初步认识MATLAB和控制系统仿真实验报告

合集下载

控制系统matlab仿真实验报告2

控制系统matlab仿真实验报告2

09自动化张家明080312009081控制系统仿真实验报告实验2:MATLAB的数学运算、M文件及外部数据操作班级:09自动化报告人:张家明完成时间:2012-10-221. M文件和函数的创建1)创建一个计算阶乘的函数2)创建一个M文件,并用它调用1)所创建的函数进行阶乘计算3)创建一个能读取外部数据的函数,并建立一个有数据的外部文件,使用该函数读取文件中的数据并求数据之和、平均值。

1).M函数:function result=jc(n)result=1;for i=1:nresult=result*i;endresult2).创建一个M文件,在文件中输入:result=jc(6)运行结果:result =7203).M函数:function [data,average,total]=cal(x1)Fid=fopen(x1,'rt');if Fid==-1disp('file does not exist !')elsedata=fscanf(Fid, '%f',inf);fclose(Fid);dataaverage=mean(data)total=sum(data)end运行结果:>> cal('data.dat')09自动化张家明0803120090811234567891011121314151617181920average =10.5000total =2102. MATLAB的程序设计function result=find_zero(m,n)a=rand(m,n)<0.7result=zeros(m,1);for i=1:mfor j=1:nif ~a(i,j)result(i)=j;break;endendif result(i)==0result(i)=Inf;endendresult运行结果:>> find_zero(3,4)a =0 1 1 11 0 1 11 0 0 0result =1223. 编写函数:判断一个点与三角形的位置关系,能够给出点在三角形内部,在三角形边上,还是在三角形外部的信息。

MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告

MATLAB与控制系统仿真实验报告第一篇:MATLAB与控制系统仿真实验报告《MATLAB与控制系统仿真》实验报告2013-2014学年第 1 学期专业:班级:学号:姓名:实验三 MATLAB图形系统一、实验目的:1.掌握绘制二维图形的常用函数。

2.掌握绘制三维图形的常用函数。

3.熟悉利用图形对象进行绘图操作的方法。

4.掌握绘制图形的辅助操作。

二、实验原理:1,二维数据曲线图(1)绘制单根二维曲线plot(x,y);(2)绘制多根二维曲线plot(x,y)当x是向量,y是有一维与x同维的矩阵时,则绘制多根不同颜色的曲线。

当x,y是同维矩阵时,则以x,y对应列元素为横、纵坐标分别绘制曲线,曲线条数等于矩阵的列数。

(3)含有多个输入参数的plot函数plot(x1,y1,x2,y2,…,xn,yn)(4)具有两个纵坐标标度的图形plotyy(x1,y1,x2,y2)2,图形标注与坐标控制1)title(图形名称);2)xlabel(x轴说明)3)ylabel(y轴说明)4)text(x,y图形说明)5)legend(图例1,图例2,…)6)axis([xmin xmax ymin ymax zmin zmax])3, 图形窗口的分割 subplot(m,n,p)4,三维曲线plot3(x1,y1,z1,选项1,x2,y2,选项2,…,xn,yn,zn,选项n)5,三维曲面mesh(x,y,z,c)与surf(x,y,z,c)。

一般情况下,x,y,z是维数相同的矩阵。

X,y是网格坐标矩阵,z是网格点上的高度矩阵,c用于指定在不同高度下的颜色范围。

6,图像处理1)imread和imwrite函数这两个函数分别用于将图象文件读入matlab工作空间,以及将图象数据和色图数据一起写入一定格式的图象文件。

2)image和imagesc函数这两个函数用于图象显示。

为了保证图象的显示效果,一般还应使用colormap函数设置图象色图。

自动控制原理MATLAB实验报告

自动控制原理MATLAB实验报告

实验一 典型环节的MATLAB 仿真一、实验目的1.熟悉MATLAB 桌面和命令窗口,初步了解SIMULINK 功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、实验原理1.比例环节的传递函数为K R K R R RZ Zs G 200,1002)(211212==-=-=-=其对应的模拟电路及SIMULINK 图形如图1所示。

2.惯性环节的传递函数为uf C K R K R s C R R R Z Z s G 1,200,10012.021)(121121212===+-=+-=-=其对应的模拟电路及SIMULINK 图形如图2所示。

图1 比例环节的模拟电路及SIMULINK 图形图2惯性环节的模拟电路及SIMULINK 图形3.积分环节(I)的传递函数为ufCKRssCRZZsG1,1001.011)(111112==-=-=-=其对应的模拟电路及SIMULINK图形如图3所示。

4.微分环节(D)的传递函数为ufCKRssCRZZsG10,100)(111112==-=-=-=ufCC01.012=<<其对应的模拟电路及SIMULINK图形如图4所示。

5.比例+微分环节(PD)的传递函数为)11.0()1()(111212+-=+-=-=ssCRRRZZsGufCCufCKRR01.010,10012121=<<===其对应的模拟电路及SIMULINK图形如图5所示。

6.比例+积分环节(PI)的传递函数为图3 积分环节的模拟电路及及SIMULINK图形图4 微分环节的模拟电路及及SIMULINK图形图5比例+微分环节的模拟电路及SIMULINK图形曲线)11(1)(11212sRsCRZZsG+-=+-=-=ufCKRR10,100121===其对应的模拟电路及SIMULINK图形如图6所示。

自动控制原理MATLAB仿真实验报告

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。

%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。

自动控制原理MATLAB仿真实验(于海春)

自动控制原理MATLAB仿真实验(于海春)

自动控制原理MATLAB仿真实验(于海春)实验一典型环节的MATLAB仿真一、实验目的1.熟悉MATLAB桌面和命令窗口,初步了解SIMULINK功能模块的使用方法。

2.通过观察典型环节在单位阶跃信号作用下的动态特性,加深对各典型环节响应曲线的理解。

3.定性了解各参数变化对典型环节动态特性的影响。

二、SIMULINK 的使用MATLAB中SIMULINK是一个用来对动态系统进行建模、仿真和分析的软件包。

利用SIMULINK功能模块可以快速的建立控制系统的模型,进行仿真和调试。

1.运行MATLAB软件,在命令窗口栏“>>”提示符下键入imulink命令,按Enter键或在工具栏单击按钮,即可进入如图1-1所示的SIMULINK仿真环境下。

2.选择File菜单下New下的Model命令,新建一个imulink仿真环境常规模板。

图1-1SIMULINK仿真界面图1-2系统方框图3.在imulink仿真环境下,创建所需要的系统。

以图1-2所示的系统为例,说明基本设计步骤如下:1)进入线性系统模块库,构建传递函数。

点击imulink下的“Continuou”,再将右边窗口中“TranferFen”的图标用左键拖至新建的“untitled”窗口。

2)改变模块参数。

在imulink仿真环境“untitled”窗口中双击该图标,即可改变传递函数。

其中方括号内的数字分别为传递函数的分子、分母各次幂由高到低的系数,数字之间用空格隔开;设置完成后,选择OK,即完成该模块的设置。

3)建立其它传递函数模块。

按照上述方法,在不同的imulink的模块库中,建立系统所需的传递函数模块。

例:比例环节用“Math”右边窗口“Gain”的图标。

4)选取阶跃信号输入函数。

用鼠标点击imulink下的“Source”,将右边窗口中“Step”图标用左键拖至新建的“untitled”窗口,形成一个阶跃函数输入模块。

5)选择输出方式。

matlab自控仿真实验报告

matlab自控仿真实验报告

目录实验一 MATLAB及仿真实验(控制系统的时域分析) (1)实验二 MATLAB及仿真实验(控制系统的根轨迹分析) (4)实验三 MATLAB及仿真实验(控制系统的频域分析) (7)实验一 MATLAB 及仿真实验(控制系统的时域分析)学习利用MATLAB 进行以下实验,要求熟练掌握实验内容中所用到的指令,并按内容要求完成实验。

一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些? 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。

2、),(Tn sys step ;表示时间范围0---Tn 。

3、),(T sys step ;表示时间范围向量T 指定。

4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。

2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。

脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性den=[1 3 4 2 7 2]; p=roots(den) 输出结果是:p =-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991有实部为正根,所以系统不稳定。

《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。

二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。

本实验中我们选择了一个简单的比例控制系统模型。

2.设定输入信号我们需要为控制系统提供输入信号进行仿真。

在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。

本实验中,我们选择了一个阶跃信号作为输入信号。

3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。

MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。

4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。

常见的性能指标包括系统的稳态误差、超调量、响应时间等。

四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。

2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。

3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。

4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。

5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。

五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。

通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。

六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。

通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。

七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。

MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。

基于MATLAB控制系统仿真实验报告


tf 4
y0

0 1
6、求出 G1(s)
2 (s2 2s 1) 与 G2 (s)
1 (2s3

3s2
1)
的单位阶跃响应,并分别
求出状态空间模型。
解:(1) G1(s) 2 (s2 2s 1) 的状态空间模型求解如下:
function shiyan2 b1=[2];
D(z)

0.62(1 0.136z 1)(1 0.183z (1 0.045z 1)(1 0.53z 1)
1 )
分别用仿真算法得到系统在单位阶跃输入作用下的响应,系统在单位速度输
入是的输出响应。
解:(1)首先将 W1(s)转换为 W1(z),采样周期 T=0.2s,程序清单如下: function shiyan42 num=[10];den=[0.005 0.15 1 0]; ts=0.2;[nc,dc]=c2dm(num,den,ts)
INTRO(注意:intro 为一个用 MATLAB 语言编写的幻灯片程序,主要演示
常用的 MATLAB 语句运行结果。)
然后,根据现实出来的幻灯片右面按钮进行操作,可按 START——NEXT—
—NEXT 按钮一步步运行,观察。
3、自编程序并完成上机编辑,调试,运行,存盘:
(1)用 MATLAB 命令完成矩阵的各种运算,例如:
5、利用 ode23 或 ode45 求解线性时不变系统微分方程 y(t) Ay(t) ,并绘制出 y(t)
曲线,式中
A

0.5

1
1 0.5
t t0 t 如下: function xdot=fun21(t,x) A=[-0.5 1;-1 -0.5]; xdot=A*x; function fzsy22 t0=0;tf=4;tol=1e-6; x0=[0;1];trace=1; [t,x]=ode23('fun21',t0,tf,x0,tol,trace); plot(t,x) 得到的实验结果如下图所示:

初步认识MATLAB和控制系统仿真实验报告

numc=[1 1]; denc=[1 2]; sys2=tf(numc,denc);
sys3=series(sys1,sys2);
sys=feedback(sys3,[1])
理论分析:
此系统是由 构成的单位正反馈,其闭环传递函数
运行结果:
Transfer function:
s^2 + 2 s + 1
numc=[1 1]; denc=[1 2]; sys2=tf(numc,denc);
sys3=series(sys1,sys2);
sys=feedback(sys3,[1])
理论分析:
此系统是由 构成的单位正反馈,其闭环传递函数
运行结果:
Transfer function:
s + 1
--------------------------
s^2 + 3 s + 2
----------------------
s^3 + 5 s^2 + 10 s + 9
理论分析与实际运行结果相符。
(4)多回路系统的简化
其中,
源程序:
% Chapter 2: Figure 2.60
% Multi-loop block reduction.
%
ng1=[1]; dg1=[1 10]; sysg1=tf(ng1,dg1);
numh=[1 1];denh=[1 2]; sysh=tf(numh,denh);
sys =parallel(sysg,sysh);
sys
理论分析:
并联,则
运行结果:
Transfer function:
s^3 + 4 s^2 + 9 s + 6

MATLABSimulink和控制系统仿真实验报告

MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。

二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。

2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。

用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。

四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。

五、实验思考题总结仿真模型构建及调试过程中的心得体会。

题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。

(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若已知多项式的根,求该多项式,则可以调用函数poly。若已知上面的三个根,求多项式的表达式,则在MATLAB中可以这样写:p=poly(r)。运行结果为
p =
1.0000 3.0000 -0.0000 4.0000
即该多项式为 。
(2)多项式的积
求两个多项式的积可以用函数conv来实现。若要求(3 s^2 + 2 s + 1 ) ( s + 4),在MATLAB中可以这样写:n=conv([3 2 1],[1 4]).运行结果为
z=zero(sysg)
%
p=pole(sysg)
%
n1=[1 1]; n2=[1 2]; d1=[1 2*i]; d2=[1 -2*i]; d3=[1 3];
numh=conv(n1,n2); denh=conv(d1,conv(d2,d3));
sysh=tf(numh,denh)
%
sys=sysg/sysh
numh=[1 1];denh=[1 2]; sysh=tf(numh,denh);
sys =parallel(sysg,sysh);
sys
理论分析:
并联,则
运行结果:
Transfer function:
s^3 + 4 s^2 + 9 s + 6
---------------------
s^3 + 4 s^2 + 8 s + 8
%
% Generate pole-zero map in Figure 2.48
%
pzmap(sys)
理论分析:
由程序可知:
传递函数
传递函数
传递函数
所以G(s)的零点为0.4082i, -0.4082i
极点为-1
H(s)的零点为-1,-2
极点为2i,-2i, -3
的零点为0.4082i,-0.4082i, 2i, -2i, -3
----------------------
s^3 + 5 s^2 + 10 s + 9
理论分析与实际运行结果相符。
(b)非单位反馈
A.
源程序:
% Chapter 2: Figure 2.59
% Application of the feedback function with nonunity feedback.
Transfer function:
10
-------------
s^2 + 2 s + 5
与实际相符。
(4)传递函数的零极点表示
若要求传递函数 的零极点,则可以这样写:
sys=tf([1 10],[1 2 1])
p=pole(sys)
z=zero(sys)
其中函数pole是求极点函数,zero为求零点函数,运行结果为
s + 2
--------------------------
500 s^3 + 1000 s^2 + s + 1
理论分析与实际运行结果相符。
B.
源程序:
% Chapter 2: Figure 2.59
% Application of the feedback function with nonunity feedback.
s^2 + 3 s + 2
----------------------
s^3 + 5 s^2 + 10 s + 9
理论分析与实际运行结果相符。
(4)多回路系统的简化
其中,
源程序:
% Chapter 2: Figure 2.60
% Multi-loop block reduction.
%
ng1=[1]; dg1=[1 10]; sysg1=tf(ng1,dg1);
sys5=feedback(sys4,sys1);
sys6=series(sysg1,sys5);
sys=feedback(sys6,[1])
理论分析:
对于上面的方框图,可以用方框图化简法求其闭环传递函数。 , ,闭环传递函数 ,经过整理得
运行结果:
Transfer function:
500 s^3 + 1000 s^2 + s + 1
理论分析与实际运行结果相符。
B.
源程序:
% Chapter 2: Figure 2.57
% Application of the feedback function with unity feedback.
%
numg=[1 1]; deng=[1 2 4]; sys1=tf(numg,deng);
图1 <1时的响应曲线
(2)理论分析:
因为 , 处于临界阻尼状态,没有振荡,信号逐渐衰减到0,其响应曲线如下图:
图2
(3)理论分析:
因为 , 为过阻尼状态,没有振荡,信号逐渐衰减到0,响应曲线如下图:
图3
比较图2和图3,可以发现 时比 时系统先达到稳态。
2.系统传递函数的MATLAB实现及零极点分布
显然 零极点的分布于理论分析相符。
3.系统联接及化简
(1)系统串联
A.
源程序:
% Chapter 2: Figure 2.52
% Application of the series function.
%
numg=[1];deng=[500 0 0]; sysg=tf(numg,deng);
numh=[1 1];denh=[1 2]; sysh=tf(numh,denh);
理论分析:
串联,则串联后的传递函数
运行结果:
Transfer function:
s^2 + 2 ^3 + 4 s^2 + 8 s + 8
理论分析与实际运行结果相符。
(2)系统的并联
A.
源程序:
% Chapter 2: Figure 2.52
% Application of the series function.
numc=[1 1]; denc=[1 2]; sys2=tf(numc,denc);
sys3=series(sys1,sys2);
sys=feedback(sys3,[1])
理论分析:
此系统是由 构成的单位正反馈,其闭环传递函数
运行结果:
Transfer function:
s^2 + 2 s + 1
nh2=[2]; dh2=[1]; sysh2=tf(nh2,dh2);
nh3=[1]; dh3=[1]; sysh3=tf(nh3,dh3);
sys1=sysh2/sysg4;
sys2=series(sysg3,sysg4);
sys3=feedback(sys2,sysh1,+1);
sys4=series(sysg2,sys3);
numc=[1 1]; denc=[1 2]; sys2=tf(numc,denc);
sys3=series(sys1,sys2);
sys=feedback(sys3,[1])
理论分析:
此系统是由 构成的单位正反馈,其闭环传递函数
运行结果:
Transfer function:
s + 1
--------------------------
初步认识MATLAB和控制系统仿真
实验报告
1.质量--弹簧--阻尼器系统的零输入响应
运动方程: ,其零输入响应为
质量--弹簧--阻尼器系统是一个典型的二阶系统,因为 ,所以 的稳态值为0,即 。其传递函数为: ,化成首一标准型为: ,故 , 且当 不变时 越小,响应曲线衰减越慢。
(1)理论分析:
因为 , 所以为欠阻尼系统,响应曲线有振荡。经过一段时间衰减后衰减到零。曲线如下 图:
%
numg=[1 1]; deng=[1 2 4]; sys1=tf(numg,deng);
numh=[1 1]; denh=[1 2]; sys2=tf(numh,denh);
sys=feedback(sys1,sys2);
sys
理论分析:
本系统是由 组成的非单位负反馈,其闭环传递函数
运行结果:
Transfer function:
%
numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng);
numh=[1 1]; denh=[1 2]; sys2=tf(numh,denh);
sys=feedback(sys1,sys2);
sys
理论分析:
本系统是由 组成的非单位负反馈,其闭环传递函数
运行结果:
Transfer function:
% Application of the series function.
%
numg=[1 1];deng=[1 2 4]; sysg=tf(numg,deng);
numh=[1 1];denh=[1 2]; sysh=tf(numh,denh);
sys =series(sysg,sysh);
sys
ng2=[1]; dg2=[1 1]; sysg2=tf(ng2,dg2);
ng3=[1 0 1]; dg3=[1 4 4]; sysg3=tf(ng3,dg3);
ng4=[1 1]; dg4=[1 6]; sysg4=tf(ng4,dg4);
nh1=[1 1]; dh1=[1 2]; sysh1=tf(nh1,dh1);
理论分析与实际运行结果相符。
相关文档
最新文档