每个内角的度数=12601409︒=︒. 故答案为:140°.【点睛】本题主要考查了多边形的内角和定理:180°•(n-2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和. 20.【分析】利用平行四边形的性质即可解决问题;【详解】解:∵四边形ABCD 是平行四边形∴OA=BCOA ∥BC ∵A (50)∴OA=BC=5∵C (13)∴B (63)故答案为:(63)【点睛】本题考查平行四边解析:()6,3【分析】利用平行四边形的性质即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴OA=BC ,OA ∥BC ,∵A (5,0),∴OA=BC=5,∵C (1,3),∴B (6,3),故答案为:(6,3).【点睛】本题考查平行四边形的性质、坐标与图形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)见解析;(2)①MN=4;②见解析【分析】(1)根据角平分线定义和平行线的性质可证得∠MOB=∠MBO ,∠NOC=∠NCO ,再根据等角对等边的性质可得BM=MO ,CN=ON ,再由MO+ON=MN 即可证得结论;(2)①过M、N分别作ME⊥BC于E,NF⊥BC于F,可证得四边形MEFN为平行四边形,可得MN=EF,再根据等边三角形的性质可得∠ABC=∠ACB=60°,进而有∠BME=∠CNF=30°,根据直角三角形中30°角所对的直角边是斜边的一半可证得BE=12BM,CF=12CN,由BC=BE+EF+CF和BM+CN=MN可得BC=32MN,即可求得MN的长;②过M、N分别作ME⊥BC于E,NF⊥BC于F,可证得四边形MEFN为平行四边形,可得ME=NF,再根据等边三角形的性质可得∠ABC=∠ACB,再根据全等三角形的判定可证得△MEB≌△NFC,则有BM=CN,由(1)中BM=MO,CN=ON可得MO=ON,即可证得结论.【详解】(1)证明:∵BO、CO分别平分∠ABC、∠ACB,∴∠OBC=∠MBO,∠OCB=∠NCO,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MOB=∠MBO,∠NOC=∠NCO,∴BM=MO,CN=ON,∴BM+CN=MO+ON=MN,即BM+CN =MN;(2)若选①,解:如图2,过M、N分别作ME⊥BC于E,NF⊥BC于F,则ME∥NF,∠MEB=∠NFC=90°,∵MN∥BC,∴四边形MEFN为平行四边形,∴MN=EF,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,又∠MEB=∠NFC=90°,∴∠BME=∠CNF=30°,∴BE=12BM,CF=12CN,∵BC=BE+EF+CF=12BM+MN+12CN=32MN=6,∴MN=4;若选②,证明:如图2,过M、N分别作ME⊥BC于E,NF⊥BC于F,则ME∥NF,∠MEB=∠NFC=90°∵MN∥BC,∴四边形MEFN为平行四边形,∴ME=NF,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,又∠MEB=∠NFC=90°,∴△MEB ≌△NFC (AAS ),∴BM=CN ,∵ BM=MO ,CN=ON∴MO=ON ,即O 为MN 的中点.【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定、等边三角形的性质、平行四边形的判定与性质、含30°角的直角三角形的性质、全等三角形的判定与性质等知识,熟练掌握各知识点的运用,借助作辅助线进行计算或证明解答的关键.22.十二边形.【分析】设这个多边形的边数为n ,根据多边形的内角和定理即可列方程求解.【详解】解:设这个多边形是n 边形,根据题意得:()21801800n ︒︒-⨯=, 解得:12n =.故这个多边形是十二边形.【点睛】解题的关键是读懂题意,根据多边形的内角和:180°(n-2),正确列方程求解. 23.见解析.【分析】如图,连接BD ,交AC 于点O .由平行四边形的对角线互相平分可得OD OB =,OE OF =,结合已知条件证得OA OC =,由对角线互相平分的四边形是平行四边形即可判定四边形ABCD 是平行四边形.【详解】如图,连接BD ,交AC 于点O .∵四边形BEDF 是平行四边形,∴OD OB =,OE OF =.又∵AE CF =,∴AE OE CF OF +=+,即OA OC =,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形的性质及判定,作出辅助线,证明OD OB =、OA OC =是解决问题的关键.24.(1)C (3,0),D (6,4);(2)存在,1N (3,6),2N (9,2),3N (3-,2-)【分析】(1)根据平行四边形的性质可求得OC 的长,从而求得点C ,D 的坐标;(2)分AD 为对角线,DE 为对角线,AE 为对角线三种情况讨论,利用中点坐标公式即可求解.【详解】(1)∵四边形ABCD 是平行四边形,∴BC=AD=6,∵OB=3,∴OC=6-3=3,∴点C 的坐标为(3,0),点D 的坐标为(6,4);(2)存在,理由如下:∵E 是线段OD 的中点,∴点E 的坐标为(602+,402+),即(3,2), 设点N 的坐标为(x ,y ),当AD 为对角线时,36022x ++=,242y +=, 解得:3x =,6y =,∴1N 的坐标为(3,6);当DE 为对角线时,06322x ++=,44222y ++=, 解得:9x =,2y =,∴2N 的坐标为(9,2);当AE 为对角线时,60322x ++=,40222y ++=, 解得:3x =-,2y =-,∴3N 的坐标为(3-,2-) .【点睛】本题考查了坐标与图形,平行四边形的性质.讨论平行四边形存在性问题时,按对角线进行分类讨论,画出图形再计算.25.(1)BD ⊥AP ,BD =AP ,证明见解析;(2)①见解析;②见解析;③2【分析】(1)由旋转的性质及题意易得△ACP ≌△PCD ,进而问题得证;(2)①根据题意直接作图即可;②根据轴对称的性质及题意可直接得证;③由(1)及平行四边形的性质可得AP =BD ,然后根据对称可求解.【详解】解:(1)结论:BD ⊥AP ,BD =AP证明:∵∠ACB =90°,∠PCD =90°∴ ∠ACP =∠BCD , ∠A =∠ABC =45°∵AC =BC ,PC =DC∴△ACP ≌△BCD∴BD =AP , ∠A =∠CBD =45°∴ ∠ABD =∠ABC+∠CBD=90°∴BD ⊥AP(2)① 如图② ∵点B关于直线CP的对称点为E∴CG⊥BE∵∠PCD=90°即CG⊥CD∴BE∥CD③∵四边形CDBE为平行四边形∴BD=CE由(1)可得AP=BD∵B、E关于直线CP的对称∴BC=CE∴AP=BC=2.【点睛】本题主要考查轴对称的性质、全等三角形的判定与性质及平行四边形的性质,熟练掌握各个知识点是解题的关键.26.(1)见解析;(2)3.【分析】根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.【详解】(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A 的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.考点:作图—复杂作图;平行四边形的性质。

新北师大版八年级下学期期末复习第六章平行四边形测试题

新北师大版八年级下学期期末复习第六章平行四边形测试题

新北师大版八年级下学期期末复习测试题第六章平行四边形一、选择题1、如图将四个全等的矩形分别等分成四个全等的小矩形,其中阴影部分面积相等的是( )A.只有①和②相等 B.只有③和④相等 C.只有①和④相等 D.①和②,③和④分别相等2、如图,已知四边形ABCD中,R、P分别是BC、CD上的点,E、F分别是AP、RP的点,当点P在CD上从C向D移而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小 C.线段EF的长不变D.线段EF的长与点P的位置有关第二题图3、下面关于平行四边形的说法不正确的是() A.对边平行且相等 B.两组对角分别相等C.对角线互相平分 D.每条对角线平分一组对角4、四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD. 从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种5、如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为( ) A.5 B.7 C.10 D.146、如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( ) A.4 cm B.6 cm C.8 cm D.10 cm7、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG AE,垂足为G,BG=4,则的周长为()A. 8B.9.5C. 10D.11.58、如右图,在中,,平分交边于点,且,则的长为()A. 3B. 4C.D.29、如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A. 18° B. 36°C. 72° D. 108°10、如图,平行四边形纸片ABCD,CD=5,BC=2,∠A=60°,将纸片折叠,使点A落在射线AD上(记为点),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y与x之间关系的大致图象是()A.B. C. D.二、填空题11、已知:四边形ABCD的面积为1. 如图1,取四边形ABCD各边中点,则图中阴影部分的面积为;如图2,取四边形ABCD各边三等分点,则图中阴影部分的面积为;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为.12、如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE= cm.13、如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件_________ ,使四边形AECF是平行四边形(只填一个即可).14、如图(1)是四边形纸片ABCD,其中∠B=120°,∠D=50度.若将其右下角向内折出△PCR,恰使CP∥AB,RC∥AD,如图(2)所示,则∠C= 度.15、如图,在ABCD中,∠B的平分线BE交AD于E,AE=10,ED=4,那么ABCD的周长= 。

2020-2021学年北师大版八年级下册第六章《平行四边形》常考综合题专练(四)

2020-2021学年北师大版八年级下册第六章《平行四边形》常考综合题专练(四)

北师大版八年级下册第六章《平行四边形》常考综合题专练(四)1.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q 同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=;CQ=.(2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?2.【概念学习】在平面中,我们把大于180°且小于360°的角称为优角.如果两个角相加等于360°,那么称这两个角互为组角,简称互组.(1)若∠1、∠2互为组角,且∠1=135°,则∠2=°【理解应用】习惯上,我们把有一个内角大于180°的四边形俗称为镖形.(2)如图①,在镖形ABCD中,优角∠BCD与钝角∠BCD互为组角,试探索内角∠A、∠B、∠D与钝角∠BCD之间的数量关系,并说明理由.【拓展延伸】(3)如图②,已知四边形ABCD中,延长AD、BC交于点Q,延长AB、DC交于P,∠APD、∠AQB的平分线交于点M,∠A+∠QCP=180°.①写出图中一对互组的角(两个平角除外);②直接运用(2)中的结论,试说明:PM⊥QM.3.(1)如图1,直线DE经过点A,且DE∥BC,求证:∠BAC+∠ABC+∠ACB=180°;(2)如图2,在已知四边形ABCD,求∠BAD+∠ABC+∠BCD+∠CDA的度数;(3)如图3,AB⊥BC,点P为∠ABC内一点,点D为BC边上一点,连接PA、PD,且AQ、DQ分别平分∠PAB、∠PDC,判断∠P,∠Q的数量关系,并说明理由.4.如图,四边形OABC中,点O为直角坐标系的原点,A、B、C的坐标分别为(16,0)、(16,6)、(8,6).点P、Q同时从原点出发,分别作匀速运动,点P沿OA以每秒1个单位向终点A运动,点Q沿OC、CB以每秒2个单位向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.设运动时间为t秒.(1)请用t(t>5)表示点Q的坐标为;(2)是否存在某个时间t,使得P、Q两点和四边形OABC中的任意两个顶点为顶点的四边形为平行四边形?若存在,请求出t的值;若不存在,请说明理由.5.如图,△ABC中AB=AC,E是边AB上一点,过点E作ED∥AC,EF∥BC,在FE延长线上取点G使得BE=BG,∠C=30°,BD=2.(1)求证:四边形BDEG为平行四边形;(2)求D,G两点间的距离.6.如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BE=DF.(1)求证:AE=CF;(2)连接AF、CE,判断四边形AECF的形状,并证明.7.四边形ABCD中,∠A=140°,∠D=80°.(1)如图①所示,若∠ABC的平分线BE交DC于点E,且BE∥AD,试求出∠C的度数;(2)如图②所示,若∠ABC和∠BCD的平分线交于点E,试求出∠BEC的度数.8.在活动课上我们曾经探究过三角形内角和等于180°,四边形内角和等于360°,五边形内角和等于540°,…,请同学们仔细读题,看图,解决下面的问题:(1)如图①,△OAB、△OCD的顶点O重合,且∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD =(直接写出结果).(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图②,如果∠AOB=110°,那么∠COD的度数为(直接写出结果).②如图③,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.9.如图,四边形DEBF是平行四边形,A、C在直线EF上且AE=CF.(1)求证:四边形ABCD是平行四边形;(2)在不添加任何辅助线的条件下,请直接写出图中所有与△DFC面积相等的三角形.10.如图,D,E分别是△ABC的边AB,AC上的点,把△ADE沿DE折叠,使点A落在四边形BCED所在的平面上,点A的对应点为A',已知∠B=80°,∠C=70°.(1)求∠A的度数;(2)在图①,图②,图③中,写出∠1,∠2的数量关系,并选择一种情况说明理由.参考答案1.解:(1)t,12﹣t,15﹣2t,2t(2)根据题意有AP=t,CQ=2t,PD=12﹣t,BQ=15﹣2t.∵AD∥BC,∴当AP=BQ时,四边形APQB是平行四边形.∴t=15﹣2t,解得t=5.∴t=5s时四边形APQB是平行四边形;(3)由AP=tcm,CQ=2tcm,∵AD=12cm,BC=15cm,∴PD=AD﹣AP=12﹣t,如图1,∵AD∥BC,∴当PD=QC时,四边形PDCQ是平行四边形.即:12﹣t=2t,解得t=4s,∴当t=4s时,四边形PDCQ是平行四边形.2.解:(1)∵∠1、∠2互为组角,且∠1=135°,∴∠2=360°﹣∠1=225°;(2)钝角∠BCD=∠A+∠B+∠D.理由如下:如图①,∵在四边形ABCD中,∠A+∠B+优角∠BCD+∠D=360°,又∵优角∠BCD+钝角∠BCD=360°´,∴钝角∠BCD=∠A+∠B+∠D;(3)①优角∠PCQ与钝角∠PCQ;②∵∠APD、∠AQB的平分线交于点M,∴∠AQM=∠BQM,∠APM=∠DPM.令∠AQM=∠BQM=α,∠APM=∠DPM=β.∵在镖形APMQ中,有∠A+α+β=∠PMQ,在镖形APCQ中,有∠A+2α+2β=∠QCP,∴∠QCP+∠A=2∠PMQ,∵∠A+∠QCP=180°,∴∠PMQ=90°.∴PM⊥QM.故答案为225;优角∠PCQ与钝角∠PCQ.3.(1)证明:如图1,∵DE∥BC,∴∠BAD=∠B,∠CAE=∠C,又∵∠BAD+∠BAC+∠CAE=180°,∴∠BAC+∠B+∠C=180°;(2)解,如图2,连接AC,由(1)知:三角形的内角和为180°,∴∠B+∠BAC+∠ACB=180°,∠D+∠CAD+∠ACD=180°,∴∠B+∠D+∠BAC+∠ACB+∠CAD+∠ACD=360°,即∠BAD+∠B+∠BCD+∠D=360°;(3)解:2∠Q﹣∠P=90°,理由是:如图3,设∠QAB=x,∠PDQ=y,∵QA、QD分别平分∠PAB、∠PDC,∴∠PAB=2x,∠PDC=2y,在四边形PABD中,由(2)得:∠P+∠PAB+∠B+∠PDB=360°,∵AB⊥BC,∴∠B=90°,∴∠P+2x+90°+180°﹣2y=360°,∴x﹣y=45°﹣∠P,同理得:∠Q+x+90°+180°﹣y=360°,∴x﹣y=90°﹣∠Q,∴45°﹣∠P=90°﹣∠Q,∴2∠Q﹣∠P=90°.4.解:(1)过C作CD⊥OA于D,如图所示:∵A、B、C的坐标分别为(16,0)、(16,6)、(8,6),∴OA=16,OD=8,CD=6,BC=AD=OA﹣OD=8,OA∥BC,∴OC==10,∴OC+BC=18,由题意得:总时间t=18÷2=9(s),当t>5时,2t>10,此时点Q在CB上,则CQ=2t﹣10,∴Q(2t﹣2,6),故答案为:(2t﹣2,6);(2)分三种情况:①P、Q与O、C为顶点的四边形为平行四边形时,则OP=CQ,∵OP=t,CQ=2t﹣10,∴t=2t﹣10,解得t=10,与t≤9矛盾(舍去),②P、Q与A、B为顶点的四边形为平行四边形时,则PA=QB,∵PA=16﹣t,QB=18﹣2t,∴16﹣t=18﹣2t,解得t=2,此时Q在OC上,矛盾;③P、Q与O、B为顶点的四边形为平行四边形时,则OP=QB,∵OP=t,QB=18﹣2t,∴t=18﹣2t,解得t=6,符合题意;④P、Q与C、A为顶点的四边形为平行四边形时,则PA=CQ,∵PA=16﹣t,CQ=2t﹣10,∴16﹣t=2t﹣10,解得,符合题意;综上所述,t的值为6或.5.(1)证明:∵AB=AC,∴∠ABC=∠C,∵EF∥BC,ED∥AC,∴∠G+∠GBD=180°,∠BEG=∠ABC,∠EDB=∠C,∴∠BEG=∠EDB=∠ABC,又∵BE=BG,∴∠G=∠BEG,∴∠G=∠EDB,∴∠EDB+∠GBD=180°,∴BG∥DE,又∵EF∥BC,∴四边形BDEG为平行四边形;(2)解:过E作EM⊥BC于M,过G作GH⊥BC于H,连接DG,如图所示:由(1)得:∠EDB=∠ABC=∠C=30°,∴BE=DE,∵EM⊥BC,∴BM=DM=BD=1,EM=BM=,BE=2EM=,∵BG=BE,∴BG=,∵BG∥DE,∴∠GBH=∠EDB=30°,∵GH⊥BC,∴GH=BG=,BH=GH=1,∴DH=BD+BH=3,∴DG===,即D,G两点间的距离为.6.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF;(2)四边形AECF是平行四边形,理由如下:∵△ABE≌△CDF,∴∠AEB=∠CFD,∴∠AEF=∠CFE,∴AE∥CF,又∵AE=CF,∴四边形AECF是平行四边形.7.解:(1)∵BE∥AD,∴∠BEC=∠D=80°,∠ABE=180°﹣∠A=180°﹣140°=40°.又∵BE平分∠ABC,∴∠EBC=∠ABE=40°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣40°﹣80°=60°.(2))∵∠A+∠ABC+∠BCD+∠D=360°,∴∠ABC+∠BCD=360°﹣∠A﹣∠D=360°﹣140°﹣80°=140°.∵∠EBC=∠ABC,∠BCE=∠BCD,∴∠E=180﹣∠EBC﹣∠BCE=180°﹣(∠ABC+∠BCD)=180°﹣×140°=110°.8.解:(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°,∴∠AOB+∠COD=360°﹣180°=180°.故答案为180°;(2)①∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴∠OAB=DAB,CBA,∠OCD=BCD,∠ODC=ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=×360°=180°,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∵∠AOB=110°,∴∠COD=180°﹣110°=70°.故答案为:70°;②AB∥CD,理由如下:∵AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线,∴,CBA,,,∴∠OAB+∠OBA+∠OCD+∠ODC=×360°=180°,在△OAB中,∠OAB+∠OBA=180°﹣∠AOB,在△OCD中,∠OCD+∠ODC=180°﹣∠COD,∴180°﹣∠AOB+180°﹣∠COD=180°,∴∠AOB+∠COD=180°;∴∠ADO+∠BOD=360°﹣(∠AOB+∠COD)=360°﹣180°=180°,∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在∠AOD中,∠DAO=∠ADO=180°﹣∠AOD=180°﹣90°=90°,∵,∴=90°,∴∠DAB+∠ADC=180°,∴AB∥CD.9.(1)证明:连接BD交AC于O,如图1所示:∵四边形DEBF是平行四边形,∴OE=OF,OB=OD,∵AE=CF,∴OA=OC,∴四边形ABCD是平行四边形;(2)解:图中所有与△DFC面积相等的三角形为△ADE、△BEA,△CBF,理由如下:∵AE=CF,∴△ADE的面积=△DFC的面积,△ABE的面积=△CBF的面积,由(1)得:四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴△ADE的面积=△CBF的面积,∴△ADE的面积=△DFC的面积=△ABE的面积=△CBF的面积.10.解:(1)∵∠B=80°,∠C=70°,∴∠A=180°﹣(∠B+∠C)=180°﹣(80°+70°)=30°;(2)如图①,∵把△ADE沿DE折叠,使点A落在四边形BCED所在的平面上,点A的对应点为A',∴∠A′=∠A=30°,∴∠3=180°﹣∠A′﹣∠2=150°﹣∠2,∵∠1+∠3+∠B+∠C=360°,∴∠1+150°﹣∠2+80°+70°=360°,∴∠1﹣∠2=60°;如图②,∵把△ADE沿DE折叠,使点A落在四边形BCED所在的平面上,点A的对应点为A',∴∠A′=∠A=30°,∴∠AEA′+∠ADA′=360°﹣∠A﹣∠A′=300°,∴∠1+∠2=360°﹣∠AEA′﹣∠ADA′=60°;如图③,方法同①,∠2﹣∠1=60°.。

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学

北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( )A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( )A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( )2.正十边形的外角和为 ( )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( )A.12B.13C.14D.154.八边形的内角和为°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练(解析版)题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( B)A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是 ( B)A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=61度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10或4或2.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形. 6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.略题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是100m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( B)A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=4.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( D)2.正十边形的外角和为 ( B )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( C)A.12B.13C.14D.154.八边形的内角和为 1 080°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为n(n-3).答案:n-3 n(n-3)(2)∵3×6=18,∴数学社团的同学们一共将拨打电话×18×(18-3)=135(个).(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n-3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n-3);数学社团有18名同学,当n=18时,×18×(18-3)=135.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.答案:略.。

北师大版数学八年级下册:第六章 平行四边形 阶段测试(6.1-6.2)(附答案)

北师大版数学八年级下册:第六章 平行四边形  阶段测试(6.1-6.2)(附答案)

第六章平行四边形阶段测试(6.1-6.2)(时间:40分钟满分:100分)一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是()A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为()A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为()A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是()A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于()A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形()A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于()A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为()A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是.14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,AE=CF,BF=DE,求证:四边形ABCD是平行四边形.17.(12分)如图,将▱ABCD的对角线AC分别向两个方向延长至点E,F,且AE=CF,连接BE,DF.求证:BE=DF.18.(14分)提出命题:如图,在四边形ABCD中,∠A=∠C,∠ABC=∠ADC,求证:四边形ABCD是平行四边形.小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是()A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶319.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.参考答案:一、选择题(每小题4分,共40分)1.下面的性质中,平行四边形不一定具有的是(A)A.对角互补B.邻角互补C.对角相等D.对边相等2.如图,在▱ABCD中,E是AB延长线上的一点.若∠1=55°,则∠D的度数为(A)A.125°B.120°C.115°D.110°3.用一根6米长的绳子围成一个平行四边形,其中一边长1.6米,则其邻边长为(B)A.1.2米B.1.4米C.1.6米D.1.8米4.如图,在四边形ABCD中,对角线AC,BD相交于点O,AD∥BC,添加下列条件不能使四边形ABCD成为平行四边形的是(D)A.AD=BCB.OA=OCC.∠ABC+∠BCD=180°D.AB=CD第4题图第5题图5.如图,在▱ABCD中,AE平分∠DAB,∠B=100°,则∠DEA等于(D)A.100°B.80°C.60°D.40°6.如图,在▱ABCD中,过点P作直线EF,GH分别平行于AB,BC,那么图中共有平行四边形(D)A.4个B.5个C.8个D.9个第6题图第7题图7.如图,在四边形ABCD中,AD∥BC,DE∥AB,DE=DC,∠C=80°,则∠A等于(C)A.80°B.90°C.100°D.110°8.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为(C)A.12 B.15 C.18 D.21第8题图第9题图9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AC=2,BD=4,则AE 的长为(D)A.32 B.32 C.217 D.221710.如图,已知▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠CFE=110°.则下列结论:①四边形ABFE 为平行四边形;②△ADE是等腰三角形;③▱ABCD与▱DCFE全等;④∠DAE=25°.其中正确的有(B)A.4个B.3个C.2个D.1个二、填空题(每小题4分,共20分)11.在▱ABCD中,已知∠A-∠B=60°,则∠C=120°.12.如图,已知▱ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为14.第12题图第13题图13.如图,点E,F分别在▱ABCD的边BC,AD上,AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是AF=CE(答案不唯一).14.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4 cm,则四边形DECF 的周长是8_cm.第14题图第15题图15.如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,∠BAC≠90°.将此三角形纸片沿AD剪开,得到两个三角形.若把这两个三角形拼成一个平行四边形,则能拼出3种平行四边形.三、解答题(共50分)16.(10分)如图,已知在四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,AE =CF ,BF =DE ,求证:四边形ABCD 是平行四边形.证明:∵AE ⊥BD 于点E ,CF ⊥BD 于点F. ∴∠AED =∠CFB =90°. 在△AED 和△CFB 中,⎩⎨⎧DE =BF ,∠AED =∠CFB ,AE =CF ,∴△AED ≌△CFB (SAS ). ∴AD =BC ,∠ADE =∠CBF. ∴AD ∥BC.∴四边形ABCD 是平行四边形.17.(12分)如图,将▱ABCD 的对角线AC 分别向两个方向延长至点E ,F ,且AE =CF ,连接BE ,DF.求证:BE =DF.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC. ∴∠BCE =∠DAF. ∵AE =CF ,∴CA +AE =AC +CF ,即CE =AF.在△BCE 和△DAF 中,⎩⎨⎧BC =DA ,∠BCE =∠DAF ,CE =AF ,∴△BCE ≌△DAF (SAS ). ∴BE =DF.18.(14分)提出命题:如图,在四边形ABCD 中,∠A =∠C ,∠ABC =∠ADC ,求证:四边形ABCD 是平行四边形. 小明提供了如下证明过程:证明:连接BD.∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.∵∠ABC=∠ADC,∴∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).反思交流:(1)请问小明的解法正确吗?若正确,请说明理由;若不正确,请写出正确的证明过程;(2)用语言叙述上述命题.运用探究:下列条件中,能判定四边形ABCD是平行四边形的是(B)A.∠A∶∠B∶∠C∶∠D=1∶2∶3∶4B.∠A∶∠B∶∠C∶∠D=1∶3∶1∶3C.∠A∶∠B∶∠C∶∠D=2∶3∶3∶2D.∠A∶∠B∶∠C∶∠D=1∶1∶3∶3解:(1)正确.理由如下:∵∠1+∠3=180°-∠A,∠2+∠4=180°-∠C,∠A=∠C,∴∠1+∠3=∠2+∠4.①∵∠ABC=∠ADC,即∠1+∠2=∠3+∠4,②由①②相加、相减,得∠1=∠4,∠2=∠3.∴AB∥CD,AD∥BC.∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形).(2)两组对角分别相等的四边形是平行四边形.19.(14分)如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE 上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为93,求AB的长;(2)求证:AF=GE.解:(1)∵四边形ABCD 为平行四边形, ∴AD ∥BC ,AB ∥CD. ∵∠BDC =60°, ∴∠ABD =60°.∵BD ⊥BC ,∴∠ADB =∠DBC =90°. ∴∠DAB =30°.∴在Rt △ADB 中,BD =12AB ,AD =AB 2-BD 2=32AB.∵S ▱ABCD =AD·BD =34AB 2=93,∴AB =6. (2)证明:连接BF.∵AE ,BE 分别平分∠BAD ,∠DBC ,∴∠BAE =12∠BAD =15°,∠DBE =12∠DBC =45°.∵∠ABE +∠BAE +∠AEB =180°,∠ABE =∠ABD +∠DBE =105°, ∴∠AEB =60°.∵EF =BE ,∴△BFE 为等边三角形. ∴BE =BF ,∠FBE =60°.∴∠ABD =∠FBE =60°.∴∠ABF =∠GBE.在△ABF 和△GBE 中,⎩⎨⎧AB =GB ,∠ABF =∠GBE ,BF =BE ,∴△ABF ≌△GBE (SAS ). ∴AF =GE.。

2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案

2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案

北师大版八年级下册第六章《平行四边形》常考综合题专练(一)1.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.2.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.3.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.4.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.5.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.6.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.7.如图,在平行四边形ABCD中,M、N分别是AD,BC的中点,连接AN、CM.(1)求证:△ABN≌△CDM;(2)连接MN,过点C作CE⊥MN于点E,连接DN,交OM于点O交CE于点P,若∠AND=90°,PE=1,∠1=∠2,求AN的长.8.已知:在▱ABCD中,点E是边AD上一点,点F是线段AE的中点,连接BF并延长BF至点G,使FG=BF,连接DG、EG.(1)如图1,求证:四边形CDGE是平行四边形;(2)如图2,当DA平分∠CDG时,在不添加任何辅助线的情况下,请直接写出图2中与AB相等的线段(AB除外).9.如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.10.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:BM=DN;(2)求证:四边形AECF为平行四边形.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.2.(1)证明:∵AB∥CE,∴∠CAD=∠ACE,∠ADE=∠CED.∵F是AC中点,∴AF=CF.在△AFD与△CFE中,.∴△AFD≌△CFE(AAS),∴AD=CE,∴四边形ADCE是平行四边形;(2)解:过点C作CG⊥AB于点G.∵CD=BD,∠B=30°,∴∠DCB=∠B=30°,∴∠CDA=60°.在△ACG中,∠AGC=90°,,∠CAG=45°,∴.在△CGD中,∠DGC=90°,∠CDG=60°,,∴GD=1,∴.3.(1)证明:∵AE为∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.4.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.5.(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.6.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴AG=AD=2,∴DG==2,∴BD===2.7.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==,∵N是BC的中点,∴AD=BC=CN=,∴AN=AD×sin∠1=4=.8.解:(1)∵点F是线段AE的中点,∴AF=EF,在△ABF和△EGF中,,∴△ABF≌△EGF(SAS),∴AB=GE,∠ABF=∠FGE,∴AB∥GE,又∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴GE=CD,GE∥DC,∴四边形CDGE是平行四边形;(2)图2中与AB相等的线段为:GE,GD,DC,CE.理由:∵DA平分∠CDG,∴∠CDE=∠GDE,由(1)可得,GE∥CD,∴∠CDE=∠GED,∴∠GDE=∠GED,∴GE=GD,又∵四边形CDGE是平行四边形,∴四边形CDGE是菱形,∴CD=DG=GE=CE,又∵AB=CD,∴图2中与AB相等的线段为:GE,GD,DC,CE.9.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.10.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM⊥BC,CN⊥AD,∴AM∥CN,∴四边形AMCN为平行四边形,∴CM=AN,∴BC﹣CM=AD﹣AN,即BM=DN;(2)∵AD∥BC,∴∠ADB=∠CBD,∵AM⊥BC,CN⊥AD,∴∠EMB=∠FND=90°,在△BME和△DNF中,,∴△BME≌△DBF(ASA),∴EM=DF,∵四边形AMCN为平行四边形,∴AM=CN,AM∥CN,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.。

北师大版八年级数学下册第一章特殊的平行四边形专项测试题-附答案解析(一)

正方形应是N的一部分,也是 的一部分,
矩形形、正方形、菱形都属于平行四边形,
它们之间的关系是: .
二、填空题(本大题共有5小题,每小题5分,共25分)
16、已知矩形的一条对角线长 ,则另一条对角线的一半是 .
【答案】4
【解析】解:
根据矩形的对角线相等,另一条对角线长 ,则另一条对角线的一半是 .
故正确答案是 .
14、将四根长度相等的细木条首尾相接,用钉子钉成四边形 ,转动这个四边形,使它形状改变,当 时,如图 ,测得 ,当 时,如图 , ( )
A.
B.
C.
D.
15、如图所示,设 表示平行四边形, 表示矩形, 表示菱形, 表示正方形,则下列四个图形中,能表示它们之间关系的是( )
A.
B.
C.
D.
二、填空题(本大题共有5小题,每小题5分,共25分)
四条边相等的四边形是菱形,不一定是正方形,该说法错误,符合题意;
对角线相等的菱形是正方形,该说法正确,不符合题意;
对角线垂直的矩形是正方形,该说法正确,不符合题意.
故正确答案选:四条边相等的四边形是正方形.
3、矩形、菱形、正方形都具有的性质是( ).
A. 对角线互相垂直
B. 对角线平分每一组对角
C. 对角线互相平分
6、 在 中, , 是边 上一点, 交 于点 , 交 于点 ,若要使四边形 是菱形,只需添加条件( ).
A.
B.
C.
D.
【答案】C
【解析】解:只需添加

四边形 是平行四边形
四边形 是菱形
故正确答案是:
7、过矩形 的四个顶点作对角线 、 的平行线分別交于 、 、 、 四点,则四边形 是().

2021-2022学年度强化训练北师大版八年级数学下册第六章平行四边形专题练习练习题(精选)

北师大版八年级数学下册第六章平行四边形专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为()A.16 B.24 C.32 D.402、一个多边形的内角和是外角和的5倍,则这个多边形是()A.12 B.11 C.10 D.93、如图,四边形ABCD中,AD=BC,点P是对角线BD的中点,E、F分别是AB、CD的中点,若∠EPF =130°,则∠PEF的度数为()A .25°B .30°C .35°D .50°4、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A .9条B .8条C .7条D .6条5、一个正多边形的一个外角是40︒,则该正多边形的内角和是( )A .720︒B .900︒C .1085︒D .1260︒6、四边形ABCD 中,如果270A C D ∠+∠+∠=︒,则B 的度数是( )A .110°B .100°C .90°D .30°7、一个正多边形的内角和是540°,则该正多边形的一个外角的度数为( )A .45°B .55°C .60°D .72°8、如果一个多边形的每个内角都是144°,那么这个多边形的边数是( )A .5B .6C .10D .129、若一个正多边形的各个内角都是140°,则这个正多边形是( )A .正七边形B .正八边形C .正九边形D .正十边形10、如图,五边形ABCDE 是正五边形,若l 1∥l 2,则∠1﹣∠2的值是( )A .108°B .36°C .72°D .144°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,D 、E 分别是AB 、AC 的中点,连结DE .若4DE =,则BC =______.2、一个正五边形和一个正六边形按如图所示方式摆放,它们都有一边在直线l 上,且有一个公共顶点O ,则AOB ∠的度数是______度.3、如图,平行四边形ABCD 的顶点A ,B ,C 的位置用数对分别表示为(4,6),(1,3),(5,3),则顶点D 的位置用数对表示为 ________.4、若一个n 边形的每个内角都等于135°,则该n 边形的边数是____________.5、已知:△ABC 中,点D 、E 、F 分别是△ABC 三边的中点,如果△ABC 的周长是12cm ,面积是16 cm 2,那么△DEF 的周长是________.三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD 中,AB AD =,6AC =,90DAB DCB ∠=∠=︒,求四边形ABCD 的面积.2、四边形ABCD 中,BAD ∠的平分线与边BC 交于点E ;ADC ∠的平分线交直线AE 于点O .(1)若点O 在四边形ABCD 的内部.①如图1,若AD BC ∥,50B ∠=︒,70C ∠=︒,则DOE ∠=______.②如图2,试探索B 、C ∠、DOE ∠之间的数量关系,并将你的探索过程写下来.(2)如图3,若点O 在四边形ABCD 的外部,请探究B 、C ∠、DOE ∠之间的数量关系,并说明理由.3、如图,在边长为6的等边ABC 中,点E 为边BC 上任意一点,连接AE 将线段AE 绕点A 逆时针旋转60︒,点E 的对应点是点D ,连接ED 、CD .(1)如图1,求证:+=EC CD AB ;(2)如图2,在旋转过程中,取AE、CD的中点F、G,连接FG和FC,当AE BC⊥时,试猜想FG 与FC的大小关系,写出你猜想的关系式,并证明;(3)如图2,在整个旋转过程中,FG的长度是否发生变化,若不变化,直接写出FG的值,若变化,请直接写出FG的取值范围.4、已知MN∥BF,AB∥DE,AC∥DF.(1)如图1,求证:∠ABC=∠ADE;(2)如图2,点G是DE上一点,连接AG,若AC⊥BF,∠CAG+∠CEG=180°,点E到AD的距离与线段AG长度之比为5:4,AD=20,求DE的长.5、在Rt ABC中,∠ABC=90°,∠A=α,O为AC的中点,将点O沿BC翻折得到点O',将ABC绕点O'顺时针旋转,使点B与C重合,旋转后得到ECF.(1)如图1,旋转角为.(用含α的式子表示)(2)如图2,连BE,BF,点M为BE的中点,连接OM,①∠BFC的度数为.(用含α的式子表示)②试探究OM与BF之间的关系.(3)如图3,若α=30°,请直接写出OMBE的值为.-参考答案-一、单选题1、C【分析】由中点的定义可得AE =CE ,AD =BD ,根据三角形中位线的性质可得DE //BC ,DE =12BC ,根据平行线的性质可得∠ADE =∠ABC =90°,利用ASA 可证明△MBD ≌△EDA ,可得MD =AE ,DE =MB ,即可证明四边形DMBE 是平行四边形,可得MD =BE ,进而可得四边形DMBE 的周长为2DE +2MD =BC +AC ,即可得答案.【详解】∵D ,E 分别是AB ,AC 的中点,∴AE =CE ,AD =BD ,DE 为△ABC 的中位线,∴DE //BC ,DE =12BC ,∵∠ABC =90°,∴∠ADE =∠ABC =90°,在△MBD 和△EDA 中,90MDB A BD AD MBD ADE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△MBD≌△EDA,∴MD=AE,DE=MB,∵DE//MB,∴四边形DMBE是平行四边形,∴MD=BE,∵AC=18,BC=14,∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.故选:C.【点睛】本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.2、A【分析】设这个多边形的边数为n,依据多边形的内角和是它的外角和的5倍列方程,即可得到n的值.【详解】解:设这个多边形的边数为n,依题意得(n-2)•180°=5×360°,解得n=12,∴这个多边形是十二边形,故选:A.【点睛】本题主要考查了多边形的内角和与外角和,解题时注意:多边形的外角和等于360°.3、A【分析】 根据三角形的中位线定理,可得11,22PE AD PF BC == ,从而PE =PF ,则有∠PEF =∠PFE ,再根据三角形的内角和定理,即可求解.【详解】解:∵点P 是对角线BD 的中点,E 、F 分别是AB 、CD 的中点, ∴11,22PE AD PF BC == , ∵AD =BC ,∴PE =PF ,∴∠PEF =∠PFE ,∵∠EPF =130°, ∴()1180252PEF EPF ∠=︒-∠=︒ . 故选:A【点睛】本题主要考查了三角形的中位线定理,等腰三角形的性质,三角形的内角和定理,熟练掌握三角形的中位线定理是解题的关键.4、A【分析】多边形从一个顶点出发的对角线共有(n-3)条.多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条.故选A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.5、D【分析】由正多边形的外角和及一个外角即可知道该正多边形的边数,再由多边形的内角和定理即可求得结果.【详解】∵多边形的外角和为360゜,且正多边形的一个外角为40゜∴该正多边形的边数为:360÷40=9∴此正多边形的内角和为:(9-2)×180゜=1260゜故选:D.【点睛】本题考查了多边形的外角和性质与多边形的内角和定理,掌握这两个知识是关键6、C【分析】根据四边形内角和是360°进行求解即可.【详解】解:四边形的内角和是360°,∴∠∠∠∠︒A B C D+++=360∵270A C D ∠+∠+∠=︒=360-270=90B ∴∠︒︒︒.故选:C .【点睛】本题考查四边形的内角和,是基础考点,难度较易,掌握相关知识是解题关键.7、D【分析】设正多边形的边数为n ,则根据内角和为540°可求得边数n ,从而可求得该正多边形的一个外角的度数.【详解】设正多边形的边数为n ,则由题意得:180(n -2)=540解得:n =5即此正多边形为正五边形,其一个外角为360°÷5=72°故选:D .【点睛】本题考查了多边形的内角和与多边形的外角和,掌握多边形的内角和与外角定理是关键.8、C【分析】根据多边形的内角求出多边形的一个外角,然后根据多边形外角和等于360︒,计算即可.【详解】解:∵一个多边形的每个内角都是144°,∴这个多边形的每个外角都是(180°﹣144°)=36°,∴这个多边形的边数360°÷36°=10.故选:C.【点睛】本题考查了多边形的外角和,熟知多边形外角和等于360 是解本题的关键.9、C【分析】根据多边形的内角和公式,可得答案.【详解】解:设多边形为n边形,由题意,得(n-2)•180=140n,解得n=9,故选:C.【点睛】本题考查了正多边形,利用多边形的内角和是解题关键.10、C【分析】过点B作l1的平行线BF,利用平行线的性质推出∠CBF+∠1=180°,∠CBF+∠2=108°,两个式子相减即可.【详解】解:过点B作l1的平行线BF,则l1∥l2∥BF,∵l1∥l2∥BF,∴∠ABF =∠2,∠CBF +∠1=180°①,∵五边形ABCDE 是正五边形,∴()=521805=108ABC ∠-⨯÷,∴∠ABF +∠CBF =∠CBF +∠2=108°②,∴①-②得∠1-∠2=72°,故选C .【点睛】本题主要考查了平行线的性质以及正多边形的内角问题,解题的关键是通过作辅助线,搭建角之间的关系桥梁.二、填空题1、8【分析】由D 、E 分别是AB 、AC 的中点可知,DE 是△ABC 的中位线,根据三角形中位线定理解答即可.【详解】解:∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴BC =2DE ,∵DE =4,∴BC =2DE =2×4=8.故答案为: 8.【点睛】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半. 2、84【分析】设直线l 与正五边形和正六边形的交点为C 、D ,根据多边形内角计算公式可得:108AOC ∠=︒,120BOD ∠=︒,则有72OCD ∠=︒,60ODC ∠=︒,进而根据三角形内角和定理可求得48COD ∠=︒,然后根据周角可求解.【详解】解:设直线l 与正五边形和正六边形的交点为C 、D ,如图所示:∵一个正五边形和一个正六边形都有一边在直线l 上,且根据多边形内角和可得:∴()521801085AOC -⨯︒∠==︒,()621801206BOD -⨯︒∠==︒,根据领补角可得:72OCD ∠=︒,60ODC ∠=︒,∵180OCD ODC COD ∠+∠+∠=︒,∴48COD ∠=︒,∵360AOC COD BOD AOB ∠+∠+∠+∠=︒,∴84AOB ∠=︒,故答案为84°.【点睛】本题主要考查正多边形内角的计算及三角形内角和定理,正确理解正多边形的内角的算法是解题的关键.3、(8,6)【分析】根据平行四边形的性质:对边平行且相等,得出点的平移方式,解答即可.【详解】解:∵平行四边形ABCD的顶点A,B,C的位置用数对分别表示为(4,6),(1,3),(5,3),由A,B坐标可得B向右平移3个单位,向上平移3个单位,可以得到点A∴点D可由点C向右平移3个单位,向上平移3个单位得到,∵点C坐标为(5,3)则点D坐标为(8,6);故答案为:(8,6).【点睛】此题考查了坐标与图形,涉及了平行四边形的性质以及点的平移,掌握平行四边形的性质以及点的平移规律是解题的关键.4、8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:∵一个n边形的每个内角都等于135°,︒-︒=︒∴则这个n边形的每个外角等于18013545÷=360458∴该n边形的边数是8故答案为:8【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.5、6cm【分析】根据三角形的中位线定理,△ABC的各边长等于△DEF的各边长的2倍,从而得出△DEF的周长.【详解】解:∵点D、E、F分别是△ABC三边的中点,∴AB=2EF,AC=2DE,BC=2DF,++=12cm,∵AB BC AC∴AB+AC+BC=2(DE+EF+DF)=12cm.DE EF DF cm6故答案是:6cm.【点睛】本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理解题是关键.三、解答题1、18【分析】延长CB至点E,使得BE=DC,然后由题意易证△ADC≌△ABE,则有∠DAC=∠BAE,AC=AE,进而可得∠CAE=90°,最后问题可求解.【详解】解:延长CB至点E,使得BE=DC,如图所示:∵90DAB DCB ∠=∠=︒,∴180ADC ABC ∠+∠=︒,∵180ABE ABC ∠+∠=︒,∴ADC ABE ∠=∠,∵AB AD =,∴△ADC ≌△ABE ,∴∠DAC =∠BAE ,AC =AE ,∵90DAC BAC ∠+∠=︒,∴90BAE BAC ∠+∠=︒,即90CAE ∠=︒,∴△ACE 是等腰直角三角形,∵6AC =, ∴21182CAEABCD S S AC ===四边形. 【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和,熟练掌握全等三角形的性质与判定、等腰直角三角形的判定及多边形内角和是解题的关键.2、(1)120°;(2)1118022DOE B C ︒∠=-∠-∠;(3)1122DOE B C ∠=∠+∠ 【分析】(1)①根据平行线的性质和角平分线的定义可求∠BAE ,∠CDO ,再根据三角形外角的性质可求∠AEC ,再根据四边形内角和等于360°可求∠DOE 的度数;②根据三角形外角的性质和角平分线的定义可得∠DOE 和∠BAD 、∠ADC 的关系,再根据四边形内角和等于360°可求∠B 、∠C 、∠DOE 之间的数量关系;(2)根据四边形和三角形的内角和得到∠BAD +∠ADC =360°-∠B -∠C ,∠EAD +∠ADO =180°-∠DOE ,根据角平分线的定义得到∠BAD =2∠EAD ,∠ADC =2∠ADO ,于是得到结论.【详解】解:(1)①∵//AD BC∴180,180B BAD C ADC ∠+∠=∠+∠=又∵∠B =50°,∠C =70°∴∠BAD =130°,∠ADC =110°∵AE 、DO 分别平分∠BAD 、∠ADC∴∠BAE =65°,∠ODC =55°∴∠AEC =115°∴∠DOE =360°-115°-70°-55°=120°故答案为:120° ②1118022DOE B C ︒∠=-∠-∠,理由如下: AE ∵平分BAD ∠12DAE BAD ∴∠=∠ DO 平分ADC ∠12ADO ADC ∠= DAE ADO ∴∠+∠ 1122BAD ADC =∠+()12BAD ADC =∠+∠ 360B C BAD ADC ︒∠+∠+∠+∠=360BAD ADC B C ︒∴∠+∠=-∠-∠DAE ADO ∴∠+∠ ()13602B C ︒=-∠-∠1118022B C ︒=-∠-∠ ()180AOD DAE ADO ︒∴∠=-∠+∠1122B C =∠+∠ 180DOE AOD ︒∴∠=-∠1118022B C ︒=-∠-∠ 即1118022DOE B C ︒∠=-∠-∠ (2)1122DOE B C ∠=∠+∠,理由如下: AE ∵平分BAD ∠12DAE BAD ∴∠=∠ DO 平分ADC ∠12ADO ADC ∠= DAE ADO ∴∠+∠ 1122BAD ADC =∠+ ()12BAD ADC =∠+∠ 360B C BAD ADC ︒∠+∠+∠+∠=360BAD ADC B C ︒∴∠+∠=-∠-∠DAE ADO ∴∠+∠ ()13602B C ︒=-∠-∠ 1118022B C ︒=-∠-∠ ()180AOD DAE ADO ︒∴∠=-∠+∠1122B C =∠+∠即:1122DOE B C ∠=∠+∠. 【点睛】本题考查多边形内角与外角平行线的性质,角平分线的定义,关键是熟练掌握四边形内角和等于360°,这是解题的重点.3、(1)见解析;(2)FG =FC ,证明见解析;(3)变化,3FG ≤≤【分析】(1)根据SAS 证△ABE ≌△ACD ,即可得证CD =BE ,又AB =BC ,即可得证结论;(2)取AD 的中点H ,连接HF ,HG ,BF ,根据三角形的中位线定理得HG =12AC ,FH =12ED ,根据SAS 证△BEF ≌△GHF ,得出FB =FG ,又FB =FC ,故FG =FC ;(3)先判断当E 点与B 点重合时FG 有最大值,当E 点与C 点重合时FG 有最小值求出FG 的取值范围即可.【详解】解:(1)∵△ABC 是等边三角形,∴∠BAC =60°,AB =AC =BC ,由旋转可知,AE =AD ,∠EAD =60°,∴∠BAC =∠EAD ,∴∠BAE +∠EAC =∠EAC +∠CAD ,∴∠BAE =∠CAD ,在△ABE 和△ACD 中,AB AC BAE CAD AE AD ⎧⎪∠∠⎨⎪⎩===, ∴△ABE ≌△ACD (SAS ),∴BE =CD ,∴BC =BE +EC =CD +EC ,∴AB =EC +CD ;(2)FG =FC ,理由:取AD 的中点H ,连接HF ,HG ,BF ,∵等边三角形ABC ,AE ⊥BC ,点E 是BC 的中点,∴∠CAE =12∠BAC =30°,∠FEB =90°,FB =FC ,∵∠EAD =60°,AD =AE ,∴∠CAD =30°,△ADE 是等边三角形,∴DE =AE ,∠ADE =60°,∵点H 是AD 的中点,点F 是AE 的中点,点G 是CD 的中点, ∴HG ∥AC ,HG =12AC ,FH ∥ED ,FH =12ED ,∴∠DHG =∠DAC =30°,∠AHF =∠ADE =60°,FH =EF ,GH =BE , ∴∠FHG =∠BEF =90°,在△BEF 和△GHF 中,BE GH BEF GHF EF HF ⎧⎪∠∠⎨⎪⎩===,∴△BEF≌△GHF(SAS),∴FB=FG,∵AE⊥BC,点E是BC的中点,∴FB=FC,∴FG=FC;(3)FG长度发生变化,3≤FG理由:当点E与点B重合时,则点G与点C重合,此时FG最长,如下图,∵△ABC是等边三角形,点F是AE的中点,∴AF=12AB=12×6=3,∴FG当点E与点C重合时,此时FG最短,如下图,∵点F是AE的中点,点G是CD的中点,∴FG=12AD=12AC=12×6=3,∴3FG ≤≤【点睛】本题主要考查图形的旋转变换,涉及全等三角形的判定和性质,三角形的中位线,等边三角形的性质等知识,熟练掌握全等三角形的判定和性质及等边三角形的性质是解题的关键.4、(1)见解析;(2)25【分析】(1)根据平行线的性质(两直线平行,内错角相等,同位角相等)得出两组角相等,然后等量代换即可得;(2)根据平行四边形的判定可得四边形ABED 为平行四边形,由垂直及四边形内角和可得90AGE ∠=︒,点E 到AD 的距离为AC ,根据平行四边形的等面积法即可得出54AC DE AG AD ==,再由已知条件即可得出DE 长度.【详解】解:(1)∵∥MN BF ,AB DE ∥,∴ABC BAM ∠=∠,ADE BAM ∠=∠,∴ABC ADE ∠=∠;(2)∵∥MN BF ,AB DE ∥,∴四边形ABED 为平行四边形,∵AC BF ⊥,∴点E 到AD 的距离为AC ,∵180CAG CEG ∠+∠=︒∴根据四边形内角和可得:90AGE ∠=︒,由平行四边形等面积法可得:AD AC DE AG ⨯=⨯, 根据题意可得:54AC AG =,∴54AC DE AG AD ==, ∵20AD =, ∴520254DE =⨯=.【点睛】题目主要考查平行线的性质及平行四边形的基本性质,利用平行四边形等面积法确定线段的比是解题关键.5、(1)2α;(2)①α;②12OM BF =;(3 【分析】(1)连接OB ,O B ',O C ',由=90ABC ∠,O 为BC 的中点,得到12OB OA OC AC ===, 则OBA A α∠=∠=,90CBO ABC OBA α∠=∠-=-∠,再由旋转的性质可得=O B O C '',90BCO CBO α''∠==-∠,由此求解即可;(2)①连接O C ',O F ',由(1)可知=2CO F α'∠(因为CO F '∠也是旋转角),由旋转的性质可得O C O F ''=,BC FC =,则90O CF O FC α''==-∠∠,可以得到1802BCF O CB O CF α''∠=∠+∠=-,再由BC FC =可以得到()1==1802BFC FBC BCF -∠∠∠,由此即可求解; ②连接OB ,OE 延长OM 交EF 于N ,由①得BFC FBC A α∠=∠=∠=,由旋转的性质可得CFE BCA =∠∠,AC EF =,然后证明90BFC CFE BFE ∠+∠=∠=,=90CBF OBC OBF ∠+∠=∠,得到OB EF ∥,则OBM NEM ∠=∠,再证明△OBM ≌△NEM 得到EN BO =,12OM MN ON ==,1122EN AC EF ==从而推出MN 为△BFE 的中位线,得到12MN BF =,则12OM BF =; (3)连接O C '与BF 交于H ,由=90O CF O CB α''=-∠∠,BC FC =,可得CH BF ⊥,2BF HF =,由含30度角的直角三角形的性质可以得到2CF CH ===,2EF CF ==,再由勾股定理可以得到BE ===,由此即可得到答案. 【详解】解:(1)如图所示,连接OB ,O B ',O C ',∵=90ABC ∠,O 为BC 的中点, ∴12OB OA OC AC ===, ∴OBA A α∠=∠=,∴90CBO ABC OBA α∠=∠-=-∠,∵将点O 沿BC 翻折得到点O ',∴==90CBO CBO α'-∠∠,由旋转的性质可得=O B O C '',90BCO CBO α''∠==-∠,∴1802BO C BCO CBO α'''=-∠-=∠∠,∴旋转角为2α,故答案为:2α;(2)①如图所示,连接O C ',O F ',由(1)可知=2CO F α'∠(因为CO F '∠也是旋转角),由旋转的性质可得O C O F ''=,BC FC =, ∴()1=180902O CF O FC CO F α'''=-=-∠∠∠, ∴1802BCF O CB O CF α''∠=∠+∠=-,∵BC FC =, ∴()1==180=2BFC FBC BCF α-∠∠∠,故答案为:α;②如图所示,连接OB ,OE 延长OM 交EF 于N ,由①得BFC FBC A α∠=∠=∠=,由旋转的性质可得CFE BCA =∠∠,AC EF =,∵=90ABC ∠,∴90A BCA ∠+∠=,∴90BFC CFE BFE ∠+∠=∠=,∵OC OB =,∴OBC BCA ∠=∠,∴90A OBC ∠+∠=,∴=90CBF OBC OBF ∠+∠=∠,∴OB EF ∥,∴OBM NEM ∠=∠∵M 为BE 的中点,∴BM ME =,在△OBM 和△NEM 中,OBM NEM BM EMOMB NME ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△OBM ≌△NEM (SAS ),∴EN BO =,12OM MN ON ==, ∴1122EN AC EF ==, ∴N 为EF 的中点,∴MN 为△BFE 的中位线, ∴12MN BF =, ∴12OM BF =;(3)如图所示,连接O C '与BF 交于H ,∵=90O CF O CB α''=-∠∠,BC FC =,∴CH BF ⊥,2BF HF =,∴OM HF =,∵30a =,∴=30BFC ∠,∴2FC CH =,∵222FC CH HF =+,∴2CF CH ===, ∵===30CEC A α∠∠,90FCE CBA ∠=∠=,∴2EF CF ==,∵BE ===,∴OMBE ==.【点睛】本题主要考查了旋转的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,三角形中位线定理,含30度角的直角三角形的性质,勾股定理,平行线的性质与判定等等,解题的关键在于能够熟练掌握旋转的性质.。

第六章 平行四边形(提高卷)(解析版)

《阳光测评》2020-2021学年下学期八年级数学单元提升卷【北师大版】第六章平行四边形(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列语句中正确的是()A.四边形都相等的四边形是矩形B.顺次连接矩形各边中点所得的四边形是菱形C.菱形的对角线相等D.对角线互相垂直的平行四边形是正方形【答案】B【分析】利用矩形、正方形、菱形的判定定理及菱形和矩形的性质分别判断后即可确定正确的选项.【解答】解:A、四边都相等的四边形是菱形,不是矩形,故不符合题意;B、顺次连接矩形各边中点所得的四边形是菱形,正确,故符合题意;C、矩形的对角线相等,错误,故不符合题意;D、对角线互相垂直的平行四边形是菱形,错误,故不符合题意;故选:B.【知识点】正方形的判定、矩形的判定与性质、平行四边形的性质、中点四边形、菱形的判定与性质2.把▱ABCD放入平面直角坐标系中,已知对角线的交点为原点,点A的坐标为(2,﹣3),点C的坐标为()A.(﹣3,2)B.(3,2)C.(﹣2,3)D.(2,3)【答案】C【分析】因为平行四边形是中心对称图形,若对角线的交点为原点时,则A点与C点关于原点对称,从而根据A点坐标可求C点坐标.【解答】解:∵平行四边形是中心对称图形,所以当其对角线的交点为原点时,则A点与C点关于原点对称,∵A(2,﹣3),∴C(﹣2,3).故选:C.【知识点】坐标与图形性质、平行四边形的性质3.如图,在▱ABCD中,∠B=60°,AB=4,对角线AC⊥AB,则▱ABCD的面积为()A.6B.12C.12D.16【答案】D【分析】首先在直角三角形ABC中求得AC,然后利用平行四边形的面积公式求得面积即可.【解答】解:∵在▱ABCD中,∠B=60°,AB=4,对角线AC⊥AB,∴AC=AB×tan∠B=4,∴▱ABCD的面积为AB•AC=4×4=16,故选:D.【知识点】平行四边形的性质4.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为()A.210°B.110°C.150°D.100°【答案】A【分析】解法一:根据多变的内角和定理可求解∠B+∠C+∠D+∠E=510°,∠1+∠2+∠B+∠C+∠D+∠E =(6﹣2)×180°=720°,进而可求解.解法二:利用三角形的内角和定理和平角的定义也可求解.【解答】解:解法一:∵∠A+∠B+∠C+∠D+∠E=(5﹣2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6﹣2)×180°=720°,∴∠1+∠2=720°﹣510°=210°,解法二:在△ANM中,∠ANM+∠AMN=180°﹣∠A=180°﹣30°=150°,∴∠1+∠2=360°﹣(∠AMN+∠ANM)=360°﹣150°=210°故选:A.【知识点】多边形内角与外角5.如图,在平行四边形ABCD中,DE,BF分别是∠ADC和∠ABC的平分线,添加一个条件,仍无法判断四边形BFDE为菱形的是()A.∠A=60˚B.DE=DFC.EF⊥BD D.BD是∠EDF的平分线【答案】A【分析】由平行四边形的性质和角平分线的性质可得∠ABF=∠CDE,由平行线的性质可得∠ABF=∠AED,可证DE∥BF,可得四边形DEBF是平行四边形,利用菱形的判定依次判断可求解.【解答】解:∵四边形ABCD是平行四边形,∴∠ADC=∠ABC,又∵DE,BF分别是∠ADC,∠ABC的平分线,∴∠ABF=∠CDE,∵CD∥AB,∴∠CDE=∠AED,∴∠ABF=∠AED,∴DE∥BF,∵DE∥BF,DF∥BE,∴四边形DEBF是平行四边形,若DE=DF,则四边形BFDE为菱形;若EF⊥BD,则四边形BFDE为菱形;若BD平分∠EDF,∴∠DBF=∠DBE,∵DF∥BE,∴∠FDB=∠DBE=∠DBF,∴DF=BF,∴四边形BFDE为菱形;故选:A.【知识点】角平分线的性质、平行四边形的性质、菱形的性质、菱形的判定6.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠EPF=136°,则∠EFP的度数是()A.68°B.34°C.22°D.44°【答案】C【分析】根据三角形中位线定理得到PE=AD,PF=BC,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是BD的中点,E是AB的中点,∴PE=AD,同理,PF=BC,∵AD=BC,∴PE=PF,∴∠EFP=×(180°﹣∠EPF)=22°,故选:C.【知识点】三角形中位线定理7.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大【答案】A【分析】连接AQ,根据三角形中位线定理解答即可.【解答】解:连接AQ,∵点Q是边BC上的定点,∴AQ的大小不变,∵E,F分别是AP,PQ的中点,∴EF=AQ,∴线段EF的长度保持不变,故选:A.【知识点】三角形中位线定理8.设BF交AC于点P,AE交DF于点Q.若∠APB=126°,∠AQF=100°,则∠A﹣∠F=()A.60°B.46°C.26°D.45°【答案】B【分析】依据三角形的外角可得∠1=∠APB﹣∠A=126°﹣∠A,根据三角形的内角和定理可得∠2=180°﹣∠AQF﹣∠F=180°﹣100°﹣∠F=80°﹣∠F,再根据对顶角相等的性质即可求得.【解答】解:如图:∵∠1=∠APB﹣∠A=126°﹣∠A,∠2=180°﹣∠AQF﹣∠F=180°﹣100°﹣∠F=80°﹣∠F;∵∠1=∠2,∴126°﹣∠A=80°﹣∠F;∴∠A﹣∠F=46°.故选:B.【知识点】多边形内角与外角、三角形的外角性质、三角形内角和定理9.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=4,F为DE的中点.若△CEF的周长为16,则OF的长为()A.2B.3C.4﹣2D.3【答案】C【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【解答】解:∵CE=4,△CEF的周长为16,∴CF+EF=16﹣4=12.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE,∴DE=2EF=12,∴CD===8.∵四边形ABCD是正方形,∴BC=CD=8,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(8﹣4)=4﹣2.故选:C.【知识点】三角形中位线定理、正方形的性质、直角三角形斜边上的中线10.如图,在平行四边形ABCD中,AD=2AB,作CE⊥AB于点E,点F是AD的中点,连接CF,EF.关于下列四个结论:①∠BCF=∠DCF;②∠FEC=∠FCE;③∠AEF=∠CFD;④S△CEF=S△BCE,则所有正确结论的序号是()A.①②③④B.①②③C.②③④D.③④【答案】B【分析】由平行四边形的性质结合等腰三角形的判定与性质可得∠DFC=∠BCF,DFC=∠DCF,可证明①;取EC的中点G,连接FG,则FG为梯形AECD的中位线,再证明FG⊥CE,可证明②;根据平行线的性质可得∠AEC=∠DCE=90°,进而可证明③;而无法证明④.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,AB=CD,∴∠DFC=∠BCF,∵点F是AD的中点,∴AD=2DF,∵AD=2AB,∴AD=2CD,∴DF=CD,∴∠DFC=∠DCF,∴∠BCF=∠DCF,故①正确;取EC的中点G,连接FG,则FG为梯形AECD的中位线,∴FG∥AB,∵CE⊥AB,∴FG⊥CE,∴EF=CF,∴∠FEC=∠FCE,故②正确;∵CE⊥AB,AB∥CD,∴CE⊥CD,∴∠AEC=∠DCE=90°,即∠AEF+∠FEC=∠DCF+∠FCE=90°,∴∠AEF=∠DCF,∵∠DCF=∠CFD,∴∠AEF=∠CFD,故③正确;根据现有条件无法证明S△CEF=S△BCE,故错误④.故选:B.【知识点】全等三角形的判定与性质、直角三角形斜边上的中线、平行四边形的性质二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.已知:在▱ABCD中,AE为BC边上的高,且AE=12,若AB=15,AC=13,则▱ABCD的面积为.【答案】48或168【分析】分高AE在△ABC内外两种情形,分别求解即可.【解答】解:①如图,高AE在△ABC内时,在Rt△ABE中,BE===9,在Rt△AEC中,CE===5,∴BC=BE+EC=14,∴S平行四边形ABCD=BC×AE=14×12=168.②如图,高AE在△ABC外时,BC=BE﹣CE=9﹣5=4,∴S平行四边形ABCD=BC×AE=12×4=48,故答案为:48或168.【知识点】平行四边形的性质12.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=5,BC=3,则EC的长为.【答案】2【分析】首先根据平行四边形的性质可得AB=CD=5,DC∥AB,AD=BC=3,然后证明AD=DE,进而可得EC长.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,DC∥AB,AD=BC=3,∴∠DEA=∠EAB,∵AE平分∠DAB,∴∠DAE=∠EAB,∴∠DAE=∠DEA,∴AD=DE,∵AD=3,∴DE=3,∴EC=5﹣3=2.故答案为:2.【知识点】平行四边形的性质13.如图,在△ABC中,AC=10,D,E分别是AB,AC的中点.F是DE上一点,连结AF、CF.若∠AFC=90°,DF=1,则BC的长为.【答案】12【分析】根据直角三角形的性质求出EF,得到DE的长,根据三角形中位线定理解答.【解答】解:∵∠AFC=90°,E是AC的中点,∴EF=AC=5,∴DE=DF+EF=5+1=6,∵D,E分别是AB,AC的中点,∴BC=2DE=12,故答案为:12.【知识点】三角形中位线定理14.如图,▱ABCD中,对角线AC、BD交于点O,OE⊥AC交AB于点E,已知△BCE的周长为14,则▱ABCD的周长为.【答案】28【分析】根据平行四边形的性质及OE⊥AC证明AE=CE,再根据已知△BEC周长求出AB+BC值,则平行四边形周长可求.【解答】解:∵四边形ABCD是平行四边形,∴O点为AC中点.∵OE⊥AC,∴AE=CE.∴△BCE的周长=BC+CE+BE=BC+AE+BE=BC+AB=14.∴平行四边形ABCD周长为2×14=28.故答案为28.【知识点】平行四边形的性质、线段垂直平分线的性质15.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点P,且AB=PC,∠PBC=2∠PCB,则∠A=°.【答案】60【分析】作△PBC关于BC的对称图形△DBC,再根据角平分线定义可得BD∥AC,延长BD到点E,使BE=AC,可得四边形ABEC是平行四边形,设∠PCB=α,可得∠DCE=∠CDE=3α,进而证明△CDE是等边三角形,可得结论.【解答】解:如图,作△PBC关于BC的对称图形△DBC,∴∠DBC=∠PBC,∠PCB=∠DCB,CD=CP,∵CP是∠ACB的平分线,∴∠BCA=2∠PCB,∵∠PBC=2∠PCB,∴∠DBC=∠BCA,∴BD∥AC,延长BD到点E,使BE=AC,∴四边形ABEC是平行四边形,设∠PCB=α,∴∠BCD=∠ACP=α,∴∠PBC=∠DBC=∠BCA=2α,∴∠ACD=3α,∠ABD=6α,∵四边形ABEC是平行四边形,∴∠ACE=∠ABE=6α,∴∠DCE=3α,∵∠CDE=∠DBC+∠DCB=3α,∴∠DCE=∠CDE,∴CE=ED,∵AB=CE,AB=PC,∴CE=CP,∴CE=ED,∵CD=CP,∴CE=ED=CD,∴△CDE是等边三角形,∴∠E=60°,∴∠A=∠E=60°.故答案为:60°.【知识点】轴对称的性质、角平分线的性质、平行四边形的判定与性质16.如图,矩形ABCD的对角线AC与BD相交点O,∠AOB=60°,AB=10,E、F分别为AO、AD的中点,则EF的长是.【答案】5【分析】根据矩形的性质得出AO=OC,DO=BO,AC=BD,求出DO=CO=AO=BO,求出△AOB是等边三角形,根据等边三角形的性质得出AO=OB=DO=10,根据三角形的中位线定理求出即可.【解答】解:∵四边形ABCD是矩形,∴AO=OC,DO=BO,AC=BD,∴DO=CO=AO=BO,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=10,∴AO=OB=DO=10,∵E、F分别为AO、AD的中点,∴EF=DO==5,故答案为:5.【知识点】三角形中位线定理、等边三角形的判定与性质、矩形的性质三、解答题(本大题共9小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,在△NMB中,BM=6,点A,C,D分别在边MB、BN、MN上,DA∥NB,DC∥MB,∠NDC=∠MDA.求四边形ABCD的周长.【分析】先证明四边形ABCD为平行四边形,则DC=AB,AD=BC,再证明∠NDC=∠MDA得到AD=AM,然后利用等线段代换得到四边形ABCD的周长=2BM.【解答】解:∵DA∥NB,DC∥MB,∴∠NDC=∠M,四边形ABCD为平行四边形,∴DC=AB,AD=BC,∵∠NDC=∠MDA.∴AD=AM,∴四边形ABCD的周长=AB+BC+CD+AD=2AM+2AB=2BM=2×6=12.【知识点】平行四边形的判定与性质18.如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF.求证:四边形DEBF是平行四边形.【分析】由平行四边形的性质可得AB=CD,AB∥CD,由AE=CF可得BE=DF,即可证四边形DEBF是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD∵AE=CF∴BE=DF,且DF∥BE∴四边形DEBF是平行四边形.【知识点】平行四边形的判定与性质19.如图,点E、F、G分别在▱ABCD的边AB、BC和AD上,且BA=BF,AE=AG,连接FE.求证:FE=FG.【分析】由平行线的性质和等腰三角形的性质可得∠DAF=∠BAF,由“SAS”可证△AEF≌△AGF,可得FE=FG.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠BF A,∵BA=BF,∴∠BAF=∠BF A,∴∠DAF=∠BAF,且AE=AG,AF=AF,∴△AEF≌△AGF(SAS)∴FE=FG.【知识点】全等三角形的判定与性质、平行四边形的性质20.如图,在四边形ABCD中,∠A=80°,∠ABC=70°,∠C=90°,DF平分∠ADC交BC于点F,点E在AD上,连接BE,且∠ABE:∠EBC=4:3,求证:BE∥DF.【分析】根据四边形内角和定理求得∠ADC=120°,继而由角平分线的性质和直角三角形两锐角互余知∠DFC=∠EBC=30°,据此可得.【解答】证明:∵∠A+∠ABC+∠C+∠ADC=360°,∠A=80°,∠ABC=70°,∠C=90°,∴∠ADC=120°,∵DF平分∠ADC,∴∠FDC=∠ADC=60°,∵∠C=90°,∴∠DFC=30°,又∵∠ABE:∠EBC=4:3,∴∠EBC=∠ABC=30°,∴∠DFC=∠EBC,∴BE∥DF.【知识点】平行线的判定、多边形内角与外角21.已知:D,E分别为△ABC的边AB,AC的中点.求证:DE∥BC,且DE=BC.【分析】延长DE到F,使EF=DE,连接CF,证明△ADE≌△CFE,根据全等三角形的性质得到AD=CF,∠A=∠ECF,证明四边形DBCF是平行四边形,根据平行四边形的性质证明结论.【解答】证明:延长DE到F,使EF=DE,连接CF,在△ADE和△CFE中,∵AE=CE,∠AED=∠CEF,DE=FE,∴△ADE≌△CFE(SAS),∴AD=CF,∠A=∠ECF,∴AD∥CF,∵AD∥CF,BD=AD=CF,∴四边形DBCF是平行四边形,∴DE∥BC,DF=BC,∴DE=DF=BC.【知识点】三角形中位线定理、平行线的判定22.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,BD=2BC,E、F、G分别是OC、OD、AB的中点.求证:(1)BE⊥AC;(2)连接AF,求证:四边形AGEF是菱形.【分析】(1)由平行四边形的性质可得OB=BC,由等腰三角形的性质可得出BE⊥AC;(2)由直角三角形的性质和三角形中位线定理可得到EG=EF,根据平行四边形的性质和菱形的判定定理即可得到结论.【解答】解:(1)∵四边形ABCD是平行四边形,∴BO=BD,即BD=2BO,又∵BD=2BC,∴OB=BC,又∵点E是OC的中点,∴BE⊥AC;(2)∵E、F分别是OC、OD的中点,∴EF=CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=AG=AB,∴又∵平行四边形ABCD中,AB=CD,AB∥CD,∴EG=EF=AG,EF∥AG,∴四边形AGEF是菱形.【知识点】菱形的判定、平行四边形的性质、三角形中位线定理23.如图,在平行四边形ABCD中,点P是AB边上一点(不与A,B重合),CP=CD,过点P作PQ⊥CP,交AD边于点Q,连接CQ.(1)若∠BPC=∠AQP,求证:四边形ABCD是矩形;(2)在(1)的条件下,当AP=4,AD=12时,求AQ的长.【分析】(1)证出∠A=90°即可;(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=12﹣x,由勾股定理得出方程,解方程即可.【解答】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴平行四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,∴Rt△CDQ≌Rt△CPQ(HL),∴DQ=PQ,设AQ=x,则DQ=PQ=12﹣x,在Rt△APQ中,AQ2+AP2=PQ2,∴x2+42=(12﹣x)2,解得:,∴AQ的长是.【知识点】矩形的判定与性质、平行四边形的性质24.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.【分析】(1)求出AP=BQ和AP∥BQ,根据平行四边形的判定得出即可;(2)求出高AM和ON的长度,求出△DOC和△OQC的面积,再求出答案即可.【解答】解:(1)当t=2.5s时,四边形ABQP是平行四边形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC=5cm,AO=CO,AO=OC,∴∠P AO=∠QCO,在△APO和△CQO中∴△APO≌△CQO(ASA),∴AP=CQ=2.5cm,∵BC=5cm,∴BQ=5cm﹣2.5cm=2.5cm=AP,即AP=BQ,AP∥BQ,∴四边形ABQP是平行四边形,即当t=2.5s时,四边形ABQP是平行四边形;(2)过A作AM⊥BC于M,过O作ON⊥BC于N,∵AB⊥AC,AB=3cm,BC=5cm,∴在Rt△ABC中,由勾股定理得:AC=4,由三角形的面积公式得:S△BAC==,∴3×4=5×AM,∴AM=2.4(cm),∵ON⊥BC,AM⊥BC,∴AM∥ON,∵AO=OC,∴MN=CN,∴ON=AM=1.2cm,∵在△BAC和△DCA中∴△BAC≌△DCA(SSS),∴S△DCA=S△BAC==6cm2,∵AO=OC,∴△DOC的面积=S△DCA=3cm2,当t=4s时,AP=CQ=4cm,∴△OQC的面积为 1.2cm×4cm=2.4cm2,∴y=3cm2+2.4cm2=5.4cm2.【知识点】平行四边形的判定与性质、全等三角形的判定与性质25.已知:如图,在▱ABCD中,对角线AC,BD相交于点O,点E,F在AC上,点G,H在BD上,且AE=CF,BG=DH.(1)若AC=6,BD=8,试求AD的取值范围;(2)若AC=AD,∠CAD=50°,试求∠ABC的度数;(3)求证:四边形EHFG是平行四边形.【分析】(1)在△AOD中求出OA、OD,即可利用三边关系确定AD的范围;(2)由四边形ABCD是平行四边形,可知∠ABC=∠ADC,求出∠ADC即可;(3)只要证明OE=OF,OG=OG即可解决问题;【解答】解:(1)∵四边形ABCD是平行四边形,∴OA=AC=3,OD=BD=4,∴1<AD<7.(2)∵CA=AD,∠CAD=50°,∴∠ADC=∠ACD=(180°﹣50°)=65°,∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=65°.(3)∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴AE=CF,BG=DH,∴OE=OF,OG=OH,∴四边形EHFG是平行四边形.【知识点】平行四边形的判定与性质、三角形三边关系。

2022-2023学年北师大版八年级数学下册第六章《平行四边形》测试卷附答案解析

2022-2023学年八年级数学下册第六章《平行四边形》测试卷一、单选题1.下列条件中不能判定四边形ABCD 是平行四边形的是()A .AB CD ∥,AB CD=B .AB CD ∥,AD BC ∥C .AB CD ∥,AD BC =D .AB CD ∥,A C∠=∠2.下列∠A :∠B :∠C :∠D 的值中,能判定四边形ABCD 是平行四边形的是()A .1:2:3:4B .1:4:2:3C .1:2:2:1D .3:2:3:23.下列说法正确的是()A .平行四边形是轴对称图形B .平行四边形的邻边相等C .平行四边形的对角线互相垂直D .平行四边形的对角线互相平分4.已知一个多边形的内角和与外角和的和为2160°,这个多边形的边数为()A .9B .10C .11D .125.如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为()A .15B .18C .21D .246.一个正多边形每个内角与它相邻外角的度数比为3:1,则这个正多边形是()A .正方形B .正六边形C .正八边形D .正十边形7.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A .∠A =∠1+∠2B .2∠A =∠1+∠2C .3∠A =2∠1+∠2D .3∠A =2(∠1+∠2)8.如图,P 是面积为S 的ABCD Y 内任意一点,PAD 的面积为1S ,PBC 的面积为2S ,则()A .122S S S +>B .122S S S +<C .122SS S +=D .12S S +的大小与P 点位置有关9.如图,小明从A 点出发,沿直线前进10米后向左转36°,再沿直线前进10米,再向左转36°……照这样走下去,他第一次回到出发点A 点时,一共走的路程是()A .100米B .110米C .120米D .200米10.如图,△ABC 是等边三角形,P 是三角形内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 的周长为24,则PD +PE +PF =()A .8B .9C .12D .1511.有下列说法:①平行四边形具有四边形的所有性质:②平行四边形是中心对称图形:③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是().A .①②④B .①③④C .①②③D .①②③④12.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC =7,则MN 的长度为()A.32B.2C.52D.3二、填空题13.一个多边形的内角和是它的外角和的4倍,这个多边形是_____边形.14.一个多边形外角和是内角和的29,则这个多边形的边数为________.15.一个多边形的每一个外角都等于36°,则这个多边形的边数为____________.16.一个多边形,除了一个内角外,其余各角的和为3000°,则内角和是______.17.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F 点,则EF的长为_____cm.18.如图,将等边三角形、正方形和正五边形按如图所示的位置摆放.1230∠=∠= ,则3∠=___.19.如图, ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=___厘米.20.如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF =18°,则∠PFE的度数是__________.21.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且32AE AF +=平行四边形ABCD 的周长等于______.三、解答题22.在 ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .23.在ABC 中,点D ,F 分别为边AC ,AB 的中点.延长DF 到点E ,使DF EF =,连接BE .(1)求证:ADF BEF ≌△△;(2)求证:四边形BCDE 是平行四边形.24.如图,在Rt △ABC 中,∠ACB =90°,点D ,E 分别是边AB ,AC 的中点,延长BC 到点F ,使CF =12BC .连结CD 、EF ,那么CD 与EF 相等吗?请证明你的结论.25.已知:如图A 、C 是▱DEBF 的对角线EF 所在直线上的两点,且AE =CF .求证:四边形ABCD 是平行四边形.26.如图所示,点E ,F ,G ,H 分别是四边形ABCD 的边,,,AB BC CD DA 的中点,求证:四边形EFGH 是平行四边形.27.如图,平行四边形ABCD 的对角线AC ,BD 相交于О点,DE AC ⊥于E 点,BF AC ⊥于F .(1)求证:四边形DEBF 为平行四边形;(2)若20AB =,13AD =,21AC =,求DOE 的面积.28.如图,四边形ABCD 中,∠A =∠ABC =90°,AD =1,BC =3,点E 是边CD 的中点,连接BE 并延长与AD 的延长线交于点F .(1)求证:四边形BDFC 是平行四边形;(2)若BC =BD ,求BF 的长.29.如图,点A 、D 、C 、B 在同一条直线上,AC BD =,AE BF =,//AE BF .求证:(1)ADE BCF ∆≅∆;(2)四边形DECF 是平行四边形.30.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD ,等边△ABE ,已知∠BAC =30°,EF ⊥AB ,垂足为F ,连接DF(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形.31.如图,△ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE //AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形;(2)若∠B =30°,∠CAB =45°,2AC =,求AB 的长.32.如图,在四边形ABCD 中,AB CD =,BE DF =;AE BD ⊥,CF BD ⊥,垂足分别为E ,F .(1)求证:ABE ≌CDF ;(2)若AC 与BD 交于点O ,求证:AO CO =.33.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接CE 并延长交BA 的延长线于点F ,连接AC ,DF .(1)求证: AEF ≌ DEC ;(2)求证:四边形ACDF 是平行四边形.34.如图,在□ABCD 中,点O 是对角线AC 、BD 的交点,EF 过点O 且垂直于AD .(1)求证:OE =OF ;(2)若S ▱ABCD =63,OE =3.5,求AD 的长.35.如图,AB ,CD 相交于点O ,AC ∥DB ,OA =OB ,E 、F 分别是OC ,OD 中点.(1)求证:OD =OC .(2)求证:四边形AFBE 平行四边形.36.已知:如图,在ABC 中,中线,BE CD 交于点,,O F G 分别是,OB OC 的中点.求证:(1)//DE FG ;(2)DG 和EF 互相平分.37.如图,▱ABCD 中,BD ⊥AD ,∠A =45°,E 、F 分别是AB ,CD 上的点,且BE =DF ,连接EF 交BD 于O .(1)求证:BO =DO ;(2)若EF ⊥AB ,延长EF 交AD 的延长线于G ,当FG =1时,求AD 的长.38.如图,点D 是ABC 内一点,点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点.(1)求证:四边形EFGH 是平行四边形;(2)如果∠BDC =90°,∠DBC =30°,2CD =,AD =6,求四边形EFGH 的周长.39.在四边形ABCD 中,已知AD ∥BC ,∠B =∠D ,AE ⊥BC 于点E ,AF ⊥CD 于点F .(1)求证:四边形ABCD 是平行四边形;(2)若AF =2AE ,BC =6,求CD 的长.40.如图,在四边形ABCD 中,//,90,16cm,12cm,21cm AD BC B AD AB BC ∠==== .动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动时间为t (秒).(1)当010.5t <<时,若四边形PQDC 是平行四边形,求出满足要求的t 的值;(2)当010.5t <<时,若以C ,D ,Q ,P 为顶点的四边形面积为260cm ,求相应的t 的值;(3)当10.516t ≤<时,若以C ,D ,Q ,P 为顶点的四边形面积为260cm ,求相应的t 的值.41.如图,在平面直角坐标系xOy 中,已知直线AB :y =23x +4交x 轴于点A ,交y 轴于点B .直线CD :y =-13x -1与直线AB 相交于点M ,交x 轴于点C ,交y 轴于点D .(1)直接写出点B 和点D 的坐标;(2)若点P 是射线MD 的一个动点,设点P 的横坐标是x ,△PBM 的面积是S ,求S 与x 之间的函数关系;(3)当S =20时,平面直角坐标系内是否存在点E ,使以点B ,E ,P ,M 为顶点的四边形是平行四边形?若存在,请直接写出点P 坐标并求出所有符合条件的点E 的坐标;若不存在,请说明理由.42.在ABC 中,AB AC =,点D 在边BC 所在的直线上,过点D 作//DF AC 交直线AB 于点F ,//DE AB 交直线AC 于点E .(1)当点D 在边BC 上时,如图①,求证:DE DF AC +=.(2)当点D 在边BC 的延长线上时,如图②,线段DE ,DF ,AC 之间的数量关系是_____,为什么?(3)当点D 在边BC 的反向延长线上时,如图③,线段DE ,DF ,AC 之间的数量关系是____(不需要证明).43.如图,在平面直角坐标系xOy 中,直线y =-12x +32与y =x 相交于点A ,与x 轴交于点B .(1)求点A ,B 的坐标;(2)在平面直角坐标系xOy 中,是否存在一点C ,使得以O ,A ,B ,C 为顶点的四边形是平行四边形?如果存在,试求出所有符合条件的点C 的坐标;如果不存在,请说明理由;(3)在直线OA 上,是否存在一点D ,使得△DOB 是等腰三角形?如果存在,试求出所有符合条件的点D 的坐标,如果不存在,请说明理由.参考答案:1.C2.D3.D4.D5.A6.C7.B8.C9.A10.A11.D12.C 13.十14.1115.1016.3060 17.118.42︒19.320.18.21.1222.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DFA =∠FAB .在Rt △BCF 中,由勾股定理,得BC 22FC FB +2234+,∴AD =BC =DF =5,∴∠DAF =∠DFA ,∴∠DAF =∠FAB ,即AF 平分∠DAB .23.【详解】(1)证明:∵点F 为边AB 的中点,∴BF AF =,在ADF △与BEF △中,AF BF AFD BFE DF EF =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)ADF BEF △△≌;(2)证明:∵点D 为边AC 的中点,∴AD DC =,由(1)得ADF BEF ≌△△,∴AD BE =,ADF BEF ∠=∠,∴DC BE =,//DC BE ,∴四边形BCDE 是平行四边形.24.【详解】解:结论:CD =EF .理由如下:∵D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,DE 12=BC .∵CF 12=BC ,∴DE =CF ,∴四边形DEFC 是平行四边形,∴CD =EF .25.【详解】证明:∵平行四边形DEBF ,∴//DE BF ,//DF BE ,∴DEF BFE ∠=∠,DFE BEF ∠=∠,∵180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,∴DEA BFC ∠=∠,DFC BEA ∠=∠,∵平行四边形DEBF ,∴DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩∴DEA BFC △≌△,∴AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩∴DFC BEA △≌△,∴CD AB =,∴四边形ABCD 是平行四边形.26.【详解】解:如图,连接BD.∵点E ,H 分别是线段,AB DA 的中点,∴EH 是ABD △的中位线,∴EH ∥BD ,12EH BD =.同理,1//,2FG BD FG BD =.∴//,=EH FG EH FG ,∴四边形EFGH 是平行四边形.27.【详解】(1)证明:,DE AC BF AC ⊥⊥ ,,90DE BF AED CFB ∴∠=∠=︒ ,四边形ABCD 是平行四边形,,AD BC AD BC ∴= ,DAE BCF ∴∠=∠,在ADE V 和CBF V 中,90AED CFB DAE BCF AD CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ADE CBF AAS ∴≅ ,DE BF ∴=,又DE BF ,∴四边形DEBF 为平行四边形;(2)解: 四边形ABCD 是平行四边形,20,21AB AC ==,12120,22CD AB OA AC ∴====,,13DE AC AD ⊥= ,22222AD AE DE CD CE ∴-==-,即22221320AE CE -=-,()()231CE AE CE AE ∴+-=,即()231AC CE AE -=,23111CE AE AC∴-==①,又21CE AE AC +== ②,∴联立①、②得:5AE =,2211,122OE OA AE DE AD AE ∴=-==-=,则DOE 的面积为11111233222OE DE ⋅=⨯=.28.(1)证明:∵90A ABC ∠∠︒==,∴180A ABC ∠∠︒+=,∴BC ∥AF ,∴CBE DFE ∠∠=,∵E 是边CD 的中点,∴CE =DE ,在△BEC 与△FED 中,CBE DFEBEC FED CE DE ∠∠⎧⎪∠=∠⎨⎪=⎩=∴△BEC ≌△FED (AAS ),∴D BC F =,∴四边形BDFC 是平行四边形;(2)解:∵BD =BC =3,∠A =90°,1AD =,∴22223122AB BD AD -=-==∵四边形BDFC 是平行四边形∴3BC DF ==∴4AF =∴()222222426BF AB AF ++==29.【详解】证明:(1)AC BD = ,AC CD BD CD ∴-=-,即AD BC =,//AE BF ,A B ∴∠=∠,在ADE ∆与BCF ∆中,AD BC A B AE BF =⎧⎪∠=∠⎨⎪=⎩,()ADE BCF SAS ∴∆≅∆;(2)由(1)得:ADE BCF ∆≅∆,DE CF ∴=,ADE BCF ∠=∠,EDC FCD ∴∠=∠,//DE CF ∴,∴四边形DECF 是平行四边形.30.【详解】证明:(1)∵Rt △ABC 中,∠BAC =30°,∴AB =2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB =2AF .∴AF =BC .∵在Rt △AFE 和Rt △BCA 中,AF =BC ,AE =BA ,∴△AFE ≌△BCA (HL ).∴AC =EF .(2)∵△ACD 是等边三角形,∴∠DAC =60°,AC =AD .∴∠DAB =∠DAC +∠BAC =90°.∴EF //AD .∵AC =EF ,AC =AD ,∴EF =AD .∴四边形ADFE 是平行四边形.31.(1)证明:∵AB //CE ,∴∠CAD =∠ACE ,∠ADE =∠CED .∵F 是AC 中点,∴AF =CF .在△AFD 与△CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AFD ≌△CFE (AAS ),∴DF =EF ,∴四边形ADCE 是平行四边形;(2)解:过点C 作CG ⊥AB 于点G,∵∠CAB =45°,∴AG CG =,在△ACG 中,∠AGC =90°,∴222AG CG AC +=,∵2AC =CG =AG =1,∵∠B =30°,∴12CG BC =,∴2BC =,在Rt △BCG 中,22413BG BC CG =-=-=,∴13AB AG BG =+=.32.【详解】(1)证明:∵AE BD ⊥,CF BD ⊥,∴90AEB CFD ∠=∠=︒,∵AB CD =,BE DF =,∴ABE ≌CDF .(2)由(1)ABE ≌CDF ,∴AE CF =,∵AE BD ⊥,CF BD ⊥,∴90AEO CFO ∠=∠=︒,∵AOE COF ∠=∠,∴()AEO CFO AAS ≌∴AO CO =.33.【详解】(1)∵在平行四边形ABCD 中,AB ∥CD ,∴∠FAE =∠CDE ,∵点E 是边AD 的中点,∴AE =DE ,在△AEF 和△DEC 中FAE CDE AE DE AEF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEF ≌△DEC (ASA ).(2)∵△AEF ≌△DEC ,∴AF =DC ,∵AF ∥DC ,∴四边形ACDF 是平行四边形.34.(1)解:∵四边形ABCD 是平行四边形,O 是AC 与BD 的交点,∴AO =CO ,AD ∥BC ,∴∠OAE =∠OCF ,∠OEA =∠OFC ,∴△AOE ≌△COF (AAS ),∴OE =OF ;(2)解:由(1)得OE =OF =3.5,∴EF =7,∵AD ∥BC ,EF ⊥AD ,∴EF 的长即为平行四边形ABCD 中AD 边上的高,∵四边形ABCD 的面积为63,∴=63AD EF ⋅,∴AD =9.35.【详解】证明:(1)∵AC ∥DB ,∴∠CAO =∠DBO ,∵∠AOC =∠BOD ,OA =OB ,∴△AOC ≌△BOD ,∴OC =OD ;(2)∵E 是OC 中点,F 是OD 中点,∴OE =12OC ,OF =12OD ,∵OC =OD ,∴OE =OF ,又∵OA =OB ,∴四边形AFBE 是平行四边形.36.【详解】(1)在△ABC 中,∵BE 、CD 为中线∴AD =BD ,AE =CE ,∴DE ∥BC 且DE =12BC .在△OBC 中,∵OF =FB ,OG =GC ,∴FG ∥BC 且FG =12BC .∴DE ∥FG(2)由(1)知:DE ∥FG ,DE =FG .∴四边形DFGE 为平行四边形.∴DG 和EF 互相平分37.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴DC AB ∥,∴OBE ODF ∠=∠,在OBE △与ODF △中OBE ODF BOE DOF BE DF =⎧⎪=⎨⎪=⎩∠∠∠∠∴()OBE ODF AAS ≌△△,∴BO DO =.(2)解:∵BD AD ⊥,∴90ADB ∠=︒,∴45DBA A ∠=∠=︒,∴AD DB =,∴EF AB ⊥,∴45G A ∠=∠=︒,∵EF AB ⊥,,AB DC ∴DF OG ⊥,∴45GDF G ==︒∠∠,∴GDF 为等腰直角三角形,∴1DF FG ==,∴2222112DG DF FG =+=+=,∵BD AD ⊥,∴90ADB GDO ∠=∠=︒,∴45GOD G ∠=∠=︒,∴2DO DG ==由(1)OBE ODF ≌△△,∴=2OB OD =∴2222DB OD OB =+==22AD DB ==,故答案为:22AD =.38.(1)证明:∵点E ,F ,G ,H 分别是AB ,AC ,CD ,BD 的中点.∴EH =FG =12AD ,EF HG ==12BC ,∴四边形EFGH 是平行四边形;(2)∵∠BDC =90°,∠DBC =30°,∴BC =2CD =4.由(1)得:四边形EFGH 的周长=EH +GH +FG +EF =AD +BC ,又∵AD =6,∴四边形EFGH 的周长=AD +BC =6+4=10.39.【详解】(1)证明:∵AD //BC ,∴∠BAD +∠B =180°,∵∠B =∠D ,∴∠BAD +∠D =180°,∴AB //CD ,又∵AD//BC,∴四边形ABCD是平行四边形;(2)解:∵AE⊥BC于点E,AF⊥CD于点F,∴平行四边形的面积=BC×AE=CD×AF,∵AF=2AE,∴BC=2CD=6,∴CD=3.40.【详解】解:(1)∵四边形PQDC是平行四边形,∴DQ=CP,当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:∵DQ=AD-AQ=16-t,CP=21-2t∴16-t=21-2t解得:t=5;即当t=5秒时,四边形PQDC是平行四边形;(2)当0<t<10.5时,P、Q分别沿AD、BC运动,如图1所示:CP=21-2t,DQ=16-t,若以C,D,Q,P为顶点的四边形面积为60cm2,则12(DQ+CP)×AB=60,即12(16-t+21-2t)×12=60,解得:t=9;即当0<t<10.5时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为9秒;(3)当10.5≤t<16时,如图2所示,点P到达C点返回,CP=2t-21,DQ=16-t,则同(2)得:12(DQ+CP)×AB=60,即12(16-t+2t-21)×12=60,解得:t=15.即当10.5≤t<16时,若以C,D,Q,P为顶点的四边形面积为60cm2,t的值为15秒.41.【详解】解:(1)∵点B是直线AB:y=23x+4与y轴的交点坐标,∴B(0,4),∵点D 是直线CD :y =-13x -1与y 轴的交点坐标,∴D (0,-1);(2)如图1,∵直线AB 与CD 相交于M ,∴243113y x y x ⎧=⎪⎪⎨⎪=-⎪⎩+①-②①-②可得:x +5=0,∴x =-5,把x =-5代入②可得:y =23,∴M 坐标为(-5,23),∵B (0,4),D (0,-1),∴BD =5,∵点P 在射线MD 上,当P 在MD 的延长线上时,x ≥0,S =S △BDM +S △BDP =12×5(5+x )=52522x +,当P 在线段MD 上时,-5<x <0,S =S △BDM -S △BDP =12×5(5+x )=52522x +,∴S =52522x +(x >-5)(3)如图,由(2)知,S =52522x +,当S =20时,52522x +=20,∴x =3,∴P (3,-2),①当BP 是对角线时,取BP 的中点G ,连接MG 并延长取一点E '使GE '=GM ,设E '(m ,n ),∵B (0,4),P (3,-2),∴BP 的中点坐标为(32,1),∵M (-5,23),∴25331222nm +-+==,,∴m =8,n =43,∴E '(8,43),②当AB 为对角线时,同①的方法得,E (-8,203),③当MP 为对角线时,同①的方法得,E ''(-2,-163),即:满足条件的点E 的坐标为(8,43)、(-8,203)、(-2,-163).42.【详解】证明:(1)∵//DF AC ,//DE AB .∴四边形AFDE 是平行四边形.∴DF AE =.∵AB AC =.∴B C ∠=∠.∵//DE AB .∴EDC B ∠=∠.∴EDC C ∠=∠.∴DE EC =.∴DE DF EC AE AC +=+=.(2)DF AC DE =+.理由:∵//DF AC ,//DE AB ,∴四边形AFDE 是平行四边形.∴AE DF =.∵//DE AB ,∴B BDE ∠=∠.∵AB AC =,∴B ACB ∠=∠.∵DCE ACB ∠=∠,∴BDE DCE ∠=∠.∴DE CE =.∴AC DE AC CE AE DF +=+==.(3)DE AC DF=+理由:∵DF ∥AC ,DE ∥AB ,∴四边形AEDF是平行四边形,∴DF=AE,∠EDC=∠ABC,又∵∠AB=AC,∴∠ABC=∠C∴∠EDC=∠C,∴DE=EC,∴DE EC AE AC AC DF==+=+.43.【详解】(1)∵直线y=-12x+32与y=x相交于点A,∴联立得1322y xy x⎧=-+⎪⎨⎪=⎩,解得11xy=⎧⎨=⎩,∴点A(1,1),∵直线y=-12x+32与x轴交于点B,∴令y=0,得-12x+32=0,解得x=3,∴B(3,0),(2)存在一点C,使得以O,A,B,C为顶点的四边形是平行四边形.①如图1,过点A作平行于x轴的直线,过点O作平行于AB的直线,两直线交于点C,∵AC∥x轴,OC∥AB,∴四边形CABO是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(-2,1),②如图2,过点A作平行于x轴的直线,过点B作平行于AO的直线,两直线交于点C,∵AC∥x轴,BC∥AO,∴四边形CAOB是平行四边形,∵A(1,1),B(3,0),∴AC=OB=3,∴C(4,1),③如图3,过点O作平行于AB的直线,过点B作平行于AO的直线,两直线交于点C,∵OC∥AB,BC∥AO,∴四边形CBAO是平行四边形,∵A(1,1),B(3,0),∴AO=BC,OC=AB,作AE⊥OB,CF⊥OB,易得OE=EF=FB=1,∴C(2,-1),(3)在直线OA上,存在一点D,使得△DOB是等腰三角形,①如图4,当OB=OD时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=32,∴D(-32,-32),②如图5,当OD=OB时,作DE⊥x轴,交x轴于点E∵OB=3,点D在OA上,∠DOE=45°∴DE=OE=322,∴D(322,322),③如图6,当OB=DB时,21∵∠AOB =∠ODB =45°,∴DB ⊥OB ,∵OB =3,∴D (3,3),④如图7,当DO =DB 时,作DE ⊥x 轴,交x 轴于点E ∵∠AOB =∠OBD =45°,∴OD ⊥DB ,∵OB =3,∴OE =32,AE =32,∴D (32,32).综上所述,在直线OA 上,存在点D (-322,-322),D (322,322),D (3,3)或D (32,32),使得△DOB 是等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形提高题一、填空题1、在平行四边形ABCD 中,AB =5,BC =7,∠B 、∠C 的平分线分别交AD 于E 、F ,则EF = .2、平行四边形的周长为24cm ,相邻的两边长的比为3:1,则这个平行四边形较短的边长为 cm 。

3、如图,矩形ABCD 的面积为5,它的两条对角线交于点O1,以AB 、AO1,为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2, 同样以AB 、AO2为两邻边作平行四边形ABC2O2,……,依次类推,则平行四边形ABCnOn 的面积为________.4、如图,△ABC 是边长为1的等边三角形.取BC 边中点E ,作ED ∥AB ,EF ∥AC ,得到四边形EDAF ,它的面积记作S 1;取BE 中点E 1,作E 1D 1∥FB ,E 1F 1∥EF ,得到四边形E 1D 1FF 1,它的面积记作S 2.照此规律作下去,则S 2011= .5、已知□ABCD 的周长为28,自顶点A 作AE ⊥DC 于点E ,AF ⊥BC 于点F .若AE =3,AF =4,则CE-CF= .6、如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .7、如图,AC 是□ABCD 的对角线,点E 、F 在AC 上,要使四边形BFDE 是平行 四边形,还需要增加的一个条件是 (只要填写一种情况).8、如图,P 是□ABCD 内的一点,52=∆ABCD APBS S 平行四边形,则=∆ABCDCPD S S 平行四边形______. 9、如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45o ,且AE+AF =,则平行四边形ABCD 的周长是 .二、选择题10、如图所示,已知△ABC 的周长为1,连接△ABC 三边的中点构成第二个三角形,再连接第二个三角形三边中点构成第三个三角形,依次类推,第2008个三角形的周长为( )A .20071B .20081 C .200721 D .200821 11、在□ABCD 中,∠A:∠B:∠C:∠D 的值可能是( )A. 1:2:3:4 B .1:2:2:1 C .2:2:1:1 D .2:1:2:112、如图,DE 是△ABC 的中位线,DE=2cm, AB +AC=14cm,则梯形DBCE 的周长是( )A. 13cmB. 18cmC. 10cmD. 上述答案都不对13、下列说法中:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③对角线相等的四边形一定是平行四边形。

其中正确的说法有( )A .0个B .1个C .2个D .3个14、平行四边形的一条边长为12cm ,那么这个平行四边形的两条对角线的长可以是( )A.5 cm 和7 cmB.20 cm 和30 cmC.8 cm 和16 cmD.6 cm 和10 cm15、将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有( )A 、1种B 、2种C 、4种D 、无数种16、如图,在□ABCD 中,E 是BC 的中点,且∠AEC=∠DCE ,则下列结论不正确的是_______ A 、S △AFD =2S △EFB B 、BF=21DF C 、四边形AECD 是等腰梯形 D 、∠AEB=∠ADC 17、如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm (B )36cm (C )24cm (D )18cm18、如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E 、F 、G 、H 分别是 AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是【 】A .7B .9C .10D .1119、如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ;② △ADC 是等腰直角三角形;③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ;② 一定正确的结论有( ) A .1个 B .2个 C .3个 D .4个20、如图,在□ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 的交点P 在BD 上,则图中面积相等的平行四边形有( )(A )0对 (B )1对 (C )2对 (D )3对21、如图,在直角梯形ABCD 中,∠ABC=90°,DC//AB ,BC=3,DC=4,AD=5.动点P 从B 点出发,B →C →D →A 沿边运动,则△ABP 的最大面积为( )A .10B .12C .14D .1622、以不在同一直线上的三个点为顶点作平行四边形最多能作( )A.4个B.3个C.2个D.1个三、作图题23、阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O。

若梯形ABCD的面积为1,AD+的长度为三边长的三角形的面积。

试求以AC,BD,BC小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可。

他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题。

他的方法是过点D作AD+的长度为三边长的三角形(如AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,BC图2)。

参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC的三条中线分别为AD,BE,CF。

(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于_______。

四、简答题24、如图,△ABC中,AB⊥BCAD⊥BD,CE⊥BD,若CE=6,AD=2,求DE的长25、如图,在□ABCD中,延长CD至点E,延长CB至点F,使点E、A、F共线,且∠EAD=∠BAF。

(1)试说明△CEF是等腰三角形;(2) △CEF的哪两边之和恰好是□ABCD的周长?并说明理由。

26、如图,在△ABC中,D是BC上的点,O是AD的中点,过A作BC的平行线交BO的延长线于点E,则四边形ABDE是什么四边形?并说明理由。

27、如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明.(2)判断四边形ABDF 是怎样的四边形,并说明理由.29、如图,平行四边形ABCD 的对角线AC 、BD 交于点O ,E 、F 在AC 上,G 、H 在BD 上,且AF =CE ,BH =DG ,求证:AG ∥HE30、如图1,有一张菱形纸片ABCD ,AC =8,BD =6.(1)若沿着AC 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图2中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的面积;(2)若沿着BD 剪开,把它分成两部分,把剪开的两部分拼成一个平行四边形,请在图3中用实线画出你所拼成的平行四边形,并直接写出这个平行四边形的周长;(3)沿着一条直线剪开,把它分成两部分,把剪开的两部分拼成与上述两种都不全等的平行四边形,请在图4中用实线画出你所拼成的平行四边形.(注:上述所画的平行四边形都不能与原菱形全等)31、已知:如图,DB ∥AC ,且AC DB 21 ,E 是AC 的中点.求证:BC=DE .32、.已知:如图,在□ABCD 中,∠ADC 、∠DAB 的平分线DF 、AE 分别与线段BC 相交于点F 、E ,DF 与AE 相交于点G .(1)求证:AE ⊥DF ;(2)若AD =10,AB =6,AE =4,求DF 的长.33、已知:在△ABC中,AD为中线,如图1,将△ADC沿直线AD翻折后点C落在点E处,联结BE和CE。

(1)求证:BE⊥CE;(2)若AC=DC(如图2),请在图2中画出符合题意的示意图,并判断四边形ADBE是什么四边形?请证明你的结论。

34、已知:如图,在平行四边形ABCD中,点E在AD上,连接BE,DF//BE交BC于点F,AF与BE交于点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.35、已知如图,平行四边形ABCD中,,点F为线段BC上的一点(端点B,C除外),连结AF,AC,连结DF,并延长DF交AB的延长线于点E,连结CE。

(1)当F为BC的中点时,求证与和面积相等;(2)当F为BC上任意一点时,与的面积还相等吗?说明理由。

36、如图,在平行四边形ABCD中,两条对角线相交于点O,点E,F,G,H分别是OA,OB,OC,OD的中点,以图中的任意四点(即点A,B,C,D,E,F,G,H,O中的任意四点)为顶点画出两种不同的平行四边形,并说明理由。

第一种:第二种:37、若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线,另一条为一边,是否可以画平行四边形?38、已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC.(1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有(用序号表示):____ __;(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.五、综合题39、在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。

(1)在图1中证明;(2)若,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若,FG∥CE,,分别连结DB、DG(如图3),求∠BDG的度数。

相关文档
最新文档