选修2-1《圆锥曲线与方程》复习训练题[1]...
(必考题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试(包含答案解析)

一、选择题1.双曲线222:19x y C b-=的左、右焦点分别为1F 、2,F P 在双曲线C 上,且12PF F ∆是等腰三角形,其周长为22,则双曲线C 的离心率为( )A .89B .83C .149D .1432.设AB 是过抛物线24y x =的焦点F 的一条弦(与x 轴不垂直),其垂直平分线交x 轴于点G ,设||||AB m FG =,则m =( ) A .23B .2C .34D .33.(),0F c 是椭圆22221x y a b+=(0a b >>)的右焦点,过原点作一条倾斜角为60︒的直线交椭圆于P 、Q 两点,若2PQ c =,则椭圆的离心率为( ) A .12B1CD4.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直5.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .256.已知双曲线2221(0)x y a a -=>与椭圆22183x y +=有相同的焦点,则a =( )AB.C .2D .47.已知双曲线2222:1(0,0),,x y C a b A B a b-=>>是双曲线C 上关于原点对称的两点,P是双曲线C 上异于,A B 的一点,若直线PA 与直线PB 的斜率都存在且两直线的斜率之积为定值2,则双曲线的离心率是( ) ABC .2D8.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( )A .2B .3C .32D .529.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=10.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,P Q 两点,且30FP FQ +=,则(OPQ O △为坐标原点)的面积S 等于( )A B .C .3D .311.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( )A .12-B .2 C .3D 112.已知1F ,2F 分别是双曲线()222210,0x y a b a b-=>>的左、右焦点,抛物线28y x=的焦点与双曲线的一个焦点重合,点P 是两曲线的一个交点,12PF PF ⊥且121PF F S =△,则双曲线的离心率为( )A B .3C .3D .2二、填空题13.已知椭圆2214x y P +=,是椭圆的上顶点,过点P 作直线l ,交椭圆于另一点A ,设点A 关于原点的对称点为B ,则PAB S的最大值为________.14.已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且AK =,则△AFK 的面积为 .15.F 是抛物线2:4C y x =的焦点,P 是C 上且位于第一象限内的点,点P 在C 的准线上的射影为Q ,且2PQ =,则PQF △外接圆的方程为_____.16.已知P 是双曲线221168x y -=右支上一点,12,F F 分别是双曲线的左、右焦点,O 为坐标原点,点,M N 满足()21220,,0PF PM F P PM PN PN F N PM PF λλμ⎛⎫⎪=>=+= ⎪⎝⎭⋅,若24PF =.则以O 为圆心,ON 为半径的圆的面积为________.17.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,直线:36l y x =+过点1F ,且与双曲线C 在第二象限交于点P ,若点P 在以12F F 为直径的圆上,则双曲线C 的离心率为_____________.18.在平面直角坐标系xOy 中,抛物线()220ypx p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.19.已知双曲线2222:1(0,0)x y C a b a b -=>>与椭圆221259x y +=的焦点重合,左准线方程为1x =-,设1F 、2F 分别为双曲线C 的左、右两个焦点,P 为右支上任意一点,则212PF PF 的最小值为_____________.20.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S∆=________.三、解答题21.已知椭圆2222:1(0)x y C a b a b +=>>的右顶点为A ,上顶点B AB 与圆224:5O x y +=相切. (1)求椭圆C 的方程;(2)设p 椭圆C 上位于第三象限内的动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,试问四边形ABNM 的面积是否为定值?若是,求出该定值;若不是,请说明理由.22.已知圆22:1O x y +=切线l 与椭圆22:34C x y +=相交于A 、B 两点. (1)求椭圆C 的离心率; (2)求证:OA OB ⊥.23.已知抛物线()220y px p =>的焦点F 恰是椭圆2212x y +=的一个焦点,过点F 的直线与抛物线交于,A B 两点. (1)求抛物线方程.(2)若45AFx ∠=,求AB .24.点A 是抛物线21:2(0)C y px p =>与双曲线2222:1(0)y C x b b-=>的一条渐近线的交点,若点A 到抛物线1C 的准线的距离为p . (1)求双曲线2C 的方程;(2)若直线:1l y kx =-与双曲线的右支交于两点,求k 的取值范围.25.已知圆22:4O x y +=和定点1,0A ,平面上一动点P 满足以线段AP 为直径的圆内切于圆O ,动点P 的轨迹记为曲线C . (1)求曲线C 的方程;(2)直线:(4)(0)l y k x k =-≠与曲线C 交于不同两点M 、N ,直线AM ,AN 分别交y 轴于P ,Q 两点.求证:AP AQ =.26.已知椭圆C :22221x y a b +=(0a b >>)的左右焦点分别为12,F F ,焦距为2,且经过点Q 12⎛- ⎝⎭,.直线l 过右焦点且不平行于坐标轴,l 与椭圆C 有两个不同的交点A ,B ,线段AB 的中点为M .(1)点P 在椭圆C 上,求12PF PF ⋅的取值范围; (2)证明:直线OM 的斜率与直线l 的斜率的乘积为定值;【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意画出图形,分类由三角形周长列式求得b ,进一步求得c ,则双曲线的离心率可求. 【详解】如图,由22219x y b-=,得229c b =+,c设1||PF m =,2||PF n =, 由题意,6m n -=, 若2229n c b ==+26629m n b =+=++则2266922m n c b ++=++=,解得b ∈∅; 若2229m c b ==+26296n m b =-=+.则2269622m n c b ++=+=,解得21159b =. ∴222115196999c a b =+=+=,143c =. 1414339c e a ∴===.【点睛】本题考查了双曲线的简单性质,考查了运算求解能力和推理论证能力,属于中档题.2.B解析:B 【分析】联立直线AB 与抛物线方程,求出E 点坐标以及直线EG 的方程,可得||FG ,利用定义求出弦长||AB ,可得m 的值. 【详解】设:1AB x ty =+,()11,A x y ,()22,B x y ,AB 的中点为()00,E x y ,联立方程组214x ty y x =+⎧⎨=⎩,消去x 得2440y ty --=,所以124y y t +=,12022y y y t +==,2021x t =+,即()221,2E t t +,所以EG 的方程为()2221y t t x t -=---.令0y =,得223x t =+,因此()2||21FG t =+.又12||2AB x x =++=()()2122241t y y t +++=+,所以1||||2FG AB =,从而2m =. 故选:B 【点睛】本题考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.3.B解析:B 【分析】设椭圆的左焦点为1F ,连接1,PF PF ,由题 可得1PF PF ⊥且POF 是等边三角形,表示出1,PF PF ,利用勾股定理建立关系即可求出. 【详解】如图所示,设椭圆的左焦点为1F ,连接1,PF PF ,2PQ c =,则PO c =,则1PF PF ⊥,又60POF ∠=,则POF 是等边三角形,即PF c =,12PF PF a +=,12PF a c ∴=-,又22211PF PFF F +=,即()()22222a c c c -+=,整理可得22220c ac a +-=,即2220e e +-=,解得31e =-. 故选:B.【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a ,b ,c 的方程或不等式,再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,建立关于a ,b ,c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y pp ⎧+⎪+⎛⎫⎪=⨯ ⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题.5.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c ==设(),P x y , 则2127·1616k PF PF x ===-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.6.C解析:C 【分析】先求出椭圆焦点坐(椭圆的半焦距),再由双曲线中的关系计算出a . 【详解】椭圆22183x y +=的半焦距为c ==∴双曲线中215a +=,∴2a =(∵0a >). 故选:C . 【点睛】晚错点睛:椭圆与双曲线中都是参数,,a b c ,但它们的关系不相同:椭圆中222a b c =+,双曲线中222+=a b c ,不能混淆.这也是易错的地方.7.B解析:B 【分析】设点(,),(,),(,)A m n B m n P k t --,PA PB k k 求得,利用点,P A 在双曲线上,及已知定值2可求得22b a,从而可得离心率c e a =.【详解】根据题意,设点(,),(,),(,)A m n B m n P k t --,则222222221,1m n k t a b a b -=-=,,PA PB t n t nk k k m k m-+==-+, 所以2222PA PB t n t n t n k k k m k m k m -+-⋅=⋅==-+-22222222222(1)(1)t n b t n aa ab b-==+-+,所以双曲线的离心率c e a ===故选:B. 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是列出关于,,a b c 的等式.解题方法是设出,,P A B 坐标,代入双曲线方程,然后把等式2PA PB k k =用坐标表示出来后,可者所要的关系式,从而求得离心率.8.A解析:A 【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.9.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.10.D解析:D 【分析】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程整理后应用韦达定理得1212,y y y y +,由30FP FQ +=得123y y =-,从而可求得k ,12,y y ,再由面积公式1212S OF y y =-得结论. 【详解】设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,将1x ky =+代入24y x =,消去x可得2440yky --=,所以124y y k +=,124y y =-.因为3FP QF =,所以123y y =-,所以2234y y k -+=,则22y k =-,16y k =,所以264k k-⋅=-,所以||k =, 又||1OF =,所以OPQ △的面积S =1211||||18||22OF y y k ⋅-=⨯⨯=. 故选:D . 【点睛】方法点睛:本题考查直线与抛物线相交问题,解题方法是应用韦达定理.即设11(,)P x y ,22(,)Q x y ,直线l 的方程为1x ky =+,直线方程代入抛物线方程后整理,应用韦达定理得1212,y y y y +,再结合已知求出12,,y y k ,然后求出三角形面积.11.D解析:D 【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率. 【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos232ME EF c c π==⨯=,2sin 33MF c c π==, ∴(31)2MF ME c a +=+=, ∴23131c e a ===-+. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.12.B解析:B 【分析】求出双曲线的半焦距,结合三角形的面积以及勾股定理,通过双曲线的定义求出a ,然后求解双曲线的离心率即可 【详解】由双曲线与抛物线有共同的焦点知2c =,因为12PF PF ⊥,且121PF F S =△,则122PF PF ⋅=,222212124PF PF F F c +==,点P 在双曲线上,则122PF PF a -=,故222121224PF PF PF PF a +-⋅=,则22444c a -=,所以a =3, 故选:B. 【点睛】本题考查双曲线以及抛物线的简单性质的应用,双曲线的定义的应用,考查计算能力,属于中档题..二、填空题13.2【分析】由题意设直线的方程代入椭圆中求出点的坐标进而由题意得点的坐标再整理成用到均值不等式形式求出面积的最大值【详解】由题意可知直线的斜率一定存在因此设直线的方程为代入椭圆方程整理得所以所以所以由解析:2 【分析】由题意设直线PA 的方程代入椭圆中,求出点A 的坐标,进而由题意得点B 的坐标,PABS1||||2A B OP x x =-,再整理成用到均值不等式形式,求出面积的最大值. 【详解】由题意可知直线的斜率一定存在,因此设直线l 的方程为1y kx =+, 代入椭圆方程整理得22(14)80k x kx ++=, 所以2814kx k-=+, 所以221414k y k -=+所以A 28(14k k -+,2214)14k k -+, 由题意得B 28(14k k +,2241)14k k-+, 所以三角形PAB 的面积21116||||||2214A B kS OP x x k =-=+因为0k ≠, 所以118||821244PABSk k==+.故答案为:2. 【点睛】关键点睛:一是要构建三角形面积的方案,采用了割补思想,二是在求最值时转化为基本不等式问题,这些都是解决本问题的关键.14.【详解】由双曲线得右焦点为即为抛物线的焦点∴解得∴抛物线的方程为其准线方程为过点作准线垂足为点则∴∴∴∴ 解析:32【详解】由双曲线22179x y -=得右焦点为()40,即为抛物线22y px = 的焦点,∴42p = ,解得8p = .∴抛物线的方程为216y x = .其准线方程为()440x K =-∴-,, .过点A 作AM ⊥准线,垂足为点M .则AM AF =.∴2AK AM =.∴45MAK ∠=︒.∴KF AF =.∴221183222AKFSKF ==⨯=. 15.【分析】由题可判断为直角三角形即外接圆的圆心为中点求出圆心和半径即可写出圆的方程【详解】由抛物线方程可知焦点准线方程为即则即为直角三角形外接圆的圆心为中点即圆心为半径为外接圆的方程为故答案为:【点睛 解析:()2212x y +-=【分析】由题可判断FPQ △为直角三角形,即PQF △外接圆的圆心为FQ 中点,求出圆心和半径即可写出圆的方程. 【详解】由抛物线方程可知焦点()1,0F ,准线方程为1x =-,2PQ =,∴12P x +=,即1P x =,则2P y =, ()()1,2,1,2P Q ∴-,FP PQ ∴⊥,即FPQ △为直角三角形,∴PQF △外接圆的圆心为FQ 中点,即圆心为()0,1,半径为122FQ = ∴PQF △外接圆的方程为()2212x y +-=.故答案为:()2212x y +-=. 【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.16.【分析】延长交于点由向量数量积和线性运算可知为线段的垂直平分线结合双曲线定义可求得利用中位线性质可求得进而得到结果【详解】延长交于点如下图所示:为的角平分线又为线段的垂直平分线由双曲线定义知:分别为 解析:64π【分析】延长2F N 交PM 于点Q ,由向量数量积和线性运算可知PN 为线段2F Q 的垂直平分线,结合双曲线定义可求得1FQ ,利用中位线性质可求得ON ,进而得到结果. 【详解】延长2F N ,交PM 于点Q ,如下图所示:22PF PM PN PM PF μ⎛⎫ ⎪=+⎪⎝⎭,PN ∴为2QPF ∠的角平分线, 又20PN F N ⋅=,2PN NF ∴⊥,PN ∴为线段2F Q 的垂直平分线,24PQ PF ∴==.由双曲线定义知:12248PF PF -=⨯=,18412PF ∴=+=,141216FQ ∴=+=, ,O N 分别为122,F F QF 中点,1182ON FQ ∴==, ∴以O 为圆心,ON 为半径的圆的面积64S π=. 故答案为:64π. 【点睛】本题考查双曲线性质和定义的综合应用,涉及到平面向量数量积和线性运算的应用;解题关键是能够通过平面向量的线性运算和数量积运算确定垂直和平分关系.17.【分析】利用直线l 的斜率和点P 在以为直径的圆周上在直角三角形中求出和用定义求出代入离心率公式求解即可【详解】由题意可得则因为直线l 的斜率是3则因为点P 在以为直径的圆周上所以所以则故双曲线C 的离心率为 解析:102【分析】利用直线l 的斜率和点P 在以12F F 为直径的圆周上,在直角三角形12PF F 中,求出1PF 和2PF ,用定义求出a ,代入离心率公式求解即可.【详解】由题意可得2c =,则2124F F c ==.因为直线l 的斜率是3,则12sin 10PF F ∠=,12cos 10PF F ∠=. 因为点P 在以12F F 为直径的圆周上,所以1290F PF ∠=︒,所以11212cos 5PF F F PF F =∠=,21212sin 5PF F F PF F =∠=,则2125PF PF a -==,故双曲线C 的离心率为2c a =.【点睛】本题考查双曲线的性质,考查双曲线定义的应用,考查学生的计算能力,属于中档题.18.【分析】由题意知可求的坐标由于轴可得利用抛物线的定义可得代入可取再利用即可得出的值【详解】解:如图所示与轴平行解得代入可取解得故答案为:【点睛】本题考查了抛物线的定义及其性质平行线的性质三角形面积计【分析】由题意知可求F 的坐标.由于//AB x 轴,||2||AF CF =,||||AB AF =,可得13||||22CF AB p ==,1||||2CE BE =.利用抛物线的定义可得A x ,代入可取A y ,再利用13ACE ABC S S ∆∆=,即可得出p 的值.【详解】 解:如图所示,,02p F ⎛⎫ ⎪⎝⎭,3||2CF p =,||||AB AF =.AB 与x 轴平行,||2||AF CF =,13||||22CF AB p ∴==,1||||2CE BE =.32A p x p ∴+=,解得52A x p =,代入可取A y =,11135332ACE ABC S S p p ∆∆∴===p =故答案为.【点睛】本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式.本题的关键在于求出A 的坐标后,如何根据已知面积列出方程.19.【分析】由焦点重合可知由左准线方程可知从而可求设根据双曲线的定义可知则结合基本不等式可求其最值【详解】解:由焦点重合可知;由左准线方程可知又由双曲线的定义可知从而可求出因为为右支上任意一点所以设则则解析:【分析】由焦点重合可知2216a b +=,由左准线方程可知21a c-=-,从而可求2,23,4a b c ===,设2PF t =,根据双曲线的定义可知,14PF t =+,则212168PF t PF t=++,结合基本不等式可求其最值. 【详解】解:由焦点重合可知,2225916a b +=-=;由左准线方程可知,21a c-=-,又由双曲线的定义可知,222c a b =+,从而可求出2,23,4a b c ===. 因为P 为右支上任意一点,所以1224PF PF a -==.设2,2PFt t c a =≥-=, 则14PF t =+,则()22124161688216t PF t t PF t t t+==++≥+⋅= 当且仅当16t t=,即4t =时等号成立.即21216PF PF ≥. 故答案为:16. 【点睛】本题考查了双曲线的定义,考查了双曲线的准线方程,考查了椭圆的焦点求解,考查了基本不等式.本题的关键是由双曲线的定义,将所求的式子用一个变量来表示.利用基本不等式求最值时,一定要注意,一正二定三相等缺一不可.20.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122F F =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=. 故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.三、解答题21.(1)2214x y +=;(2)是定值,定值为2.【分析】(1)由题意可得⎧=⎪⎪=,从而可求出,a b 的值,进而可得椭圆的方程; (2)设()()0000,0,0,P x y x y <<从而可表示出直线PA 的方程,然后求出点M 的坐标,得到BM 的值,同理可得到AN 的值,进而可求得四边形ABNM 的面积,得到结论 【详解】(1)解:由题意知直线:AB bx ay ab +=,所以2⎧=⎪⎪=,解得2a =,1b =,所以椭圆C 的方程为2214x y +=,(2)证明:设()()22000000,0,0,44P x y x y x y <<+=.因为()()2,0,0,1A B ,所以直线PA 的方程为()0022y y x x =--,令0x =,得0022M y y x =--, 从而002112M y BM y x =-=+-. 直线PB 的方程为0011y y x x -=+令0y =,得001N xx y =--,从而00221N x AN x y =-=+-. 所以四边形ABNM 的面积0000211212212x y s AN BM y x ⎛⎫⎛⎫==+⋅+ ⎪ ⎪--⎝⎭⎝⎭‖ ()22000000000000000000444842244222222x y x y x y x y x y x y x y x y x y ++--+--+===--+--+.所以四边形ABNM 的面积为定值2. 【点睛】关键点点睛:解题的关键是由题意将BM ,AN 表示出来,从而可得四边形ABNM 的面积. 22.(1;(2)证明见解析. 【分析】(1)将椭圆C 的方程化为标准方程,求出a 、c ,进而可求得椭圆C 的离心率; (2)对直线l 的斜率是否存在进行分类讨论,在直线l 的斜率不存在时,求出A 、B 两点的坐标,计算出0OA OB ⋅=;在直线l 的斜率存在时,设直线l 的方程为y kx m =+,利用直线l 与圆O 相切可得出221m k =+,并将直线l 的方程与椭圆C 的方程联立,列出韦达定理,利用平面向量的数量积并结合韦达定理计算得出0OA OB ⋅=.综合可证得结论成立. 【详解】(1)将椭圆C 方程化为标准形式221443x y +=, 24a ∴=,243b =,22248433c b a =-=-=,则2a =,c = 因此,椭圆C的离心率为323c e a ===;(2)若切线l 的斜率不存在,即直线l 的方程为1x =±,联立椭圆C 的方程可解得:()1,1A 、()1,1B -或者()1,1A -、()1,1B --. 此时0OA OB ⋅=,即OA OB ⊥成立;若切线l 的斜率存在,设其方程为y kx m =+,设点()11,A x y 、()22,B x y , 直线l 与圆22:1O x y +=相切,则1=,化简得221k m +=,联立2234y kx m x y =+⎧⎨+=⎩,得到()222316340k x kmx m +++-=, 由韦达定理可得122631km x x k +=-+,21223431m x x k -=-+,∴()()()2212121212y y kx m kx m k x x km x x m =++=+++,()()22121212121OA OB x x y y k x x km x x m ∴⋅=+=++++,将122631km x x k +=-+,21223431m x x k -=-+代入上式得:()222222234613131m k m OA OB k m k k -⋅=+-+++,又∵221k m +=,所以()2222424242222223463466320032323232m m k m m m m m m m OA OB m m m m m ---++-⋅=-+===----,OA OB ∴⊥.综上所述,OA OB ⊥一定成立. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解. 23.(1)24y x =;(2)8. 【分析】(1)由题意得焦点()1,0F ,则12p=,即可得出结果;(2)利用直线的倾斜角求得斜率,由点斜式得到直线AB 的方程,和抛物线方程联立后利用根与系数的关系得到126x x +=,代入抛物线的弦长公式即可得解.【详解】(1)因为抛物线()220y px p =>的焦点F 恰是椭圆2212x y +=的一个焦点,所以焦点()1,0F , 则122pp =⇒=, 则抛物线的方程为:24y x =; (2)因为45AFx ∠=, 所以直线AB 的斜率为tan 451︒=, 又抛物线的焦点为()1,0F ,则直线AB 的方程为:011y x y x -=-⇒=-, 由214y x y x=-⎧⎨=⎩, 得2610x x -+=, 设()()1122,,,A x y B x y , 则126x x +=,所以128AB x x p =++=. 【点睛】关键点睛:直线与抛物线方程联立,化为关于x 的方程后利用一元二次方程根与系数的关系解决本题是解题的关键.24.(1)2214y x -=;(2)(【分析】(1)取双曲线的一条渐近线:y bx =,与抛物线方程联立即可得到交点A 的坐标,再利用点A 到抛物线的准线的距离为p ,即可得到p ,b 满足的关系式,进而可得答案. (2)根据直线:1l y kx =-与双曲线的右支交于两点,利用韦达定理、判别式列不等式组求解即可. 【详解】(1)取双曲线的一条渐近线y bx =, 联立22y px y bx ⎧=⎨=⎩解得222p x b py b ⎧=⎪⎪⎨⎪=⎪⎩,故222(,)p p A b b .点A 到抛物线的准线的距离为p ,∴222p pp b+=,可得24b = 双曲线222:14y C x -=;(2)联立22114y kx y x =-⎧⎪⎨-=⎪⎩可得()224250k x kx -+-=因为直线:1l y kx =-与双曲线的右支交于两点,所以()22222045{0442040kk k k k ->-->-∆=+->,解得2k <<所以,k的取值范围(. 【点睛】求双曲线标准方程的方法一般为待定系数法,根据条件确定关于,,a b c 的方程组,解出,,a b ,从而写出双曲线的标准方程.解决直线与双曲线的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程或不等式,解决相关问题.25.(1)22143x y +=;(2)证明见解析.【分析】(1)由两圆内切的条件和椭圆的定义,可得所求轨迹方程;(2)设1(M x ,1)y ,2(N x ,2)y ,联立直线l 的方程和椭圆方程,运用韦达定理,计算MA NA k k +,可判断三角形APQ 的形状,即可得到证明.【详解】解:(1)设以线段AP 为直径的圆的圆心为C ,取()1,0A '-. 依题意,圆C 内切于圆O ,设切点为D ,则O ,C ,D 三点共线,因为O 为AA '的中点,C 为AP 中点, 所以2A P OC '=所以2222242PA PA OC AC OC CD OD AA ''+=+=+===>, 所以动点P 的轨迹是以A ,A '为焦点,长轴长为4的椭圆,设其方程为()222210x y a b a b+=>>,则24a =,22c =, 所以2a =,1c =, 所以2223b a c =-=,所以动点P 的轨迹方程为22143x y +=;(2)设()11,M x y ,()22,N x y ,(11x ≠且21x ≠).由()224143y k x x y ⎧=-⎪⎨+=⎪⎩,得()2222433264120k x k x k +-+-=, 依题意()()()2222Δ3244364120k k k =--⋅+⋅->,即2104k <<, 则212221223243641243k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩, 因为()()()()()1212121212121225844111111MF NFk x x x x k x k x y y k k x x x x x x ⎡⎤-++--⎣⎦+=+=+=------()()2222126412322584343011k k k k k x x ⎡⎤⎛⎫⎛⎫-⋅-⋅+⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎣⎦==--, 所以直线MF 的倾斜角与直线NF 的倾斜角互补,即OAP OAQ ∠∠=. 因为OA PQ ⊥,所以AP AQ =. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.26.(1)[0,1];(2)证明见解析. 【分析】(1)由椭圆定义求得2a ,然后可得b ,从而得椭圆方程,然后设点(),P x y ,计算12PF PF ⋅可得范围;(2)设直线l 的方程为()1y k x =-(0k ≠)代入椭圆方程得()2222214220kx k x k +-+-=,设()11,A x y ,()22,B x y ,可得段线AB 的中点M 的坐标122M x x x +=,然后计算OM l k k ⋅可得定值. 【详解】解:(1)因为焦距22c =,则1c =,所以左焦点()11,0F -,右焦点()21,0F则122a QF QF =+==所以a =222,1a b ==,所以椭圆方程为2212x y +=.设点(),P x y ,则()2222212=(1,)1,11122x x PF PF x y x y x y x ⋅---⋅--=-+=-+-=因为[x ∈,所以12PF PF ⋅的取值范围为:[0,1] (2)设直线l 的方程为()1y k x =-(0k ≠)联立()()221210x y y k x k ⎧+=⎪⎨⎪=-≠⎩消去y 得()2222214220k x k x k +-+-=其中:2210k +>,0∆>,不妨设()11,A x y ,()22,B x y ,M 为线段AB 的中点 则2122421k x x k , 所以21222221M x x k x k +==+,()2121M M k y k x k -=-=+ 所以12M OM M y k x k -==所以1122OM l k k k k -⨯=⨯=-为定值. 【点睛】方法点睛:直线与椭圆相交中的定值问题,解题方法是“设而不求”的思想方法,即设交点()11,A x y ,()22,B x y ,设直线方程(1)y k x =-,直线方程与椭圆方程联立方程组并消元后应用韦达定理得1212,x x x x +,代入OM l k k ⨯中可化简得定值.。
(易错题)高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试题(包含答案解析)(1)

一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =3.已知曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则实数a 的取值范围是( )A .(][),10,1-∞-B .(]1,1-C .[)1,1-D .[]()1,01,-+∞4.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 且平行于一条渐近线的直线l 与另一条渐近线交于点A ,l 与双曲线交于点B ,若2BF AB =,则双曲线的离心率为( ) A 23B 3C 2D .25.设O 为坐标原点,直线y b =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,A B 两点,若OAB 的面积为2,则双曲线C 的焦距的最小值是( )A .16B .8C .4D .26.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .527.已知双曲线()2222:10,0x y C a b a b-=>>的离心率为2,左、右焦点分别为1F 、2F ,A 在C 的左支上,1AF x ⊥轴,A 、B 关于原点对称,四边形12AF BF 的面积为48,则12F F =( )A .8B .4C .83D .438.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A .910+B .926+C .712612+ D .832612+ 9.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .410.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .611.已知双曲线22221x y a b-=(0a >,0b >)的左焦点为F ,过原点的直线与双曲线分别相交于A ,B 两点.已知20AB =,16AF =,且3cos 5ABF ∠=,则双曲线的离心率为( ) A .5B .3C .2D12.已知椭圆E :()222210x y a b a b +=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12B.2C .13D二、填空题13.F 是抛物线2:4C y x =的焦点,P 是C 上且位于第一象限内的点,点P 在C 的准线上的射影为Q ,且2PQ =,则PQF △外接圆的方程为_____.14.已知双曲线2222:1(0,0)x y C a b a b-=>>)的左,右焦点分别是1F ,2F,直线:(l y k x =过点2F ,且与双曲线C 在第一象限交于点P .若(22()0OP OF PF +⋅=(O 为坐标原点),且()121PF a PF +=,则双曲线C 的离心率为__________.15.设12,F F 为椭圆22:14x C y +=的两个焦点,P 为椭圆C 在第一象限内的一点且点P的横坐标为1,则12PF F △的内切圆的半径为__________.16.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.17.在平面直角坐标系xOy 中,抛物线()220y px p =>的焦点为F ,准线为l ,()2,0C p ,过抛物线上一点A 作l 的垂线,垂足为B ,AF 与BC 相交于点E .若2AF CF =,且ACE △的面积为p 的值为______.18.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.19.已知点1F ,2F 为椭圆22122:1x y C a b +=(0a b >>)和双曲线22222:1x y C a b -=''(0a '>,0b '>)的公共焦点,点P 为两曲线的一个交点,且满足01290F PF ∠=,设椭圆与双曲线的离心率分别为1e ,2e ,则221211e e +=___________. 20.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果AF BF =,那么AKF ∆的面积是______.三、解答题21.已知椭圆C :()222210x y a b a b+=>>的左、右顶点分别为A ,B 且左、右焦点分别为1F ,2F ,点P 为椭圆C 上的动点,在点P 的运动过程中,有且只有6个位置使得12PF F 为直角三角形,且12PF F 的内切圆半径的最大值为22-.(1)求椭圆C 的标准方程;(2)过点B 作两条互相垂直的直线交椭圆C 于M ,N 两点,记MN 的中点为Q ,求点A 到直线BQ 的距离的最大值.22.已知椭圆2222:1(0)x y C a b a b +=>>的右顶点为A ,上顶点B ,离心率为32,且直线AB 与圆224:5O x y +=相切. (1)求椭圆C 的方程;(2)设p 椭圆C 上位于第三象限内的动点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,试问四边形ABNM 的面积是否为定值?若是,求出该定值;若不是,请说明理由.23.已知圆M 的方程为222260x y x y +---=,以坐标原点为圆心的圆N 与圆M 相切.(1)求圆N 的方程;(2)圆N 与x 轴交于E F ,两点,圆N 内的动点D 使得,DE DO DF ,成等比数列,求DF DE →→⋅的取值范围;(3)过点M 作两条直线分别与圆N 相交于A B ,两点,且直线MA 和直线MB 的倾斜角互补,试判断直线MN 和AB 是否平行,并说明理由.24.设椭圆2222:1(0)x y C a b a b+=>>的一个顶点与抛物线2:43C x y =的焦点重合,12,F F 分别是椭圆的左、右焦点,且离心率12e =,过椭圆右焦点2F 的直线l 与椭圆交于M 、N 两点.(1)求椭圆C 的方程;(2)若2OM ON ⋅=-. 求直线l 的方程;25.已知离心率22e =的椭圆C :()222210x y a b a b +=>>的一个焦点为()1,0-.(1)求椭圆C 的方程;(2)若斜率为1的直线l 交椭圆C 于A ,B 两点,且423AB =,求直线l 的方程. 26.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由32c e a ==,得2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+,∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.B解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.3.C解析:C 【分析】利用绝对值的几何意义,由3y x =+,可得0y ≥时,3yx ,0y <时,3y x =--,则可得曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),再无其它交点,把3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,分类讨论,可得结论 【详解】解:由3y x =+,可得0y ≥时,3y x,0y <时,3y x =--,所以曲线1C :3y x =+与曲线2C :229ax y +=必交于点(0,3),为了使曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点,则将3y x代入方程229ax y +=,得2(1)6990a y ay a +-+-=,当1a =-时,3y =满足题意,因为曲线1C :3y x =+与曲线2C :229ax y +=恰好有两个不同的公共点, 所以>0∆,且3是方程的根, 所以9(1)01a a-<+,即11a -<<时,方程两根异号,满足题意, 综上,a 的取值范围为[)1,1-, 故选:C 【点睛】此题考查曲线的交点问题,考查分析问题的能力,考查分类思想,属于中档题4.B解析:B 【分析】设直线l 的方程为()by x c a=--,求得点A 的坐标,由2BF AB =,可得出23FB FA =,利用平面向量的坐标运算求出点B 的坐标,将点B 的坐标代入双曲线的标准方程,可得出a 、c 齐次等式,由此可解得该双曲线的离心率. 【详解】 如下图所示:设直线l 的方程为()b y x c a=--,则直线OA 的方程为by x a =,联立()b y x a b y x c a ⎧=⎪⎪⎨⎪=--⎪⎩,解得22c x bc y a ⎧=⎪⎪⎨⎪=⎪⎩,即点,22c bc A a ⎛⎫ ⎪⎝⎭, 设点(),B m n ,由2BF AB =可得出23FB FA =, 即()2,,,32233c bc c bc m c n a a ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,即33c m c bc n a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得233c m bc n a ⎧=⎪⎪⎨⎪=⎪⎩,则点2,33c bc B a ⎛⎫⎪⎝⎭, 将点B 的坐标代入双曲线的标准方程得222222241993c b c e a a b -==,解得e =故选:B. 【点睛】本题考查双曲线离心率的求解,利用平面向量的坐标运算求出点B 的坐标是解题的关键,考查计算能力,属于中等题.5.C解析:C 【分析】由双曲线的渐近线方程可知2AB a =,又OAB 的面积为2得2ab =,而双曲线C 的焦距2c =. 【详解】由题意,渐近线方程为by x a=±, ∴,A B 两点的坐标分别为(,),(,)a b a b -,故2AB a =, ∴1222OABSa b =⋅⋅=,即2ab =,∴24c ==当且仅当22a =时等号成立. 故选:C 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方6.A解析:A 【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.7.A解析:A 【分析】设122F F c =,求出1AF,由题意可知四边形12AF BF 为平行四边形,根据四边形12AF BF 的面积为48可得出关于a 的等式,由此可求得12F F .【详解】设122F F c =,由于双曲线的离心率为2ce a==,2c a ∴=,则b =, 所以,双曲线C 的方程为222213x y a a-=,即22233x y a -=,将x c =-即2x a =-代入双曲线C 的方程可得3y a =±,13AF a ∴=,由于A 、B 关于原点对称,1F 、2F 关于原点对称,则四边形12AF BF 是平行四边形,四边形12AF BF 的面积2341248S a a a =⨯==,解得2a =,12248F F c a ∴===.故选:A. 【点睛】关键点点睛:本题考查双曲线几何性质的应用,利用四边形的面积求双曲线的焦距,解题的关键就是利用双曲线的离心率将双曲线的方程转化为只含a 的方程,在求解相应点的坐标时,可简化运算.8.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A My y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭, 又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 9.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b, 所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以1118021802180AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p , 因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(002A x px ,则002AT px k =,则直线002:x AT x x p =-,代入抛物线方程化简得0202220x px py p +=-, 则0020228x p ppx ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确. 故选:D. 【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.10.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.11.A解析:A 【分析】在AFB ∆中,由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠,即可得到|BF |,设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.即可得到a ,c ,进而求得离心率. 【详解】在AFB ∆中,||20AB =,||16AF =,且3cos 5ABF ∠=, 由余弦定理可得222||||||2||||cos AF AB BF AB BF ABF =+-∠, 从而可得2(||12)0BF -=,解得||12BF =.设F '为双曲线的右焦点,连接BF ',AF '.根据对称性可得四边形AFBF '是矩形.||16BF ∴'=,||10FF '=.2|1612|a ∴=-,220c =,解得2a =,10c =. 5ce a∴==. 故选:A.【点睛】本题考查余弦定理、双曲线的定义、对称性、离心率、矩形的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12.B解析:B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b--+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b --+=,因为AB 中点坐标为()2,1-, 所以12124,2x x y y +=+=-,所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =,即2a b =,所以231c b e a a ⎛⎫==-= ⎪⎝⎭, 故选:B 【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】由题可判断为直角三角形即外接圆的圆心为中点求出圆心和半径即可写出圆的方程【详解】由抛物线方程可知焦点准线方程为即则即为直角三角形外接圆的圆心为中点即圆心为半径为外接圆的方程为故答案为:【点睛 解析:()2212x y +-=【分析】由题可判断FPQ △为直角三角形,即PQF △外接圆的圆心为FQ 中点,求出圆心和半径即可写出圆的方程. 【详解】由抛物线方程可知焦点()1,0F ,准线方程为1x =-,2PQ =,∴12P x +=,即1P x =,则2P y =, ()()1,2,1,2P Q ∴-,FP PQ ∴⊥,即FPQ △为直角三角形,∴PQF △外接圆的圆心为FQ 中点,即圆心为()0,1,半径为122FQ = ∴PQF △外接圆的方程为()2212x y +-=.故答案为:()2212x y +-=.【点睛】本题考查抛物线的简单性质,考查圆的方程的求解,属于基础题.14.【分析】取的中点则根据得则设根据结合双曲线的定义得到然后在中利用勾股定理求解即可【详解】如图取的中点则因为所以即因为是的中位线所以由题意可得设则由双曲线的定义可知则即故在中由勾股定理得即整理得解得故解析:102【分析】取2PF 的中点H ,则22OP OF OH +=,根据22()0OP OF PF +⋅=,得2OH PF ⊥,则12PF PF ⊥,设2PF m =,根据()121PF a PF +=结合双曲线的定义得到2||2PF =,122PF a =+,然后在12Rt PF F 中,利用勾股定理求解即可.【详解】 如图,取2PF 的中点H ,则22OP OF OH +=, 因为22()0OP OF PF +⋅=,所以20OH PF ⋅=,即2OH PF ⊥.因为OH 是12PF F △的中位线,所以12PF PF ⊥.由题意可得10c =,设2PF m =,则()11PF a m =+, 由双曲线的定义可知12||2PF PF a -=,则2am a =,即2m =, 故2||2PF =,122PF a =+.在12Rt PF F 中,由勾股定理得2221122||||PF PF F F +=, 即()242240a ++=,整理得2280a a +-=, 解得2a =.故双曲线C 的离心率为10c a =. 10【点睛】本题主要考查双曲线的几何性质和定义的应用以及平面几何的知识,平面向量垂直问题,还考查了数形结合的思想和运算求解的能力,属于中档题.15.【分析】由点的横坐标为1代入得出点的纵坐标继而求得的面积S 再设的内切圆的半径为由可得答案【详解】因为点的横坐标为1所以点的纵坐标为所以的面积设的内切圆的半径为所以即所以故答案为:【点睛】本题考查椭圆解析:3【分析】由点P 的横坐标为1,代入得出点P 的纵坐标,继而求得12PF F △的面积S ,再设12PF F △的内切圆的半径为r ,由()(1212122S F F PF PF r r =++⨯=+,可得答案. 【详解】因为点P 的横坐标为1,所以点P 的纵坐标为P y =12PF F △的面积121322P F F y S ⋅==,设12PF F △的内切圆的半径为r ,所以()(1212122S F F PF PF r r =++⨯=+,即(322r +=,所以32r =-.故答案为:32-. 【点睛】本题考查椭圆的方程和椭圆的定义,以及焦点三角形的相关性质,属于中档题.16.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-, 所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=,故答案为:2212516x y += 【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.17.【分析】由题意知可求的坐标由于轴可得利用抛物线的定义可得代入可取再利用即可得出的值【详解】解:如图所示与轴平行解得代入可取解得故答案为:【点睛】本题考查了抛物线的定义及其性质平行线的性质三角形面积计 解析:6【分析】由题意知可求F 的坐标.由于//AB x 轴,||2||AF CF =,||||AB AF =,可得13||||22CF AB p ==,1||||2CE BE =.利用抛物线的定义可得A x ,代入可取A y ,再利用13ACE ABC S S ∆∆=,即可得出p 的值.【详解】 解:如图所示,,02p F ⎛⎫ ⎪⎝⎭,3||2CF p =,||||AB AF =.AB 与x 轴平行,||2||AF CF =,13||||22CF AB p ∴==,1||||2CE BE =.32A p x p ∴+=,解得52A x p =,代入可取5A y p =,1113535332ACE ABC S S p p ∆∆∴===,解得6p =.故答案为:6.【点睛】本题考查了抛物线的定义及其性质、平行线的性质、三角形面积计算公式.本题的关键在于求出A 的坐标后,如何根据已知面积列出方程.18.【分析】设点的坐标为利用双曲线的定义可得于是转化求解即可【详解】解:由题意可得即则的坐标分别为由双曲线的定义得又是圆上的点圆的圆心为半径为2由图可知则的最小值为故答案为:【点睛】本题主要考查双曲线的 解析:4+61【分析】设点C 的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,则1F ,2F 的坐标分别为(5,0)-,(5,0),由双曲线的定义,得12||||26MF MF a -==,又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2, 由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||62461CF ≥+-=则1||||MF MA +的最小值为4+61 故答案为:4+61 【点睛】本题主要考查双曲线的几何性质,熟练掌握双曲线的性质及其圆外一点到圆上一点距离的最小值是解题的关键,属于中档题.19.2【分析】先结合椭圆及双曲线的定义可得再结合离心率公式求解即可【详解】解:设P 为双曲线右支上的任意一点点分别为左右交点由椭圆定义有由双曲线定义有则即又则即所以即2故答案为:2【点睛】本题考查了椭圆及解析:2 【分析】先结合椭圆及双曲线的定义可得2'2a a +22c =,再结合离心率公式求解即可. 【详解】解:设P 为双曲线右支上的任意一点,点1F ,2F 分别为左、右交点, 由椭圆定义有122PF PF a +=,由双曲线定义有'122PFPF a -=,则212()PF PF +212()PF PF +-=22122()PF PF +2'24()a a =+,即2212PF PF +2'22()a a =+,又01290F PF ∠=,则222124PF PF c +=,即2'2a a +22c =,所以2'2222a a c c +=,即221211e e +=2, 故答案为:2. 【点睛】本题考查了椭圆及双曲线的定义,重点考查了离心率的求法,属中档题.20.【分析】计算得到故为正三角形计算面积得到答案【详解】抛物线的焦点准线为l :由抛物线的定义可得由直角三角形的斜边上的中线等于斜边的一半可得即有为正三角形由F 到l 的距离为则的面积是故答案为:【点睛】本题解析:【分析】计算得到AF AK =,FK AF =,故AKF ∆为正三角形,4AK =,计算面积得到答案. 【详解】抛物线24y x =的焦点()1,0F ,准线为l :1x =-,由抛物线的定义可得AF AK =, 由直角三角形的斜边上的中线等于斜边的一半,可得FK AF =, 即有AKF ∆为正三角形,由F 到l 的距离为2d =,则4AK =,AKF ∆16=.故答案为:【点睛】本题考查了抛物线中的面积问题,确定AKF ∆为正三角形是解题的关键.三、解答题21.(1) 22142x y += (2) 47【分析】(1)由条件得出当点P 位于椭圆C 的上下顶点处时,12PF F △为直角三角形,则b c =,当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值,则22cbR a c==-+22222c a b a c =-=-,可求出椭圆方程. (2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+ ,与椭圆方程联立得出韦达定理,由1212122BM BN y yk k x x ⋅=⋅=---,结合韦达定理可得n 的值,从而得出点Q 的坐标,进而求出直线BQ 的方程,由点到直线的距离公式可得出答案 【详解】点P 为椭圆C 上的动点,当1PF x ⊥或2PF x ⊥时,12PF F △为直角三角形. 此时满足条件的点P 有4个,根据满足条件的点P 有6个. 则满足条件的点P 的另2个位置位于椭圆C 的上下顶点处.当点P 位于椭圆C 的上下顶点处时,12PF F △为等腰直角三角形,即b c =12PF F △的内切圆半径我为R ,则()12121211222PF F P Sc y F F PF PF R ==++ 即()P c y a c R =+,所以Pc y R a c=+ 当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值.所以2cb R a c ==+,即22c a c=+22222c a b a c =-=-,即a =解得2,a b =,所以椭圆C 的标准方程为:22142x y +=(2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+由22142x my nx y =+⎧⎪⎨+=⎪⎩,得()2222240m y mny n +++-=所以212122224,,22mn n y y y y m m --+=⋅=++据条件直线BM ,BN 的斜率存在,由条件可得1212122BM BN y yk k x x ⋅=⋅=--- 即1212122y y my n my n ⋅=-+-+-,即()()()2212121222y y m y y m n y y n -=+-++-所以()()()()2212121220m y y m n y y n ++-++-=则()()()2222242122022n mn m m n n m m --++-+-=++化简可得()()2320n n --=,即23n =或2n = 当2n =时,直线MN 过点B ,不满足条件.所以 23n =,则()12222243232m m y y m m -⨯-+==++ 由MN 的中点为Q ,则()2232Q my m -=+所以()()2222433232Q m x m m m -=⨯+=++所以()()222232434232BQm m m k m m -+==+-+所以直线BQ 的方程为()2234m y x m =-+,即()23420m y mx m +-+= 所以点()2,0A -到直线BQ 的距离为d ==47=≤=当且仅当22169mm=,即243m=时取等号.所以点()2,0A-到直线BQ的距离的最大值为47【点睛】关键点睛:本题考查椭圆的几何性质和椭圆中的定点问题以及点到直线的距离的最值问题,解答本题的关键是由1212122BM BNy yk kx x⋅=⋅=---结合韦达定理得出n的值,进一步得出点Q的坐标()2232Qmym-=+,234BQmkm=+,得出直线BQ的方程为()2234my xm=-+,属于难题.22.(1)2214xy+=;(2)是定值,定值为2.【分析】(1)由题意可得==,a b的值,进而可得椭圆的方程;(2)设()()0000,0,0,P x y x y<<从而可表示出直线PA的方程,然后求出点M的坐标,得到BM的值,同理可得到AN的值,进而可求得四边形ABNM的面积,得到结论【详解】(1)解:由题意知直线:AB bx ay ab+=,所以⎧=⎪=2a=,1b=,所以椭圆C的方程为2214xy+=,(2)证明:设()()22000000,0,0,44P x y x y x y<<+=.因为()()2,0,0,1A B,所以直线PA的方程为()22yy xx=--,令x=,得022M y y x =--, 从而002112M y BM y x =-=+-. 直线PB 的方程为0011y y x x -=+令0y =,得001N xx y =--,从而00221N x AN x y =-=+-. 所以四边形ABNM 的面积0000211212212x y s AN BM y x ⎛⎫⎛⎫==+⋅+ ⎪ ⎪--⎝⎭⎝⎭‖ ()22000000000000000000444842244222222x y x y x y x y x y x y x y x y x y ++--+--+===--+--+.所以四边形ABNM 的面积为定值2. 【点睛】关键点点睛:解题的关键是由题意将BM ,AN 表示出来,从而可得四边形ABNM 的面积.23.(1)222x y +=;(2)[)10-,;(3)平行,理由见解析. 【分析】(1)根据圆心距与圆M 半径的大小,判断两圆的位置关系为内切,进而根据MN R r =-求得圆N 的半径,最后写出圆N 的方程;(2)设动点()D x y ,,根据,DE DO DF ,成等比数列求得动点D 的轨迹方程,又结合动点是在圆内的,求出D 点纵坐标y 的取值范围,再将DF DE →→⋅表示为221y -,最后求得DF DE →→⋅的取值范围.(3) 因为直线MA 和直线MB 的倾斜角互补,故直线MA 和直线MB 的斜率存在,且互为相反数,设直线MA 的斜率为k ,则直线MB 的斜率为k -.接着联立直线MA 方程和圆的方程得到A 点的横坐标,同理得到B 点的横坐标,最后求得直线AB 和MN 的斜率相等,所以直线MN 和AB 是平行的. 【详解】解:1()圆M 的方程可化为()()22118x y -+-=, 故圆心()11M ,,半径R = 圆N 的圆心坐标为()00,,因为MN =<所以点N 在圆M 内,故圆N 只能内切于圆M ,设其半径为r ,因为圆N 内切于圆M ,所以有MN R r =-r =,解得r =所以圆N 的方程为222x y +=;2()由题意可知:()E,)F ,设()D x y ,,由,DE DO DF ,成等比数列,得2DO DE DF =⋅,22x y =+,整理得221x y -=,而())DE DF x y x y →→⋅=-⋅-,,())()2222x x y x y =⋅+-=+-()2221221y y y =++-=-,由于点D 在圆N 内,故有222221x y x y ⎧+<⎨-=⎩, 由此得2102y ≤<, 所以[)10DE DF →→⋅∈-,;3()因为直线MA 和直线MB 的倾斜角互补, 故直线MA 和直线MB 的斜率存在,且互为相反数, 设直线MA 的斜率为k ,则直线MB 的斜率为k -. 故直线MA 的方程为()11y k x -=-, 直线MB 的方程为()11y k x -=--, 由()22112y k x x y ⎧-=-⎨+=⎩,得()()()222121120k x k k x k ++-+--=,因为点M 在圆N 上,故其横坐标1x =一定是该方程的解,222211A k kx k -∴+=+ 可得22211A k k x k --=+, 同理可得:22211B k k x k +-=+, 所以B AAB B Ay y k x x -=-()()3232222222222421111114212111B A MNB Ak k k k k k kk k x k x k k k k k k k k k x x k k --+-++++----+++=====+--++-++, 所以直线AB 和MN 一定平行. 【点睛】直线与圆,圆与圆的位置关系是圆锥曲线中比较常考的内容之一,需要注意一下几点: (1)圆与圆的位置关系的判断就是根据圆心距和半径和差之间的大小关系进行判断; (2)求动点的轨迹方程通常采用“建设限代化”五步骤来求动点的轨迹,切记求出方程之后,看有没有不满足题意的解,需要排除掉;(3)一般联立方程组之后,方程的两个解是直线与曲线交点的横坐标或者纵坐标,在已知一个坐标的情况下,另一个坐标可以通过韦达定理求得.24.(1)22143x y +=;(2)1)y x -或1)y x =-.【分析】(1)求出抛物线的焦点坐标,可得b =.(2)先验证直线斜率不存在时的可求,然后当直线斜率存在时,设出方程与椭圆方程联立,写出韦达定理,由12122OM ON x x y y ⋅=+=-,将韦达定理代入可得答案. 【详解】解:(1)由题意得,抛物线2:C x =的焦点为 ∴椭圆的一个顶点为,∴b =又∵12c e a ==, 222231114b e a a =-=-=, 所以2a =∴椭圆的标准方程为22143x y +=.(2)由题意可知,直线l 与椭圆必相交,①当直线斜率不存在时,直线l 的方程为:1x =,则331,,1,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭则9124OM ON ⋅=-≠-,所以不合题意, ②当直线斜率存在时,设直线l 为(1)y k x =-且1122(,),(,)M x y N x y .由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(34)84120k x k x k +-+-=, ∴221222228412,3434k k x x x x k k-+=⋅=++. ∴[]21212121212()1OM ON x x y y x x kx x x x ⋅=+=+-++2222222224124128512(1)234343434k k k k k k k k k----=+-+==-++++. ∴22k =∴k =0∆>∴直线l的方程为1)y x =-或1)y x =-. 【点睛】关键点睛:本题考查求椭圆的方程和椭圆与直线的位置关系,解得本题的关键是联立直线方程与椭圆方程结合韦达定理得到221222228412,3434k k x x x x k k -+=⋅=++,由[]21212121212()1OM ON x x y y x x k x x x x ⋅=+=+-++,然后将韦达定理代入,属于中档题.25.(1)2212x y +=;(2)1y x =+或1y x =-.【分析】(1)由离心率求出a ,再求出b ,可得椭圆方程;(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,直线方程代入椭圆方程整理后应用韦达定理得1212,x x x x +,然后代入弦长公式12AB x =-可求得参数m 值得直线方程.【详解】(1)由题意知,1c =,c e a ==,∴a = 1b =, ∴椭圆C 的方程为2212x y +=.(2)设直线l 的方程为y x m =+,点()11,A x y ,()22,B x y ,联立方程组2212x y y x m ⎧+=⎪⎨⎪=+⎩, 化简,得2234220x mx m ++-=.由已知得,()2221612228240m m m ∆=--=-+>,即23m <,∴m <<1243m x x +=-,212223m x x -=.∴213AB x =-==, 解得1m =±,符合题意,∴直线l 的方程为1y x =+或1y x =-. 【点睛】方法点睛:本题考查直线与椭圆相交弦长问题.解题方法是设而不求的思想方法,即设交。
高中数学选修2-1圆锥曲线与方程单元测试1

高中数学选修2-1圆锥曲线与方程单元测试一、选择题1、抛物线顶点是坐标原点,焦点是椭圆1422=+y x 的一个焦点,则此抛物线的焦点到准线的距离是( ) (A )32 (B)3 (C)23 (D)432、直线1()y kx k R =+∈ 与椭圆2215x y m+=恒有公共点,则m 的取值范围是( ) (A )[1,5)∪(5,+∞) (B )(0,5) (C) [)+∞,1 (D) (1,5)3、已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 4、若双曲线18222=-b y x 的一条准线与抛物线y 2=8x 的准线重合,则双曲线的离心率为( ) (A) 2 (B) 22 (C ) 4 (D) 425、过定点P(0,2)作直线l ,使l 与曲线y 2=4(x-1)有且仅有1个公共点,这样的直线l 共有( ) (A) 1条(B) 2条(C) 3条(D) 4条6. 已知F 1、F 2为双曲线2222by a x -=1(a >0,b >0)的焦点,过F 2作垂直于x 轴的直线,它与双曲线的一个交点为P ,且∠PF 1F 2=30°,则双曲线的渐近线方程为( ) (A) y =±22x (B) y =±3x (C) y =±33x (D) y =±2x7、已知A 、B 、C 三点在曲线ABC m m x y ∆<<=当,,上,其横坐标依次为),41(41的面积最大时,m 的值为( )(A) 3 (B)25 (C) 49 (D) 238、在椭圆212,122,,12045PF F F F P yx ∆=+是椭圆的左右焦点有一点为直角三角形,则这样的点P 有( ) (A) 2个 (B) 4个 (C)6个 ( D) 8个9、已知双曲线)0,0(1122222222>>>=+=-b m a by m x b y a x 和椭圆的离心率互为倒数,那么以m b a ,,为边长的三角形是( )(A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐或钝角三角形10、设点P 为双曲线1422=-y x 右支上除顶点外的任意一点,21F F ,为其两焦点,则M PF F 的内心21∆在( )(A)直线2=x 上 (B)直线 1=x 上 (C) 直线 x y 2= 上 (D)直线 x y = 上 二.填空题 11、已知椭圆的值为,则的焦距为a y a x a 412222=-____________ 12、双曲线的焦距为xy 1=________.13.对任意实数K ,直线:y kx b =+与椭圆:32cos (02)14sin x y θθπθ⎧=+⎪≤≤⎨=+⎪⎩ 恰有一个公共点,则b 取值范围是_____________14、设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i=1、2、3、…),F P 1,F P 2,F P 3,…组成公差为d 的等差数列,则实数d 的取值范围是 .三、解答题15、已知椭圆C 的焦点分别为F 1(-22,0)和F 2(22,0),长轴长为6,设直线y=x+2交椭圆C 于A 、B 两点,求线段AB 的中点坐标。
湖北仙桃中学高中数学选修2-1第三章《圆锥曲线与方程》测试题(含答案解析)

一、选择题1.已知抛物线24x y =上的一点M 到此抛物线的焦点的距离为2,则点M 的纵坐标是( ) A .0B .12C .1D .22.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为A BC D 3.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直4.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,若C 上存在一点P ,使得12120F PF ︒∠=,且12F PF △,则C 的离心率的取值范围是( )A .0,2⎛ ⎝⎦B .110,12⎛⎫⎪⎝⎭C .11212⎫⎪⎢⎣⎭D .11,112⎛⎫⎪⎝⎭5.已知双曲线2222:1x y C a b-=(0a >,0b >)的左焦点为F ,右顶点为A ,过F 作C的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D6.设(,)P x y 8=,则点P 的轨迹方程为( )A .22+1164x y =B .22+1416x y =C .22148x y -=D .22184x y -=7.设1F 、2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线的右支上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||3||PF PF =,则双曲线C 的离心率为( ).A .12B .622+ C .31+ D .62+8.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=9.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91610.在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为( ) A .45π B .34πC .(65)π-D .54π11.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 C 2D 312.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-二、填空题13.已知A 、B 分别是双曲线2222:1(0,0)x y C a b a b-=>>的左右顶点,M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,始终满足()()12fk f k =,其中()ln 2x f x ⎛⎫= ⎪⎝⎭,则C 的离心率为______ .14.设F 为抛物线2:3C y x =的焦点,过F 作直线交抛物线C 于A B 、两点,O 为坐标原点,则AOB ∆面积的最小值为__________.15.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________.16.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F ,2F ,直线:36l y x =+过点1F ,且与双曲线C 在第二象限交于点P ,若点P 在以12F F 为直径的圆上,则双曲线C 的离心率为_____________. 17.曲线412x x y y -=上的点到直线y =的距离的最大值是________.18.中心在原点的椭圆1C 与双曲线2C 具有相同的焦点()1,0F c -、()()2,00F c c >,P 为1C 与2C 在第一象限的交点,112PF F F =且25PF =,若双曲线2C 的离心率()22,3e ∈,则椭圆1C 的离心率1e 的范围是__________.19.在平面直角坐标系xOy 中,若直线2y x =与椭圆()222210x y a b a b+=>>在第一象限内交于点P ,且以OP 为直径的圆恰好经过右焦点F ,则椭圆的离心率是______. 20.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:则2C 的虚轴长为______.三、解答题21.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 22.抛物线Γ的方程为22y px =(0p >), ()1,2A 是Γ上的一点. (1)求p 的值,并求A 点处的切线方程;(2)不过点A 且斜率为1-的直线交抛物线Γ于P 、Q 两点.证明:直线PA 、 QA 的倾斜角互补.23.如图,设圆2212x y +=与抛物线24x y =相交于A ,B 两点,F 为抛物线的焦点.(1)若过点F 且斜率为1的直线l 与抛物线和圆交于四个不同的点,从左至右依次为1P ,2P ,3P ,4P ,求1234PP P P +的值;(2)若直线m 与抛物线相交于M ,N 两点,且与圆相切,切点D 在劣弧AB 上,求MF NF +的取值范围.24.在平面直角坐标系xOy 中,椭圆()2222:10x y C a b a b+=>>的离心率为12,过点(03,,且BMN ∆是椭圆C 的内接三角形.(1)若点B 为椭圆C 的上顶点,且原点O 为BMN ∆的垂心,求线段MN 的长; (2)若点B 为椭圆C 上的一动点,且原点O 为BMN ∆的重心,求原点O 到直线MN 距离的最小值.25.已知椭圆2222:1(0)x y C a b a b+=>>的短轴为2,椭圆上的点到焦点的最短距离为23.(1)求椭圆的标准方程;(2)已知椭圆的右顶点和上顶点分别为,M N ,斜率为12的直线l 与椭圆C 交于P Q 、两点,求证:直线MP 与NQ 的斜率之和为定值;(3)过右焦点2F 作相互垂直的弦,AB CD ,求||||AB CD +的最小值.26.已知抛物线24W y x =:的焦点为F ,直线2+y x t =与抛物线W 相交于,A B 两点. (1)将||AB 表示为t 的函数;(2)若||AB =AFB △的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:先根据抛物线方程求得焦点坐标及准线方程,进而根据抛物线的定义可知点p 到焦点的距离与到准线的距离相等,进而推断出y p +1=2,求得y p . 解:根据抛物线方程可求得焦点坐标为(0,1),准线方程为y=﹣1, 根据抛物线定义, ∴y p +1=2, 解得y p =1. 故选C .考点:抛物线的简单性质.2.D解析:D 【解析】由题意知,过点(4,-2)的渐近线方程为y=-b ax, ∴-2=-b a×4, ∴a=2b.设b=k,则∴e=c a .3.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y pp ⎧+⎪+⎛⎫⎪=⨯ ⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题.4.C解析:C 【分析】根据椭圆定义以及余弦定理可得212||||4PF PF b =,然后使用等面积法可得内切圆半径)r a c =-,然后根据12r a >,化简即可. 【详解】设12||2=F F c ,12F PF △内切圆的半径为r . 因为12||+||2PF PF a =,所以()22212121212||||||2||||(1cos1204|||)|F F PF PF PF PF a PF PF ︒=+-+=-,则212||||4PF PF b =.由等面积法可得)22211(22)4sin12022a c rb ac ︒+=⨯⨯=-,整理得)r a c =-,又r > 故1112c a <.又12120F PF ︒∠=,所以16900F PO ︒∠≤≤则2c a ≥,从而11212e ≤<.故选:C 5.B解析:B 【分析】首先利用DF DA =,求点D 的坐标,再利用DF 与渐近线垂直,构造关于,a c 的齐次方程,求离心率. 【详解】由条件可知(),0F c -,(),0A a ,由对称性可设条件中的渐近线方程是by x a=,线段FA 的中垂线方程是2a c x -=,与渐近线方程by x a =联立方程,解得()2b a c y a-=,DF DA =,即(),22b a c a c D a -⎛⎫- ⎪⎝⎭, 因为DF 与渐近线b y x a =垂直,则()()22b ac a a a c b c -=----,化简为2232222b c ab a a c b c ac a c -=+⇔=+, 即22b ac a =+,即2220c ac a --=,两边同时除以2a , 得220e e --=,解得:1e =-(舍)或2e =. 故选:B 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:c e a === 3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程. 6.B解析:B 【分析】由椭圆的定义可得出点P 的轨迹是以12,F F 为焦点的椭圆,其中28a =,c =,由此可得出椭圆的标准方程. 【详解】由题意可知,点(,)P x y到点1F的距离与到点2(0,F -的距离之和为定值8,并且128F F >=,所以点P 的轨迹是以12,F F 为焦点的椭圆,所以28,4a a ==,因为c =,所以22216124b a c =-=-=, 所以点P 的轨迹方程为22+=1416x y .故选:B. 【点睛】关键点点睛:解决本题的关键在于熟悉、灵活运用椭圆的定义,求出椭圆的焦点的位置,椭圆中的,,a b c .7.C解析:C 【分析】由数量积为0推导出2OP OF =,在12Rt PF F 中求得1230PF F ∠=,由双曲线定义把2PF 用a 表示,在12Rt PF F 用正弦的定义可得离心率.【详解】 ∵22()0OP OF F P +⋅=,∴22()()0OP OF OP OF +⋅-=,即2220OP OF -=,21OP OF c OF ===,∴12PF PF ⊥,在12Rt PF F 中12||3||PF PF =,∴1230PF F ∠=,又212PF PF a -=,∴2PF =2121sin 302PF F F ====∴21)a c =,1==ce a, 故选:C . 【点睛】关键点点睛:本题考查求双曲线的离心率,关键是找到关于,,a b c 的齐次式,本题中利用向量的数量积得出12PF PF ⊥,然后由两直角边比值求得一个锐角,利用双曲线的定义用a 表示出直角边,然后用直角三角形中三角函数的定义或勾股定理可得,a c 的齐次式,从而求得离心率.8.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.9.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值. 【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=,所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=,由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.10.A解析:A 【详解】试题分析:设直线:240l x y +-=因为1||||2C l OC AB d -==,1c d -表示点C 到直线l 的距离,所以圆心C 的轨迹为以O 为焦点,l 为准线的抛物线,圆C的半径最小值为11225O l d -==,圆C面积的最小值为245ππ=⎝⎭.故本题的正确选项为A. 考点:抛物线定义.11.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b aa c ,222422ca a a c ,223c a =,3==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.12.A解析:A【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1, 所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】设出的坐标利用直线的斜率的乘积结合已知条件推出斜率乘积转化求解双曲线的离心率即可【详解】设由M 是双曲线上异于AB 的动点若直线MAMB 的斜率分别为则又则由得因为所以可得显然不成立;则所以所以故【分析】设出,,M A B 的坐标,利用直线的斜率的乘积,结合已知条件,推出斜率乘积,转化求解双曲线的离心率即可. 【详解】设()()(),,,0,,0M m n A a B a -,由M 是双曲线上异于A 、B 的动点,若直线MA 、MB 的斜率分别为12,k k ,则21222n n n k k m a m a m a ⋅=⋅=+--, 又22221m n a b -=,则2212222n b k k m a a ==⋅-, 由()ln 2x f x ⎛⎫=⎪⎝⎭, 得()()1212ln ,ln 22k k f k f k ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,因为()()12fk f k =,所以21ln ln 22k k ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,可得2122k k=显然不成立; 则2211ln ln ln 02222k k k k ⎛⎫⎛⎫⎛⎫+=⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以21211224k k k k ⋅⇒==,所以c e a ===.【点睛】方法点睛:求双曲线离心率的值的常用方法:由,a b 或,a c 的值,得e === 列出含有,,a b c 的齐次方程,借助222b c a =-消去b ,然后转化为关于e 的方程求解;14.【解析】抛物线焦点为当直线的斜率不存在时即和轴垂直时面积最小将代入解得故故答案为点睛:本题主要考查了抛物线的简单性质直线与抛物线的位置关系该题最大的难点在于确定当直线在何位置时三角形的面积最大属于中解析:98【解析】抛物线焦点为3,04⎛⎫ ⎪⎝⎭,当直线的斜率不存在时,即和x 轴垂直时,面积最小,将34x =代入23y x =,解得32y =±,故133922428OABS =⨯⨯⨯=,故答案为98. 点睛:本题主要考查了抛物线的简单性质,直线与抛物线的位置关系,该题最大的难点在于确定当直线在何位置时,三角形的面积最大,属于中档题;将AOB ∆面积分为用x 轴将其分开,即可得1212OABOFBOFA SSS OF y y =+=-,故可得当直线的斜率不存在时, 即和x 轴垂直时,12y y -的值最大,即面积最大.15.或【分析】设设直线方程为利用焦点弦长公式可求得参数【详解】由题意抛物线的焦点为则的斜率存在设设直线方程为由得所以所以所以直线的倾斜角为或故答案为:或【点睛】本题考查直线与抛物线相交问题解题方法是设而解析:3π或23π 【分析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k =, 所以直线AB 的倾斜角为3π或23π.故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式.16.【分析】利用直线l 的斜率和点P 在以为直径的圆周上在直角三角形中求出和用定义求出代入离心率公式求解即可【详解】由题意可得则因为直线l 的斜率是3则因为点P 在以为直径的圆周上所以所以则故双曲线C 的离心率为【分析】利用直线l 的斜率和点P 在以12F F 为直径的圆周上,在直角三角形12PF F 中,求出1PF 和2PF ,用定义求出a ,代入离心率公式求解即可.【详解】由题意可得2c =,则2124F F c ==. 因为直线l 的斜率是3,则12sin PF F ∠=,12cos PF F ∠=. 因为点P 在以12F F 为直径的圆周上,所以1290F PF ∠=︒,所以11212cos PF F F PF F =∠=,21212sin PF F F PF F =∠=,则2125PF PF a -==,故双曲线C的离心率为2c a =.【点睛】本题考查双曲线的性质,考查双曲线定义的应用,考查学生的计算能力,属于中档题.17.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的【分析】 先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可. 【详解】 解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y xy x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程,所以曲线412x x y y -=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x =的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =-所以切线为:22y x =- 故两平行线22y x =-2y x =之间的距离为0222633d +==. 所以曲线412x x y y -=上的点到直线2y x =26. 26. 【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题.18.【分析】由于P 为与在第一象限的交点分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到再分别由其对应离心率公式表示并由不等式性质求得答案【详解】设椭圆:与双曲线:因为P 为与在第一象限的交点所以焦点三解析:32,53⎛⎫⎪⎝⎭【分析】由于P 为1C 与2C 在第一象限的交点,112PF F F =,分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到2a c m =-,再分别由其对应离心率公式表示并由不等式性质求得答案. 【详解】设椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>,因为P 为1C 与2C 在第一象限的交点,112PF F F =,所以焦点三角形12PF F 是以2PF 为底边的等腰三角形, 即在椭圆中有1221122222PF PF a PF a c PF F F c ⎧+=⎪⇒=-⎨==⎪⎩①;同理,在双曲线中有222PF c m =-②,由①②可知,2a c m =-,因为()221112,3,,32c e m e ⎛⎫=∈∈ ⎪⎝⎭,且12111222c c e m a c m c e ====---, 由不等式的性质可知,132,53e ⎛⎫∈ ⎪⎝⎭.故答案为:32,53⎛⎫⎪⎝⎭【点睛】本题考查椭圆与双曲线共焦点问题中求椭圆的离心率范围问题,属于中档题.19.【分析】由题意可得轴求得的坐标由在直线上结合离心率公式解方程可得所求值【详解】解:以为直径的圆恰好经过右焦点可得轴令可得不妨设由在直线上可得即为由可得解得(负的舍去)故答案为:【点睛】本题考查椭圆的1. 【分析】由题意可得PF x ⊥轴,求得P 的坐标,由P 在直线2y x =上,结合离心率公式,解方程可得所求值. 【详解】解:以OP 为直径的圆恰好经过右焦点(c,0)F ,可得PF x ⊥轴,令x c =,可得2b y a =±=±,不妨设2(,)b P c a ,由2(,)b P c a 在直线2y x =上,可得22b c a=,即为2222a c b ac -==,由ce a=可得2210e e +-=,解得1e =(负的舍去). 故答案为1. 【点睛】本题考查椭圆的方程和性质,考查了圆的性质.本题的关键是由圆过焦点得出P 点的坐标.求离心率的做题思路是,根据题意求出,a c 或者列出一个关于,,a b c 的方程,由椭圆或双曲线的,,a b c 的关系,进而求解离心率.20.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a ba b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.三、解答题21.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 .(2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.22.(1)2p =,1y x =+;(2)证明见解析. 【分析】(1)将()1,2A 代入可求得p ,设出切线方程,联立切线与抛物线方程,利用0∆=可求;(2)设直线PQ 方程为y x m =-+,与抛物线方程联立,根据0PA QA k k +=可证明. 【详解】解:(1)将()1,2A 代入22y px =,可得2p =,由题意知,所求切线斜率显然存在,且不为0, 设切线方程为()21y k x -=-,与24y x =联立得()2204k y y k -+-=(0k ≠), 由()120k k ∆=--=得1k =. 所以,所求切线方程为1y x =+.(2)设直线PQ 方程为y x m =-+,代入24y x =得:240y y m +-=.由16160m ∆=+>,得1m >-.又∵直线PQ 不过点A ,∴3m ≠,∴1m >-,且3m ≠. 设()11,P x y ,()22,Q x y ,则124y y +=-,124y y m =-,()()()()22122112121211121222441111PA QA y y y y y y k k x x x x ⎛⎫⎛⎫--+-- ⎪ ⎪--⎝⎭⎝⎭+=+=----()()()121441684201m m x x +-++==-, 所以,直线PA 、PQ 的斜率角互补. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)1234PP P P +=2)2,22⎡⎤⎣⎦. 【分析】(1)由题意可得直线l 的方程为1y x =+,设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则可得()()12342413PP P P x x x x +=+-+⎤⎦,然后分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组,消元后利用根与系数的关系,可得结果; (2)将圆的方程和抛物线方程联立方程组可求出A ,B 两点的坐标,设()00,D x y ,则切线00:12m x x y y +=,直线方程式与抛物线方程式联立方程组,消元后,再由根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,而02y ≤≤而可求出M N y y +的范围,进而可得MF NF +的取值范围. 【详解】解:由题意,()0,1F ,直线l 的方程为1y x =+设()111,P x y ,()222,P x y ,()333,P x y ,()444,P x y,则)1221PP x x -,)3443P P x x =-,∴)()()123424132413PP P P x x x x x x x x +=+--=+-+⎤⎦故分别联立直线与圆的方程,直线与抛物线的方程,得到两个方程组:22112y x x y =+⎧⎨+=⎩;214y x x y=+⎧⎨=⎩,分别消去y ,整理得:222110x x +-=;2440x x --= ∴131x x +=-,244x x +=,∴1234PP P P +=(2)由222124x y x y⎧+=⎨=⎩解得:()2A -,()2B ,设()00,D x y ,则220012x y +=;切线00:12m x x y y +=,其中02y ≤≤;设(),M M M x y ,(),N N N x y ,则002124x x y y x y +=⎧⎨=⎩,消去x ,整理得: ()2220004241440y y x y y -++=,∴22000022200004244842448244M N x y y y y y y y y y +-++===+-∵02y ≤≤∴M N y y ⎡⎤+∈⎣⎦∵2M N MF NF y y +=++,∴MF NF +的取值范围为2,22⎡⎤⎣⎦【点睛】关键点点睛:此题考查直线与圆的位置关系,考查直线与抛物线的位置关系,第2问解题的关键是将切线方程与抛物线方程联立方程组002124x x y y x y +=⎧⎨=⎩,进而利用根与系数的关系可得22000022200004244842448244M N x y y y y y y y y y +-++===+-,再利用抛物线的定义可求得MF NF +的取值范围,考查数学转化思想和计算能力,属于中档题 24.(12【分析】(1)根据题意,先求出椭圆的方程,由原点O 为BMN △的垂心可得BO MN ⊥,//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,根据·=0BM ON 求出线段MN 的长;(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,设MN :y kx m =+,()11,M x y ,()22,N x y ,则()1212,A x x y y ++,当MN 斜率不存在时,则O 到直线MN 的距离为1,由斜率存在时根据()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=-,由方程联立得出22443m k =+,再由点到直线的距离求出最值. 【详解】解:(1)设焦距为2c,由题意知:22212b b ac c a ⎧⎪=⎪=-⎨⎪⎪=⎩,22431a b c ⎧=⎪=⎨⎪=⎩因此,椭圆C 的方程为:22143x y +=;由题意知:BO MN ⊥,故//MN x 轴,设(),M x y ,则(),N x y -,22443x y =-,2227·403BM ON x y y =-+-=-=,解得:y =7-, B ,M不重合,故y =213249x =,故2MN x ==(2)设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,当MN 斜率不存在时,点D 在x 轴上,所以此时点B 在长轴的端点处由2OB =,则1OD =,则O 到直线MN 的距离为1;当MN 斜率存在时,设MN :y kx m =+,()11,M x y ,()22,N x y , 则1212,22x x y y D ++⎛⎫⎪⎝⎭,所以()1212,A x x y y ++,所以()()222222121211221434343x x y y x y x y +++=+=+=,即1212346x x y y +=- 也即()()1212346x x kx m kx m +++=-()()221212434460kx x mk x x m +++++=223412y kx m x y =+⎧⎨+=⎩,则()2224384120k x mkx m +++-= ()2248430k m∆=+->,x =则:122843mk x x k -+=+,212241243m x x k -=+,代入式子得: 22223286043m k m k --=+,22443m k =+设O 到直线MN 的距离为d,则d ===0k =时,min 32d =; 综上,原点O 到直线MN 距离的最小值为32.【点睛】关键点睛:本题考查椭圆的内接三角形的相关性质的应用,解答本题的关键是设MN 中点为D ,直线OD 与椭圆交于A ,B 两点,O 为BMN △的重心,则2BO OD OA ==,根据点,,M N A 均在椭圆上,得出1212346x x y y +=-,由方程联立韦达定理得到22443m k =+,属于中档题.25.(1)2214x y +=;(2)证明见解析;(3)3.【分析】(1)由题知1b =,23a c -=-222a b c =+即可得椭圆的标准方程为2214x y +=; (2)由题意得(2,0),(0,1)M N ,设112211,,,22P x x m Q x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,直线l 为12y x m =+,直线与椭圆联立化简得212122,22x x m x x m +=-=-,进而0MP NQ k k =+;(3)当直线AB 斜率不存在时,22||||23b AB CD a a+=+=,当直线AB 斜率存在时,设直线AB 为3y kx k =-,直线CD 为13y x k =-,进而得2245||||54174AB CD k k+=-++,再结合基本不等式即可得答案. 【详解】(1)因为短轴为2,所以22,1b b ==,又因为椭圆上的点到焦点的最短距离为a c -,所以23a c -=-,又因为222a b c =+,解得2,1,a b c ===所以椭圆的标准方程为2214x y +=;(2)由题意得(2,0),(0,1)M N ,设直线l 为12y x m =+,与2214x y +=联立得:222220x mx m ++-=设112211,,,22P x x m Q x x m ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,则212122,22x x m x x m +=-=- 所以()12121212122111(1)222222MP NQx m x m x x m x x m k k x x x x x ++-+-+-++=+=--22222(1)(2)220222m m x m m m x -+---+==--,所以MP 与NQ 的斜率之和为定值0;(3)当直线AB 斜率不存在时,2225b AB CD a a+=+=当直线AB 斜率存在时,设直线AB为y kx =-,直线CD为1y x k k=-+, 得()2222411240k x x k +-+-=,所以223434221244141,k x x x x k k -+==++,所以()224141AB k k +==+,同理()2241||4k CD k +=+,所以()()2222224141445||||5414417k AB CD k k k kk +++=+=-++++因为22448k k +≥=,所以1635AB CD +≥>,当且仅当1k =±时取等号, 所以AB CD +的最小值为3. 【点睛】本题考查直线与椭圆的位置关系,椭圆中的最值问题,考查运算能力与化归转化思想,是中档题.本题解题的关键在于巧设点的坐标,结合韦达定理,设而不求,达到求解目标,化简运算;同时还要注意再设直线方程时,需要考虑斜率存在与否,做到周密解答.26.(1)||AB =12t;(2)7+ 【分析】(1)设点1(A x ,1)y ,2(B x ,2)y ,联立直线方程和抛物线方程,运用韦达定理和弦长公式,化简计算即可得到所求函数;(2)运用抛物线的定义和(1)的结论,结合12||||2AF BF x x +=++,进而得到AFB △的周长. 【详解】(1)224y x ty x=+⎧⎨=⎩, 整理得()224410x t x t +-+=, 则2212212163216161632044144t t t t t x x t t x x ⎧⎪∆=-+-=->⎪-⎪+==-⎨⎪⎪=⎪⎩, AB===,其中12t;(2)由||AB ==4t =-, 经检验,此时16320t ∆=->, 所以1215x x t +=-=, 由抛物线的定义,有1212||||()()52722p pAF BF x x x x p +=+++=++=+=,又||AB =,所以AFB△的周长为7+ 【点睛】求曲线弦长的方法:(1)利用弦长公式12l x =-;(2)利用12l y =-;(3)如果交点坐标可以求出,利用两点间距离公式求解即可.。
2020-2021学年高中数学选修2-1第二章圆锥曲线与方程训练试题(一)教师版

2
2
2
2
解得 a2 1, b2 c2 a2 1,
∴双曲线方程为 x2 y2 1.
8.已知双曲线
x2 3
y2 b2
1(b
0) 的左右焦点分别为 F1 , F2 ,其中一条渐近线方
程为 y x ,点 P(2, y0 ) 在该双曲线上,则 PF1 PF2 ( )
A. 2
B. 0
C.1
即 x2 3 1 y2 ,
∴ x2 3(1 y2 ) ,即 x2 y2 1. 3
2.若 n 是1和 25 的等比中项,则圆锥曲线 x2 y2 1的离心率是( ) n
A. 6
B. 2 5 5
C. 5
D. 2 5 或 6 5
【答案】D
【解析】由 n 是1和 25 的等比中项,得 n2 1 25 25 ,解得 n 5 .
OP
FP
x0 (x0
1)
y02
x02
x0
15(1
x02 16
)
1ห้องสมุดไป่ตู้16
( x0
8)2
11 ,
当 x0 4 时, OP FP 取得最大值 20 .
10.已知椭圆 M
:
x2 a2
y2 b2
1(a b 0) 与双曲线 N :
x2 4
y2
1有公共焦点,N
的一条渐近线与以 M 的长轴为直径的圆相交于 A , B 两点,若 M 将线段 AB 三
31 0 32 42
3. 5
6.直线 l : y x b 与抛物线 C : y2 4x 相切,则实数 b ( )
A. 4
B. 3
C. 2
【答案】D
y xb
【解析】联立
(常考题)北师大版高中数学高中数学选修2-1第三章《圆锥曲线与方程》测试卷(包含答案解析)(1)

一、选择题1.如图,过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若2BC BF =,且6AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x =D .23y x =2.设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦分别是1F ,2F ,过1F 的直线交双曲线C 的左支于M ,N 两点若212=MF F F ,且112MF NF =,则双曲线C 的离心率是( ) A .2B .32C .54D .533.已知椭圆22221(0)x y C a b a b+=>>:的右焦点为(c,0)F ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP ⋅=-⋅,则椭圆的离心率的取值范围为( )A .1[,1)2B .2[,1)2C .51[,1)2D . 2⎛ ⎝⎦4.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12,F F 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34yx C .35y x =±D .53y x =±5.设AB 是过抛物线24y x =的焦点F 的一条弦(与x 轴不垂直),其垂直平分线交x 轴于点G ,设||||AB m FG =,则m =( ) A .23B .2C .34D .36.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于P ,Q 两点,若1F PQ 为等边三角形,则椭圆的离心率是( )A .22B 2C 3D 37.设1F 、2F 分别是双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点,若双曲线的右支上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||3||PF PF =,则双曲线C 的离心率为( ).ABC 1D 8.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( )A .9B .9C .7112+D .83129.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为1,且与椭圆22182x y +=有公共焦点.则双曲线C 的渐近线方程为( )A .y x =B .y =C .y x =D .y =10.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( )A .12-B .2 C .3D 111.如图所示,12FF 分别为椭圆2222x y 1a b+=的左右焦点,点P 在椭圆上,2POF 的面积2b 的值为( )A .3B .23C .33D .4312.抛物线224y x x =-的焦点坐标是( ) A .F (0,18) B .F (1,-158) C .F (0,-158) D .(1,18) 二、填空题13.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30的直线交C 于A ,B 两点,则AB =________.14.数学中有许多形状优美、寓意美好的曲线,曲线22:4C x y x y +=+就是其中之一.曲线C 对应的图象如图所示,下列结论:①直线AB 的方程为:20x y ++=; ②曲线C 与圆228x y +=有2个交点; ③曲线C 所围成的“心形”区域的面积大于12; ④曲线C 恰好经过4个整点(即横、纵坐标均为整数的点). 其中正确的是:________.(填写所有正确结论的编号)15.中心在原点的椭圆1C 与双曲线2C 具有相同的焦点()1,0F c -、()()2,00F c c >,P 为1C 与2C 在第一象限的交点,112PF F F =且25PF =,若双曲线2C 的离心率()22,3e ∈,则椭圆1C 的离心率1e 的范围是__________.16.一个动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,则这个动圆圆心的轨迹方程为:______.17.设双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别是1F 、2F ,过1F 的直线与C 的左支交于M 、N 两点,若12MF F △是以1MF 为底边的等腰三角形,且1123MF NF =,则双曲线C 的离心率是________.18.已知椭圆1C 和双曲线2C 的中心均在原点,且焦点均在x 轴上,从每条曲线上取两个点,将其坐标记录于下表中:则2C 的虚轴长为______.19.动圆M 与圆221:(1)1C x y ++=外切,与圆222:(1)25C x y -+=内切,则动圆圆心M 的轨迹方程是__________.20.已知双曲线的方程为221916x y -=,点12,F F 是其左右焦点,A 是圆22(6)4x y +-=上的一点,点M 在双曲线的右支上,则1||||MF MA +的最小值是__________.三、解答题21.在直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,右焦点为F ,原点O 到直线BF 的距离为1||2OF . (1)求椭圆C 的离心率;(2)设直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,若||MN 的最大值为2,求椭圆C 的方程.22.已知椭圆C :()222210x y a b a b +=>>经过点()2,1P ,且离心率为2,直线l 与椭圆交于A ,B 两点,线段AB 的中点为M .(1)求椭圆C 的方程;(2)若APB ∠的角平分线与x 轴垂直,求PM 长度的最小值.23.点P 为椭圆()222210,0x y a b a b+=>>在第一象限的弧上任意一点,过P 引x 轴,y 轴的平行线,分别交直线by x a=-于,Q R ,交y 轴,x 轴于,M N 两点,记OMQ 与ONR 的面积分别为12,S S .(1)若P 坐标为2⎭,且点P 与点R 关于x 轴对称,试求椭圆的标准方程; (2)当2ab =时,试求2212S S +的最小值.24.如图所示,已知椭圆()2222:10x y C a b a b+=>>,222:O x y b +=,点A 是椭圆C的左顶点,直线AB 与O 相切于点()1,1B -.(1)求椭圆C 的方程;(2)若O 的切线l 与椭圆C 交于M ,N 两点,求OMN 面积的取值范围.25.如图,椭圆1C :22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,离心率为32,过抛物线2C :24x by =焦点F 的直线交抛物线于,M N 两点,当7||4MF =时,M 点在x 轴上的射影为1F ,连接,NO MO 并延长分别交1C 于,A B 两点,连接AB ,OMN 与OAB 的面积分别记为OMN S △,OAB S ,设λ=OMNOABS S .(1)求椭圆1C 和抛物线2C 的方程;(2)设ON ,OM 所在直线的斜率为,OM ON k k ,求证OM ON k k ⋅为定值; (3)求λ的取值范围.26.已知:椭圆221164x y +=,求:(1)以()2,1P -为中点的弦所在直线的方程; (2)斜率为2的平行弦中点的轨迹方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分别过A ,B 作准线的垂线,交准线于E ,D ,设|BF |=a ,运用抛物线的定义和直角三角形的性质,求得p ,可得所求抛物线的方程. 【详解】如图,分别过点A ,B 作准线的垂线,分别交准线于点E ,D ,设BF a =, 则由已知得2BC a =,由抛物线定义得BD a =,故30BCD ∠=︒.在Rt ACE 中,因为6AE AF ==,63AC a =+,2AE AC =, 所以6312a +=,得2a =,36FC a ==,所以132p FG FC ===, 因此抛物线方程为26y x =. 故选:B 【点睛】本题考查抛物线的定义和方程、性质,以及直角三角形的性质,考查方程思想和数形结合思想,属于中档题.2.D解析:D 【分析】根据题意画出图形,结合图形建立关于c 、a 的关系式,再求离心率ce a=的值. 【详解】 解:如图所示,取1F M 的中点P ,则2122MF FF c ==,MP c a =-,1F P c a =-;又112NF MF =,则()14NF c a =-,242NF c a =-; 在2Rt NPF △中,22222NP PF NF +=, 在2Rt MPF △中,22222MP PF MF +=,得()()()()22224252c a c a c c a ---=--⎡⎤⎣⎦, 化简得223850c ac a -+=, 即()()350c a c a --=, 解得c a =或35c a =; 又1e >, ∴离心率53c e a ==. 故选:D .【点睛】本题考查求双曲线的离心率,解题关键是建立,a c 的等量关系,结合等腰三角形的性质与双曲线的定义可得.3.C解析:C 【分析】取AP 中点Q ,可转化()0FP FA AP +⋅=为20FQ AP ⋅=,即||||FA FP =,可求得||FA a =,2||a FP c c≥-,求解即得. 【详解】取AP 中点Q ,由FP AP FA AP ⋅=-⋅得()0FP FA AP +⋅=, 故20FQ AP FQ AP ⋅=∴⊥,故三角形AFP 为等腰三角形,即||||FA FP =,且||FA a ==,所以||FP a =,由于P 在直线2a x c =上,故2||a FP c c ≥-即2222110a a a a c e e c c c≥-∴≥-∴+-≥,解得:e ≥e ≤01e <<1e ≤<, 故选:C 【点睛】本题考查了椭圆的几何性质,考查了学生综合分析、转化划归、数学运算的能力,属于中档题.4.A解析:A 【分析】结合直线和圆的位置关系以及双曲线的定义求得,a b 的关系式,由此求得双曲线的渐近线方程. 【详解】设直线2PF 与圆222x y a +=相切于点M ,则2,OM a OM PF =⊥, 取线段2PF 的中点N ,连接1NF , 由于1122PF F F c ==, 则122,NF PF NP NF ⊥=,由于O 是12F F 的中点,所以122NF OM a ==,则2NP b ==,即有24PF b =,由双曲线的定义可得212PF PF a -=, 即422b c a -=, 即2,2b c a c b a =+=-,所以()2222b a a b -=+,化简得2434,34,3b b ab b a a ===, 所以双曲线的渐近线方程为43y x =±.故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.5.B解析:B 【分析】联立直线AB 与抛物线方程,求出E 点坐标以及直线EG 的方程,可得||FG ,利用定义求出弦长||AB ,可得m 的值. 【详解】设:1AB x ty =+,()11,A x y ,()22,B x y ,AB 的中点为()00,E x y ,联立方程组214x ty y x=+⎧⎨=⎩,消去x 得2440y ty --=,所以124y y t +=,12022y y y t +==,2021x t =+,即()221,2E t t +,所以EG 的方程为()2221y t t x t -=---.令0y =,得223x t =+,因此()2||21FG t =+.又12||2AB x x =++=()()2122241t y y t +++=+,所以1||||2FG AB =,从而2m =. 故选:B 【点睛】本题考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.6.D解析:D 【分析】利用1F PQ 为等边三角形可得21222b PF PF a==,利用椭圆定义得,,a b c 的方程,消去b 后可得()22232a c a -=,从而可得离心率.【详解】不妨设椭圆的标准方程为()222210x y a b a b+=>>,半焦距为c ,左右焦点为12,F F ,设P 在第一象限,则()2,0F c .令x c =,则22221c y a b +=,解得2P b y a =,故22bPF a=,1F PQ 为等边三角形,则1PF PQ =,即21222b PF PF a==,由椭圆定义得122PF PF a +=,故232b a a⨯=,即()22232a c a -=, 故213e =,解得3e =故选:D. 【点睛】圆锥曲线中的离心率的计算,关键是利用题设条件构建关于,,a b c 的一个等式关系.而离心率的取值范围,则需要利用坐标的范围、几何量的范围或点的位置关系构建关于,,a b c 的不等式或不等式组.7.C解析:C 【分析】由数量积为0推导出2OP OF =,在12Rt PF F 中求得1230PF F ∠=,由双曲线定义把2PF 用a 表示,在12Rt PF F 用正弦的定义可得离心率.【详解】 ∵22()0OP OF F P +⋅=,∴22()()0OP OF OP OF +⋅-=,即2220OP OF -=,21OP OF c OF ===,∴12PF PF ⊥,在12Rt PF F 中12||3||PF PF =,∴1230PF F ∠=,又212PF PF a -=,∴2PF =2121sin 302PF F F ====∴21)a c =,1==ce a, 故选:C .关键点点睛:本题考查求双曲线的离心率,关键是找到关于,,a b c 的齐次式,本题中利用向量的数量积得出12PF PF ⊥,然后由两直角边比值求得一个锐角,利用双曲线的定义用a 表示出直角边,然后用直角三角形中三角函数的定义或勾股定理可得,a c 的齐次式,从而求得离心率.8.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 9.C解析:C 【分析】求出椭圆焦点坐标,得双曲线的焦点坐标,再由焦点到渐近线的距离可求得,a b ,得渐近线方程. 【详解】由题意已知椭圆的焦点坐标为(,即为双曲线的焦点坐标,双曲线中c = 渐近线方程为by x a=±,其中一条为0bx ay -=,1==,1b =,∴a = ∴渐近线方程为y x =. 故选:C . 【点睛】关键点点睛:本题考查椭圆与双曲线的焦点坐标,考查双曲线的渐近线方程,关键是求出,a b .解题时要注意椭圆中222a b c =+,双曲线中222+=a b c .两者不能混淆.10.D解析:D 【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率. 【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos232ME EF c c π==⨯=,2sin33MF c c π==,∴(31)2MF ME c a +=+=, ∴23131c e a ===-+. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.11.B解析:B 【分析】由2POF 32334c =.c 把(3P 代入椭圆方程可得:22131a b+=,与224a b =+联立解得即可得出. 【详解】 解:2POF 3233= 解得2c =.(3P ∴代入椭圆方程可得:22131a b+=,与224a b =+联立解得:223b = 故选B . 【点睛】本题考查了椭圆的标准方程及其性质、等边三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.12.B解析:B 【分析】右边配方后,利用抛物线的标准方程结合图象平移变换求解. 【详解】已知抛物线方程为22(1)2y x =--,即21(1)(2)2x y -=+,它的图象是由抛物线212x y =向右平移1单位,再向下平移2个单位得到的,抛物线212x y =中122p =,14p =,焦点坐标为1(0,)8,011+=,115288-=-,因此所求焦点坐标为15(1,)8-, 故选:B . 【点睛】本题考查求抛物线的焦点坐标,掌握抛物线的标准方程与图象变换是解题关键.二、填空题13.12【解析】由知焦点所以设直线AB 方程为联立抛物线与直线方程消元得:设则根据抛物线定义知故填:解析:12 【解析】由2=3y x 知焦点3(0)4F ,,所以设直线AB 方程为3)4y x =-,联立抛物线与直线方程,消元得:21616890x x -+=,设1122(,),(,)A x y B x y ,则12212x x += ,根据抛物线定义知12213||=x 1222AB x p ++=+=.故填:12. 14.②③【分析】求出点结合直线方程的知识可判断①;联立方程可求出交点坐标即可判断②;在曲线上取点由可判断③;求出整点即可判断④【详解】对于①曲线令则;令则;所以点所以直线AB 的方程为:即故①错误;对于②解析:②③ 【分析】求出点()2,0A ,()0,2B ,结合直线方程的知识可判断①;联立方程可求出交点坐标,即可判断②;在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,由ADEFG S 可判断③;求出整点即可判断④.【详解】 对于①,曲线22:4C xy x y +=+,令0x =,则2y =±;令0y =,则2x =±; 所以点()2,0A ,()0,2B ,所以直线AB 的方程为:221x y+=即20x y +-=, 故①错误;对于②,由222248x y x y x y ⎧+=+⎨+=⎩可得22x y =⎧⎨=⎩或22x y =-⎧⎨=⎩, 所以曲线C 与圆228x y +=有2个交点()2,2,()2,2-,故②正确;对于③,在曲线上取点()2,2D ,()2,2E -,()2,0F -,()0,2G -,顺次连接各点,如图,则12442122ADEFG S =⨯+⨯⨯=, 所以曲线C 所围成的“心形”区域的面积大于12,故③正确;对于④,曲线经过的整点有:()2,0±,()0,2±,()2,2±,有6个,故④错误. 故答案为:②③. 【点睛】本题考查了曲线与方程的应用,考查了运算求解能力与转化化归思想,合理转化条件是解题关键,属于中档题.15.【分析】由于P 为与在第一象限的交点分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到再分别由其对应离心率公式表示并由不等式性质求得答案【详解】设椭圆:与双曲线:因为P 为与在第一象限的交点所以焦点三解析:32,53⎛⎫⎪⎝⎭【分析】由于P 为1C 与2C 在第一象限的交点,112PF F F =,分别在椭圆与双曲线的焦点三角形中依照定义构建关系得到2a c m =-,再分别由其对应离心率公式表示并由不等式性质求得答案. 【详解】设椭圆1C :()222210x y a b a b +=>>与双曲线2C :()222210,0x y m n m n-=>>,因为P 为1C 与2C 在第一象限的交点,112PF F F =,所以焦点三角形12PF F 是以2PF 为底边的等腰三角形,即在椭圆中有1221122222PF PF aPF a c PF F F c⎧+=⎪⇒=-⎨==⎪⎩①;同理,在双曲线中有222PF c m =-②,由①②可知,2a c m =-,因为()221112,3,,32c e m e ⎛⎫=∈∈ ⎪⎝⎭,且12111222c c e m a c m c e ====---, 由不等式的性质可知,132,53e ⎛⎫∈ ⎪⎝⎭. 故答案为:32,53⎛⎫⎪⎝⎭【点睛】本题考查椭圆与双曲线共焦点问题中求椭圆的离心率范围问题,属于中档题.16.【分析】设动圆的圆心为半径为R 根据动圆与圆外切与圆内切得到两式相加得到再根据椭圆的定义求解【详解】设动圆的圆心为半径为R 因为动圆与圆外切与圆内切所以所以所以动圆圆心的轨迹为以为焦点的椭圆所以所以动圆解析:2212516x y +=【分析】设动圆的圆心为(),Q x y ,半径为R ,根据动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切,得到121,9QQ R QQ R =+=-,两式相加得到1212106QQ QQ QQ +=>=,再根据椭圆的定义求解.【详解】设动圆的圆心为(),Q x y ,半径为R ,因为动圆与圆221():31Q x y ++=外切,与圆222:()381Q x y +=-内切, 所以121,9QQ R QQ R =+=-,所以1212106QQ QQ QQ +=>=, 所以动圆圆心的轨迹为以12,Q Q 为焦点的椭圆, 所以2210,5,3,16a a c b ====,所以动圆圆心的轨迹方程为2212516x y +=, 故答案为:2212516x y +=【点睛】本题主要考查圆与圆的位置关系以及椭圆的定义,还考查了运算求解的能力,属于中档题.17.【详解】取的中点P 连接由题可知且所以又则在中在中得又所以故答案为:【点睛】本题考查双曲线离心率的求解涉及双曲线定义的应用考查计算能力属于中等题 解析:75【详解】取1F M 的中点P ,连接2PF ,由题可知212=MF F F ,且1132MF NF =, 所以22MF c =,MP c a =-,1F P c a =-. 又1132MF NF =,则()13NF c a =-,23NF c a =-. 在2Rt NPF △中,22222NP PF NF +=,在2Rt MPF △中,22222MP PF MF +=,得()()()()2222342c a c a c c a ---=--⎡⎤⎣⎦,2251270c ac a -+=,()()750a c a c --=.又1e >,所以75e =. 故答案为:75.【点睛】本题考查双曲线离心率的求解,涉及双曲线定义的应用,考查计算能力,属于中等题.18.【分析】由焦点均在轴上可得点在椭圆上则点和点在双曲线上代入中求解即可【详解】由焦点均在轴上可得点在椭圆上则点和点在双曲线上设双曲线为则解得即所以双曲线的虚轴长为故答案为:4【点睛】本题考查双曲线的方 解析:4【分析】由焦点均在x轴上可得点(0,在椭圆上,则点()4,2-和点(-在双曲线上,代入22221x y a b -=中求解即可. 【详解】由焦点均在x轴上可得点(0,在椭圆上, 则点()4,2-和点(-在双曲线上,设双曲线为22221x y a b-=,则222216412481a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩,解得24b =,即2b =, 所以双曲线2C 的虚轴长为24b =, 故答案为:4 【点睛】本题考查双曲线的方程与焦点的位置的关系,考查双曲线的几何性质.19.【分析】首先根据圆与圆的位置关系确定出该动圆是椭圆然后根据相关的两求出椭圆的方程【详解】解:设动圆的圆心为:半径为动圆与圆外切与圆内切因此该动圆是以原点为中心焦点在轴上的椭圆且解得∴椭圆的方程为:故解析:22198x y【分析】首先根据圆与圆的位置关系确定出该动圆是椭圆,然后根据相关的两求出椭圆的方程. 【详解】解:设动圆的圆心为:(,)M x y ,半径为R ,动圆与圆221:(1)1M x y ++=外切,与圆222:(1)25M x y -+=内切, 12||||156MM MM R R ∴+=++-=, 1212||||||MM MM M M +>,因此该动圆是以原点为中心,焦点在x 轴上的椭圆,且26a =,1c =, 解得3a =, ∴2228b a c =-=,∴椭圆的方程为:22198x y ,故答案为:22198x y .【点睛】本题主要考查椭圆的方程及圆与圆的位置关系,属于中档题.20.【分析】设点的坐标为利用双曲线的定义可得于是转化求解即可【详解】解:由题意可得即则的坐标分别为由双曲线的定义得又是圆上的点圆的圆心为半径为2由图可知则的最小值为故答案为:【点睛】本题主要考查双曲线的 解析:4+61【分析】设点C 的坐标为(0,6),利用双曲线的定义,可得12||||26MF MF a -==,于是1||||MF MA +=2||||2||MF CM a CA ++-2||62CF ≥+-,转化求解即可.【详解】解:由题意可得,291625c =+=,即5c =,则1F ,2F 的坐标分别为(5,0)-,(5,0),由双曲线的定义,得12||||26MF MF a -==,又A 是圆22(6)4x y +-=上的点,圆的圆心为(0,6)C ,半径为2, 由图可知,22||||||CM MF CF +≥,12||||||||2||MF MA MF CM a CA +=++-2||62461CF ≥+-=则1||||MF MA +的最小值为故答案为: 【点睛】本题主要考查双曲线的几何性质,熟练掌握双曲线的性质及其圆外一点到圆上一点距离的最小值是解题的关键,属于中档题.三、解答题21.2214x y +=【分析】(1)根据条件在OBF 中,由等面积法可得点O 到直线BF 的距离,从而建立方程求出,a b 关系,得出离心率.(2) 设:l x my n =+,与椭圆方程联立写出韦达定理,由弦长公式得到弦长,求出其最值,根据条件得到答案. 【详解】(1)由条件可得()0,B b ,(),0F c ,设点O 到直线BF 的距离为d 在OBF中,有BF a ==,则d BF ON OF ⨯=⨯,即bc d a= 所以12bc d c a ==,所以12b a =所以e ==== (2)由直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,所以直线l 的斜率不为0. 设:l x my n =+,所以b =,所以()2221n b m =+由(1)可得224a b =,则椭圆方程化为:22244x y b +=设()()1122,,,M x y N x y ,由22244x my nx y b =+⎧⎨+=⎩,得()22224240m y mny n b +++-=所以2212122224,44mn n b y y y y m m --+==++ 所以AB ===1t =≥,则221m t =-所以2AB b t t=≤+,当且仅当t =m =时取得等号. 由||MN 的最大值为2,则22b =,所以1b =所以当||MN 的最大值为2时,椭圆方程为:2214xy +=【点睛】关键点睛:本题考查求椭圆的离心率和根据弦长的最值求椭圆方程,解答本题的关键是先由弦长公式得出弦长AB =1t =≥,利用换元利用均值不等式求出其最值,属于中档题.22.(1)22182x y +=;(2【分析】(1)将点代入椭圆方程,结合离心率c a =,a b ,得出椭圆方程; (2)可得0PA PB k k +=,设出直线PA 方程,联立直线与椭圆,可得点A 坐标,同理得出点B 坐标,即可求出中点M 坐标,可判断M 在直线20x y +=上,即可求出最小值. 【详解】解:(1)因为椭圆经过点P且离心率为2所以2222211,a b c a⎧+=⎪⎪⎨⎪=⎪⎩其中222a b c =+,解得228,2.a b ⎧=⎨=⎩所以椭圆方程为22182x y +=.(2)因为APB ∠的角平分线与x 轴垂直,所以0PA PB k k +=.设直线PA 的斜率为()0k k ≠,则直线PA 的方程为:()21y k x =-+, 设()()1122,,,A x y B x y ,由()2221,1,82y k x x y ⎧=-+⎪⎨+=⎪⎩得()()22214812161640k x k k x k k ++-+--=.则21216164214k k x k--⨯=+,所以21288214k k x k --=+,代入得21244114k k y k--+=+. 即2222882441,1414k k k k A k k ⎛⎫----+ ⎪++⎝⎭,同理可得2222882441,1414k k k k B k k ⎛⎫+--++ ⎪++⎝⎭. 所以22228241,1414k k M k k ⎛⎫--+ ⎪++⎝⎭. 则M 在直线20x y +=上,所以PM 的最小值为P 到直线20x y +=的距离.即5d ==,此时63,55M ⎛⎫- ⎪⎝⎭在椭圆内,所以PM 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.23.(1)2214x y +=;(2)12. 【分析】(1)根据题中条件,得到222112a b +=,求出R ⎭,根据点P 与点R 关于x 轴对称,得到2a b =,进而可求出,a b ,得出椭圆方程;(2)先设()P m n ,,根据题中条件,得到M ,N ,R ,Q 的坐标,由三角形面积公式,得到44442222214a n b m S b S a ++=,根据2ab =,22221m n a b+=,结合基本不等式,即可求出2212S S +的最小值.【详解】(1)因为点P ⎭为椭圆()222210,0x y a b a b +=>>上任意一点,则222112a b+=;由x b y x a ⎧=⎪⎨=-⎪⎩可得x y a ⎧=⎪⎨=-⎪⎩,即a R -⎫⎪⎪⎭, 又点P 与点R 关于x轴对称,所以0=,则2a b =, 由2222112a ba b =⎧⎪⎨+=⎪⎩解得21a b =⎧⎨=⎩,所以椭圆的标准方程为2214x y +=; (2)由题意,设()P m n ,,其中0m >,0n >,则()0,M n ,(),0N m ,由x m b y x a =⎧⎪⎨=-⎪⎩可得x mbm y a =⎧⎪⎨=-⎪⎩,即,bm R m a ⎛⎫- ⎪⎝⎭;由y n b y x a =⎧⎪⎨=-⎪⎩可得y nan x b =⎧⎪⎨=-⎪⎩,即,an Q n b ⎛⎫- ⎪⎝⎭,所以211222OMQQ n an an S SOM x b b===⋅=,221222ONRR m bm bm S S ON y a a===⋅=, 则2424422124442222444a n b m b m a a b b S S a n +=++=, 因为2ab =,22221m n a b +=,则2222221b m a n a b+=,即22224b m a n +=, 所以444444442222444444422121632232a n a n ab m b m b m b m n a n a b S n m S +++++≥+=+=()22222442222441323222a nb m a n a b m b n m++===+, 当且仅当22222a n b m ==时,取得最小值12. 【点睛】 思路点睛:求解圆锥曲线中的三角形面积最值问题时,一般需要根据题中条件,利用三角形面积公式,表示出三角形的面积,再结合函数的性质或基本不等式,即可求出面积的最值.(有时需要利用导数的方法求解最值)24.(1)22142x y +=;(2)(OMN S ∈△. 【分析】(1)由点()1,1B -在O 上可得22b =,然后由OB AB ⊥可求出a ;(2)分切线斜率存在和不存在两种情况讨论,斜率不存在时利用弦长公式表示出MN 并求出其范围即可. 【详解】(1)由直线AB 与O 相切于点()1,1B -,可知点()1,1B -在O 上,则22b =, 又点(),0A a -,且OB AB ⊥,则10101101a--⨯=----+,解得2a =, 故所求椭圆方程为22142x y +=.(2)若切线斜率存在,设切线为0kx y m -+=,其中0k ≠,切线l 与椭圆C 交点()11,M x y ,()22,N x y ,则圆心到直线l的距离d ==()2221m k ∴=+,联立方程220142kx y m x y -+=⎧⎪⎨+=⎪⎩,消去y 得()222214240k x kmx m +++-=,则122421km x x k -+=+,21222421-=+m x x k()0,2MN ====,当切线斜率不存在时,此时2MN =,故O 的切线l 与椭圆C 相交弦长取值范围为(]0,2,又12OMN S d MN =⋅⋅=△,可得(OMN S ∈△. 【点睛】关键点睛:在解决圆锥曲线中的面积问题时,要善于观察图形的特点,怎么表示出面积是解题的关键.25.(1)曲线1C 的方程为2214x y +=,曲线2C 的方程为24x y =;(2)证明见解析;(3)[)2,+∞. 【分析】(1)根据抛物线的定义,以及双曲线的离心率公式可求出答案;(2)设直线MN 的方程为1y kx =+,与抛物线方程联立,设11,)Mx y (,()2,2N x y ,根据韦达定理可得答案;(3)根据弦长公式求出|OM |,|ON |,|OA |,|OB |的长,再根据三角形的面积公式和基本不等式即可求出λ的取值范围. 【详解】(1)由抛物线定义可得7,4M c b ⎛⎫--⎪⎝⎭, M 在抛物线24x by =上,∴2744c b b ⎛⎫=- ⎪⎝⎭,即2274c b b =-①又由c a =223c b =将上式代入①,得277b b =解得1,b =∴2c a =∴=,所以曲线1C 的方程为2214x y +=,曲线2C 的方程为24x y =;(2)设直线MN 的方程为1y kx =+,由214y kx x y=+⎧⎨=⎩消去y 整理得2440x kx --=, 设11,)Mx y (,()22,N x y , 则124x x =-, 设221212121221111144164ON OMx xy y kkx x x x x x =⋅=⋅==-; (3)设,ON OM k k m m '==,则有14m m'=-,② 设直线ON 的方程为(0)y mx m =>,由24y mxx y=⎧⎨=⎩,解得4N x m =,所以4N ON ==由②可知,用14m -代替m,可得M OM ==, 由2214y mx x y =⎧⎪⎨+=⎪⎩,解得A x =,所以A OA == 用14m-代替m,可得B OB ==所以=OMNOABON OMSS OA OBλ⋅====⋅1222mm=+≥,当且仅当1m=时等号成立.所以λ的取值范围为[)2,+∞.【点睛】圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.26.(1)240x y--=;(2)181717y x x⎛⎫=--<<⎪⎪⎝⎭.【分析】(1)设弦的端点()11,A x y,()22,B x y,可得:22111164x y+=,22221164x y+=,相减化简再利用中点坐标公式、斜率计算公式即可得出;(2)设直线方程为:2y x m=+,弦的端点坐标及中点(),M x y,与椭圆方程联立化为:2217164160x mx m++-=,由0>,化为:268m<,再利用根与系数的关系、中点坐标公式即可得出.【详解】(1)设弦的端点()11,A x y,()22,B x y,可得:22111164x y+=,22221164x y+=,相减可得:12121212()()()()164x x x x y y y y+-+-+=,把1222x x+=,1212y y+=-,1212y ykx x-=-代入可得:12k=.∴以()2,1P-为中点的弦所在直线的方程为:()1122y x+=-,化为:240x y--=.(2)设直线方程为:2y x m=+,弦的端点()11,A x y,()22,B x y,中点(),M x y.联立2221164y x mx y=+⎧⎪⎨+=⎪⎩,化为2217164160x mx m++-=,()22256684160m m=-->,化为:268m<,∴1216227m x x x +=-=,化为: 882171717m m m x y m ⎛⎫=-=⨯-+= ⎪⎝⎭,.得x <<,∴18y x x ⎛=-<< ⎝⎭【点睛】 关键点点睛:(1)涉及直线与圆锥曲线相交中点弦问题时,利用点差法; (2)由直线与椭圆的位置关系得出m 的范围.。
新人教A版选修2-1圆锥曲线复习题(附解析)
新人教A版选修2-1圆锥曲线复习题(附解析)新人教A版选修2-1圆锥曲线复习题(附解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、设定点,,动点满足条件>,则动点的轨迹是().A.椭圆B.线段C.不存在D.椭圆或线段或不存在2、抛物线的焦点坐标为().A.B.C.D.3、双曲线的虚轴长是实轴长的2倍,则的值为(). A.B.C.D.5、设是右焦点为的椭圆上三个不同的点,则“成等差数列”是“”的().A.充要条件B.必要不充分条件C.充分不必要条件D.既非充分也非必要6、P是双曲线的右支上一点,M、N分别是圆(x+5)2+y2=4和(x -5)2+y2=1上的点,则|PM|-|PN|的最大值为().A.6B.7C.8D.97、过双曲线的右焦点作直线l,交双曲线于A、B两点,若|AB|=4,则这样的直线的条数为().A.1B.2C.3D.48、设直线,直线经过点(2,1),抛物线C:,已知、与C共有三个交点,则满足条件的直线的条数为().A.1B.2C.3D.49、如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是().A.直线B.抛物线C.双曲线D.圆10、以过椭圆的右焦点的弦为直径的圆与其右准线的位置关系是().A.相交B.相切C.相离D.不能确定11、过双曲线M:的左顶点A作斜率为1的直线,若与双曲线M的两条渐近线分别相交于B、C,且|AB|=|BC|,则双曲线M的离心率是().A.B.C.D.12、若抛物线上总存在两点关于直线对称,则实数的取值范围是().二、填空题:本大题共4小题,每小题4分,共16分.13、已知双曲线的渐近线方程为y=±,则此双曲线的离心率为________.14、长度为的线段AB的两个端点A、B都在抛物线上滑动,则线段AB 的中点M到轴的最短距离是.15、是椭圆的两个焦点,点P是椭圆上任意一点,从引∠的外角平分线的垂线,交的延长线于M,则点M的轨迹是.16、已知为双曲线的两个焦点,为双曲线右支上异于顶点的任意一点,为坐标原点.下面四个命题().A.的内切圆的圆心必在直线上;B.的内切圆的圆心必在直线上;C.的内切圆的圆心必在直线上;D.的内切圆必通过点.其中真命题的代号是(写出所有真命题的代号).三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分)椭圆的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=,|PF2|=,PF1⊥PF2.(1)求椭圆C的方程;(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.18、(本小题满分12分)学校科技小组在计算机上模拟航天器变轨返回试验.设计方案是:如图,航天器运行(按顺时针方向)的轨迹方程为,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以轴为对称轴、为顶点的抛物线的实线部分,降落点为.观测点同时跟踪航天器.(1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:若航天器在轴上方,则在观测点测得离航天器的距离分别为多少时,应向航天器发出变轨指令?19、(本小题满分12分)已知两定点,满足条件的点的轨迹是曲线,直线与曲线交于两点.如果,求直线AB的方程。
达州市高中数学选修2-1第三章《圆锥曲线与方程》测试题(答案解析)
一、选择题1.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点M 在双曲线C 的右支上,点N 在线段12F F 上(不与12,F F 重合),且1230F MN F MN ︒∠=∠=,若2132MN MF MF -=,则双曲线C 的渐近线方程为( )A .y x =±B .y =C .y =D .2y x =±2.已知F 1、F 2分别为双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,点A 在双曲线上,且∠F 1AF 2=60°,若∠F 1AF 2的角平分线经过线段OF 2(O 为坐标原点)的中点,则双曲线的离心率为( )A B C D 3.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12,F F 为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( ) A .43y x =±B .34yx C .35y x =±D .53y x =±4.已知双曲线()222210,0x y a b a b-=>>,过其右焦点F 且平行于一条渐近线的直线l 与另一条渐近线交于点A ,l 与双曲线交于点B ,若2BF AB =,则双曲线的离心率为( )A B C D .25.设AB 是过抛物线24y x =的焦点F 的一条弦(与x 轴不垂直),其垂直平分线交x 轴于点G ,设||||AB m FG =,则m =( ) A .23B .2C .34D .36.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直7.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .258.设抛物线24y x =的焦点为F ,以F 为端点的射线与抛物线相交于A ,与抛物线的准线相交于B ,若4FB FA =,则FA FB ⋅=( ) A .9B .8C .6D .49.已知1F ,2F 是双曲线22221(0,0)x y a b a b-=>>的左右焦点,若在右支上存在点A 使得点2F 到直线1AF 的距离为3a ,则离心率e 的取值范围是( )A .51,2⎛⎫⎪ ⎪⎝⎭B .5,2⎛⎫+∞ ⎪ ⎪⎝⎭C .71,2⎛⎫⎪ ⎪⎝⎭D .7,2⎛⎫+∞ ⎪ ⎪⎝⎭10.无论θ为何值,方程223cos 1x y θ+⋅=所表示的曲线不可能为( )A .双曲线B .抛物线C .椭圆D .圆11.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-12.已知双曲线()222210,0x y a b a b-=>>的一条渐近线经过点()2,6,则该双曲线的离心率为( )A .2B .2C .3D .3二、填空题13.如图,过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),分别过,A B 作抛物线的切线,设两切线的交点为M ,则M 的坐标为__________.14.已知P 是双曲线221168x y -=右支上一点,12,F F 分别是双曲线的左、右焦点,O 为坐标原点,点,M N 满足()21220,,0PF PM F P PM PN PN F N PM PF λλμ⎛⎫⎪=>=+= ⎪⎝⎭⋅,若24PF =.则以O 为圆心,ON 为半径的圆的面积为________.15.已知双曲线22221(0,0)x y a b a b-=>>的一个焦点与抛物线24y x =的焦点重合,且焦点到渐近线的距离为2________ 16.曲线412x x y y -=上的点到直线y的距离的最大值是________.17.已知椭圆2222:1(0)x y C a ba b +=>>上有一点)M ,F 为右焦点,B 为上顶点,O 为坐标原点,且BFO BFMS ∆=,则椭圆C 的离心率为________18.已知抛物线2:4C x y =的焦点为F ,过C 上一点A 作C 的准线l 的垂线,垂足为B ,连接FB 交x 轴于点D ,若||5AF =,则||AD =_________.19.过抛物线2:4C y x =的焦点F 的直线l 交C 于,A B 两点,设,A B 在y 轴上的投影分别为,A B '',若()32AB AA BB ''=+,则直线l 的斜率为______. 20.已知双曲线2222:1(0,0)x y C a b a b -=>>与椭圆221259x y +=的焦点重合,左准线方程为1x =-,设1F 、2F 分别为双曲线C 的左、右两个焦点,P 为右支上任意一点,则212PF PF 的最小值为_____________.三、解答题21.已知椭圆C :()222210x y a b ab+=>>的左、右顶点分别为A ,B 且左、右焦点分别为1F ,2F ,点P 为椭圆C 上的动点,在点P 的运动过程中,有且只有6个位置使得12PF F 为直角三角形,且12PF F 的内切圆半径的最大值为2(1)求椭圆C 的标准方程;(2)过点B 作两条互相垂直的直线交椭圆C 于M ,N 两点,记MN 的中点为Q ,求点A 到直线BQ 的距离的最大值.22.已知椭圆22221(0)x y a b a b+=>>经过点(0,离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0). (1)求椭圆的方程; (2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足||53||4AB CD =,求直线l 的方程. 23.已知抛物线C :2y x =,过点1,0A 的直线交抛物线C 于()11,P x y ,()22,Q x y 两点,O 为坐标原点. (1)证明:OP OQ ⊥;(2)点()3,0B -,设直线PB ,QB 分别与抛物线C 交于另一点M ,N ,过点O 向直线MN 作垂线,垂足为D .是否存在定点E ,使得DE 为定值?若存在,求出点E 的坐标及DE ;若不存在,请说明理由.24.如图,椭圆1C :22221(0)x y a b a b +=>>的左右焦点分别为12,F F ,离心率为32,过抛物线2C :24x by =焦点F 的直线交抛物线于,M N 两点,当7||4MF =时,M 点在x 轴上的射影为1F ,连接,NO MO 并延长分别交1C 于,A B 两点,连接AB ,OMN 与OAB 的面积分别记为OMN S △,OAB S ,设λ=OMNOABS S .(1)求椭圆1C 和抛物线2C 的方程;(2)设ON ,OM 所在直线的斜率为,OM ON k k ,求证OM ON k k ⋅为定值; (3)求λ的取值范围.25.如图,抛物线2:2(0)C y px p =>的焦点为F ,直线11:2l y x =+与C 相切.(1)求抛物线C 的方程;(2)设过F 的直线2l 交C 于M ,N 两点(M 在x 轴上方),若MF FN =3,求直线2l 的方程.26.在平面直角坐标系xOy 中,动点M 到点(1,0)A -和(1,0)B 的距离分别为1d 和2d ,2AMB θ∠=,且212cos 1d d θ=.(1)求动点M 的轨迹E 的方程;(2)是否存在直线l 过点B 与轨迹E 交于P ,Q 两点,且以PQ 为直径的圆过原点O ?若存在,求出直线l 的方程,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据2132MN MF MF -=可得122F N F N =,所以112MF NMF NS S=,然后用面积公式将两个三角形面积表示出来,可得122MF MF =,再结合122MF MF a -=,余弦定理,可得a 、c 的关系,再利用222c a b =+ ,即可求出ba的值,进而可得渐近线方程. 【详解】∵2132MN MF MF -=,∴2122MN MF MF MN -=-,∴212F N NF =, ∴122F N F N =,∴122MF NMF NSS=.∵111||sin 302MF NSMF MN ︒=⋅⋅⋅,221||sin 302MF NS MF MN ︒=⋅⋅⋅, ∴122MF MF =,又122MF MF a -=,∴ 则124,2MF a MF a ==.在12MF F △中,由余弦定理得,222224164812c a a a a =+-=,故223c a =,∴222b a =, ∴2ba=, 故所求渐近线方程为2y x =±, 故选:B 【点睛】本题主要考查了双曲线离心率的求解,涉及了三角形面积公式、向量的线性运算、余弦定理,属于中档题.2.B解析:B 【分析】首先根据角平分线定理和双曲线的定义求得1AF 和2AF 的值,再结合余弦定理计算离心率. 【详解】不妨设点A 在第一象限,12F AF ∠的角平分线交x 轴于点M ,因为点M 是线段2OF 的中点,所以12:3:1FM MF =,根据角平分线定理可知1231AF AF =,又因为122AF AF a -=,所以13AF a =,2AF a =,由余弦定理可得22221492372c a a a a a =+-⨯⨯⨯=,所以2274c a =,所以72c e a ==.故选:B 【点睛】本题考查双曲线的离心率,双曲线的定义,三角形角平分线定理,重点考查转化思想,计算能力,属于中档题型.3.A解析:A 【分析】结合直线和圆的位置关系以及双曲线的定义求得,a b 的关系式,由此求得双曲线的渐近线方程. 【详解】设直线2PF 与圆222x y a +=相切于点M ,则2,OM a OM PF =⊥, 取线段2PF 的中点N ,连接1NF , 由于1122PF F F c ==, 则122,NF PF NP NF ⊥=,由于O 是12F F 的中点,所以122NF OM a ==,则2NP b ==,即有24PF b =,由双曲线的定义可得212PF PF a -=, 即422b c a -=, 即2,2b c a c b a =+=-,所以()2222b a a b -=+,化简得2434,34,3b b ab b a a ===, 所以双曲线的渐近线方程为43y x =±. 故选:A【点睛】本小题主要考查双曲线渐近线方程的求法,属于中档题.4.B解析:B 【分析】设直线l 的方程为()by x c a=--,求得点A 的坐标,由2BF AB =,可得出23FB FA =,利用平面向量的坐标运算求出点B 的坐标,将点B 的坐标代入双曲线的标准方程,可得出a 、c 齐次等式,由此可解得该双曲线的离心率. 【详解】 如下图所示:设直线l 的方程为()b y x c a=--,则直线OA 的方程为by x a =,联立()b y x a b y x c a ⎧=⎪⎪⎨⎪=--⎪⎩,解得22c x bc y a ⎧=⎪⎪⎨⎪=⎪⎩,即点,22c bc A a ⎛⎫ ⎪⎝⎭, 设点(),B m n ,由2BF AB =可得出23FB FA =, 即()2,,,32233c bc c bc m c n a a ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,即33c m c bc n a ⎧-=-⎪⎪⎨⎪=⎪⎩,解得233c m bc n a ⎧=⎪⎪⎨⎪=⎪⎩,则点2,33c bc B a ⎛⎫⎪⎝⎭, 将点B 的坐标代入双曲线的标准方程得222222241993c b c e a a b -==,解得e =故选:B. 【点睛】本题考查双曲线离心率的求解,利用平面向量的坐标运算求出点B 的坐标是解题的关键,考查计算能力,属于中等题.5.B解析:B 【分析】联立直线AB 与抛物线方程,求出E 点坐标以及直线EG 的方程,可得||FG ,利用定义求出弦长||AB ,可得m 的值. 【详解】设:1AB x ty =+,()11,A x y ,()22,B x y ,AB 的中点为()00,E x y ,联立方程组214x ty y x=+⎧⎨=⎩,消去x 得2440y ty --=,所以124y y t +=,12022y y y t +==,2021x t =+,即()221,2E t t +,所以EG 的方程为()2221y t t x t -=---.令0y =,得223x t =+,因此()2||21FG t =+.又12||2AB x x =++=()()2122241t y y t +++=+,所以1||||2FG AB =,从而2m =. 故选:B 【点睛】本题考查直线与抛物线的位置关系,考查抛物线定义的应用,属于中档题.6.A解析:A【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y p p ⎧+⎪+⎛⎫⎪=⨯⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根 所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题. 7.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则()()22222127·771616k PF PF x y x y x ==-+⋅-+=-, 又2016x ≤≤.∴max min 16,9k k ==.故max min +16+925k k ==.所以k 的最大值与最小值的和为25.故选:D.【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.8.A解析:A【分析】根据平行关系可证明N 点,A 点分别是线段BF ,NF 的中点,再根据比列关系求A 点横坐标即可求解.【详解】设FB 交y 轴于N 点,如图,由准线与y 轴平行,且O 为中点,所以N 是BF 中点,因为4FB FA =,所以A 是NF 的中点,设A 的横坐标为m ,则由抛物线的定义,||||(1)1AF AC m m ==--=+,由AC 与x 轴平行,可得1342m +=, 解得12m =∴334622FA FB ==⨯=,, ∴⋅=FA FB |FA ||FB |=9,故选:A【点睛】关键点点睛:利用抛物线的定义及平行关系,建立比列关系求出||AF 的长,是解题的关键所在,属于中档题.9.D解析:D【分析】设直线1AF 的方程,利用点2F 到直线的距离建立等式,解出斜率k ,因为0b k a <<,从而求出,a c 的不等关系,进而解出离心率的范围.【详解】设1AF :()y k x c =+,因为点A 在右支上,则0b k a<<,,所以222222343a b k c a a =<-,即2247c a >,解得:2e > 故选:D .【点睛】本题考查双曲线求离心率,属于中档题.方法点睛:(1)利用点到直线的距离建立等量关系;(2)解出斜率k 与,a b 的关系;(3)由点在右支和左焦点的位置关系,求出斜率k 的范围;(4)利用斜率k 的范围,建立,a c 的不等式,求出离心率的范围.10.B解析:B【分析】因为1cos θ1,所以当cos 0θ=时,方程表示直线;当10cos 3θ<<或1cos 13θ<≤时,方程表示椭圆;当1cos 3θ=时,方程表示圆;当1cos 0θ-≤<时,方程表示双曲线.【详解】因为1cos θ1,所以当cos 0θ=,即2k πθπ=+,k Z ∈时,方程化为1x =±,表示两条直线;当10cos 3θ<<时,方程化为22113cos y x θ+=表示焦点在y 轴上的椭圆; 当1cos 3θ=时,方程化为221x y +=表示圆; 当1cos 13θ<≤时,方程化为22113cos y x θ+=表示焦点在x 轴上的椭圆; 当1cos 0θ-≤<时,方程化为22113cos y x θ-=-表示焦点在x 轴上的双曲线. 故选:B【点睛】关键点点睛:本题考查方程223cos 1x y θ+⋅=所表示的曲线的判断,解题关键是判断3cos θ的符号以及与1的大小关系的判断,按照五种情况分类讨论即可得解.11.A解析:A【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解.【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=, 设 ()()()112233,,,,,A x y B x y C x y , 则222212121,14343y x y x +=+=, 两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.12.A解析:A【分析】求出双曲线的渐近线方程,将点代入即可得b a=得离心率.【详解】 双曲线()222210,0x y a b a b-=>>的一条渐近线为b y x a =过第一象限,所以点在渐近线b y x a =b a =,所以b a=所以2c e a ==. 故选:A【点睛】本题主要考查了求双曲线的离心率,属于中档题.二、填空题13.【分析】由已知求得抛物线焦点坐标及准线方程由求得所在直线倾斜角得到斜率写出所在直线方程联立准线方程与抛物线方程求得的坐标可求利用导数求斜率写出直线的方程再求两直线的交点则的坐标可求【详解】解:由抛物解析:1,3⎛⎫- ⎪ ⎪⎝⎭【分析】由已知求得抛物线焦点坐标及准线方程,由3AF FB =求得AB 所在直线倾斜角,得到斜率,写出AB 所在直线方程,联立准线方程与抛物线方程,求得A 、B 的坐标可求,利用导数求斜率,写出直线AM 、BM 的方程,再求两直线的交点,则M 的坐标可求.【详解】解:由抛物线2:4C y x =,得焦点(1,0)F ,准线方程为1x =-.由题意设AB 所在直线的倾斜角为θ,由3AF FB =,得2231cos 1cos θθ=-+,即1cos 2θ=. tan 3θ∴=.则AB 所在直线方程为3(1)y x =-.联立23(1)4y x y x⎧=-⎪⎨=⎪⎩,得231030x x -+=. 解得:13x =或3x =, 因为点A 在x 轴上方所以(3,23)A ,123,33B ⎛⎫- ⎪ ⎪⎝⎭由2y x =,得1y x '=, 2y x =-得1y x '=- ∴313|33x y ='==,131|313x y ='=-=-, 即AM 、BM 所在直线的斜率分别为33、3-. 3:23(3)3AM y x ∴-=-,231:3()33BM y x +=-- 所以323(3)32313()33y x y x ⎧-=-⎪⎪⎨⎪+=--⎪⎩解得1233x y =-⎧⎪⎨=⎪⎩ M ∴的坐标为23(1,)3-. 故答案为:23(1,)3-.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.14.【分析】延长交于点由向量数量积和线性运算可知为线段的垂直平分线结合双曲线定义可求得利用中位线性质可求得进而得到结果【详解】延长交于点如下图所示:为的角平分线又为线段的垂直平分线由双曲线定义知:分别为 解析:64π【分析】延长2F N 交PM 于点Q ,由向量数量积和线性运算可知PN 为线段2F Q 的垂直平分线,结合双曲线定义可求得1FQ ,利用中位线性质可求得ON ,进而得到结果. 【详解】延长2F N ,交PM 于点Q ,如下图所示: 22PF PM PN PM PF μ⎛⎫ ⎪=+ ⎪⎝⎭,PN ∴为2QPF ∠的角平分线, 又20PN F N ⋅=,2PN NF ∴⊥,PN ∴为线段2F Q 的垂直平分线,24PQ PF ∴==.由双曲线定义知:12248PF PF -=⨯=,18412PF ∴=+=,141216FQ ∴=+=, ,O N 分别为122,F F QF 中点,1182ON F Q ∴==, ∴以O 为圆心,ON 为半径的圆的面积64S π=.故答案为:64π.【点睛】本题考查双曲线性质和定义的综合应用,涉及到平面向量数量积和线性运算的应用;解题关键是能够通过平面向量的线性运算和数量积运算确定垂直和平分关系.15.【分析】由题意画出图形再由抛物线方程求出焦点坐标得到双曲线的焦点坐标由焦点到双曲线一条渐近线的距离列式求解离心率即可【详解】如图由抛物线方程得抛物线的焦点坐标即双曲线的右焦点坐标为双曲线的渐近线方程 解析:2【分析】由题意画出图形,再由抛物线方程求出焦点坐标,得到双曲线的焦点坐标,由焦点到双曲线一条渐近线的距离列式,求解离心率即可.【详解】如图,由抛物线方程24y x =,得抛物线的焦点坐标(1,0)F , 即双曲线22221(0,0)x y a b a b-=>>的右焦点坐标为(1,0)F , 双曲线的渐近线方程为b y x a =±. 不妨取b y x a =,化为一般式:0bx ay -=. 223a b =+,即222433b a b =+, 又221a b =-,联立解得:214a =,12a ∴=. 则双曲线的离心率为:1212c e a === 故答案为:2.【点睛】 本题考查双曲线及抛物线的几何性质,考查双曲线的离心率与渐近线,还考查了点到直线的距离公式的应用,是基础题.16.【分析】先根据绝对值的正负判断曲线方程的种类再画出图象数形结合分析即可【详解】解:曲线表示的方程等价于以下方程画出图象有:故是双曲线与渐近线方程所以曲线上的点到直线的距离的最大值为椭圆上的点到直线的 26【分析】先根据绝对值的正负判断曲线方程的种类,再画出图象,数形结合分析即可.【详解】解:曲线412x x y y -=表示的方程等价于以下方程,()()()22222210,02410,02410,042x y x y x y x y y x x y ⎧-=≥≥⎪⎪⎪+=≥<⎨⎪⎪-=<<⎪⎩ ,画出图象有:故2y x =是双曲线()2210,024x y x y -=≥≥与()2210,042y x x y -=<<渐近线方程, 所以曲线412x xy y-=上的点到直线2y x =的距离的最大值为椭圆()2210,024x y x y +=≥<上的点到直线2y x 的距离. 设直线()20y x m m =+<与曲线()2210,024x y x y +=≥<相切,联立方程组,化简得:2242240x mx m ++-=,令()22=81640m m ∆--=,解得22m =- 所以切线为:222y x - 故两平行线222y x =-2y x =之间的距离为022263d +== 所以曲线412x xy y-=上的点到直线2y x =的距离的最大值是263. 故答案为:263.【点睛】本题考查直线与圆锥曲线的位置关系,曲线上的点到直线的距离问题,是中档题. 17.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解 解析:22 【分析】 由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率.【详解】由题意可得直线BF 的方程为:1x y c b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d a b c +---==+, 因为22||BF b c a =+=,所以12||[(21)]24BFM SBF d b a c ==--, 而12BFO S bc =, 因为2BFO BFM S S =,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--,整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.18.【分析】设根据利用抛物线的定义得到解得代入中得到AB 的坐标直线的方程令得D 的坐标用两点间的距离公式求解【详解】设因为所以得代入中得当时则直线为令得所以当时同理得故答案为:【点睛】本题主要考查抛物线的解析:【分析】设()00,A x y ,根据||5AF =,利用抛物线的定义得到0||15AB y =+=,解得04y =,代入24x y =中,得到A ,B 的坐标,直线BF 的方程,令0y =,得D 的坐标,用两点间的距离公式求解.【详解】设()00,A x y ,因为||5AF =,所以0||15AB y =+=,得04y =,代入24x y =中,得04x =±,当(4,4)A 时,(4,1)B -,则直线BF 为112y x =-+, 令0y =,得(2,0)D ,所以||AD =当(4,4)A -时,同理得||AD =故答案为:【点睛】本题主要考查抛物线的定义和几何性质,还考查了数形结合的思想和运算求解的能力,属于中档题. 19.【分析】根据抛物线的定义可构造方程求得设直线的倾斜角为根据焦点弦长公式可构造方程求得进而得到的值即为结果【详解】由抛物线的定义可知:设直线的倾斜角为则即直线的斜率为故答案为:【点睛】本题考查抛物线焦解析:【分析】 根据抛物线的定义可构造方程求得AB ,设直线l 的倾斜角为α,根据焦点弦长公式可构造方程求得2sin α,进而得到tan α的值即为结果.【详解】由抛物线的定义可知:()31122AB AF BF AA BB AA BB AA BB ''''''=+=+++=++=+, 4AA BB ''∴+=,6AB ∴=.设直线l 的倾斜角为α,则246sin AB α==,22sin 3α∴=,tan α∴= 即直线l的斜率为故答案为: 【点睛】本题考查抛物线焦点弦相关问题的求解,关键是熟练掌握抛物线的焦点弦长公式:1222sin p AB x x p α=++=. 20.【分析】由焦点重合可知由左准线方程可知从而可求设根据双曲线的定义可知则结合基本不等式可求其最值【详解】解:由焦点重合可知;由左准线方程可知又由双曲线的定义可知从而可求出因为为右支上任意一点所以设则则解析:【分析】由焦点重合可知2216a b +=,由左准线方程可知21a c-=-,从而可求2,4a b c ===,设2PF t =,根据双曲线的定义可知,14PF t =+,则212168PF t PF t=++,结合基本不等式可求其最值. 【详解】解:由焦点重合可知,2225916a b +=-=;由左准线方程可知,21a c-=-,又由双曲线的定义可知,222c a b =+,从而可求出2,4a b c ===. 因为P 为右支上任意一点,所以1224PF PF a -==.设2,2PFt t c a =≥-=, 则14PF t =+,则()22124168816t PF t PF t t +==++≥+= 当且仅当16t t =,即4t =时等号成立.即21216PF PF ≥. 故答案为:16. 【点睛】本题考查了双曲线的定义,考查了双曲线的准线方程,考查了椭圆的焦点求解,考查了基本不等式.本题的关键是由双曲线的定义,将所求的式子用一个变量来表示.利用基本不等式求最值时,一定要注意,一正二定三相等缺一不可.三、解答题21.(1) 22142x y += (2) 47 【分析】(1)由条件得出当点P 位于椭圆C 的上下顶点处时,12PF F △为直角三角形,则b c =,当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值,则2cbR a c==-+22222c a b a c =-=-,可求出椭圆方程. (2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+ ,与椭圆方程联立得出韦达定理,由1212122BM BN y yk k x x ⋅=⋅=---,结合韦达定理可得n 的值,从而得出点Q 的坐标,进而求出直线BQ 的方程,由点到直线的距离公式可得出答案 【详解】点P 为椭圆C 上的动点,当1PF x ⊥或2PF x ⊥时,12PF F △为直角三角形. 此时满足条件的点P 有4个,根据满足条件的点P 有6个. 则满足条件的点P 的另2个位置位于椭圆C 的上下顶点处.当点P 位于椭圆C 的上下顶点处时,12PF F △为等腰直角三角形,即b c =12PF F △的内切圆半径我为R ,则()12121211222PF F P Sc y F F PF PF R ==++ 即()P c y a c R =+,所以Pc y R a c=+ 当点P 位于椭圆C 的上下顶点处时,12PF F △的的内切圆半径的最大值.所以2cb R a c ==+,即22c a c=+22222c a b a c =-=-,即a =解得2,a b =,所以椭圆C 的标准方程为:22142x y +=(2)由条件()2,0B ,设()()1122,,,M x y N x y ,设直线MN 的方程为x my n =+由22142x my nx y =+⎧⎪⎨+=⎪⎩,得()2222240m y mny n +++-=所以212122224,,22mn n y y y y m m --+=⋅=++据条件直线BM ,BN 的斜率存在,由条件可得1212122BM BN y yk k x x ⋅=⋅=--- 即1212122y y my n my n ⋅=-+-+-,即()()()2212121222y y m y y m n y y n -=+-++- 所以()()()()2212121220m y y m n y y n ++-++-=则()()()2222242122022n mn m m n n m m --++-+-=++化简可得()()2320n n --=,即23n =或2n = 当2n =时,直线MN 过点B ,不满足条件.所以 23n =,则()12222243232m m y y m m -⨯-+==++ 由MN 的中点为Q ,则()2232Q my m -=+所以()()2222433232Q m x m m m -=⨯+=++所以()()222232434232BQm m m k m m -+==+-+所以直线BQ 的方程为()2234my x m =-+,即()23420m y mx m +-+= 所以点()2,0A -到直线BQ 的距离为d ==47=≤=当且仅当22169m m =,即243m =时取等号. 所以点()2,0A -到直线BQ 的距离的最大值为47【点睛】关键点睛:本题考查椭圆的几何性质和椭圆中的定点问题以及点到直线的距离的最值问题,解答本题的关键是由1212122BM BN y yk k x x ⋅=⋅=---结合韦达定理得出n 的值,进一步得出点Q 的坐标()2232Q m y m -=+,234BQmk m =+,得出直线BQ 的方程为()2234my x m =-+,属于难题.22.(1)22143x y +=;(2)12y x =-或12y x =-- 【分析】(1)根据题设条件列方程解得,a b 可得椭圆方程;(2)利用几何方法求出弦长||CD ,利用弦长公式求出弦长||AB,再根据||||AB CD =可求出m ,代入直线l :y =-12x +m ,可求得结果. 【详解】(1)由题设知22212b c a b a c ⎧=⎪⎪=⎨⎪=-⎪⎩,解得a =2,bc =1,∴椭圆的方程为22143x y +=.(2)由(1)知,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l :220x y m +-=的距离d =,由d <1,得||m <||CD ∴===设A (x 1,y 1),B (x 2,y 2),由221,21,43y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y 并整理得x 2-mx +m 2-3=0, 由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3.||AB =∴==由||||AB CD =1,解得m =,满足(*). ∴直线l的方程为12y x =-+或12y x =-. 【点睛】关键点点睛:掌握几何方法求弦长和弦长公式求弦长是解题关键. 23.(1)证明见解析;(2)存在,满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【分析】(1)设直线:1PQ x my =+,联立方程组得到121y y =-,结合0OP OQ ⋅=,即可求解;(2)设过定点(),0a 的直线x ty a =+,联立方程组,根据根与系数的关系,得到34y y a =-与t 无关,得出对于抛物线2y x =上的两点的直线RS 过定点(),0a ,进而得到9M N y y =-,再结合Rt ODG ,即可求解.【详解】(1)设直线PQ :1x my =+, 联立方程组21x my y x=+⎧⎨=⎩,整理得210y my --=,所以121y y =-, 又由22121212120OP OQ x x y y y y y y ⋅=+=+=,所以OP OQ ⊥.(2)设过定点(),0a 的直线x ty a =+与抛物线有两个不同交点()33,x y ,()44,x y ,联立方程组2x ty a y x=+⎧⎨=⎩,整理得20y ty a --=,可得34y y a =-与t 无关,即对于抛物线2y x =上的两点R ,S ,直线RS 过定点(),0a R ⇔,S 的纵坐标之积为a -,由此可得13M y y =,23N y y =,从而1299M N y y y y ==-, 于是可得直线MN 过点()9,0,记为G ,则OD DG ⊥, 取OG 中点为E ,则Rt ODG 中1922ED OG ==, 故存在满足条件的点9,02E ⎛⎫⎪⎝⎭,相应的92DE =.【点睛】解答圆锥曲线的定点、定值问题的策略:1、参数法:参数解决定点问题的思路:①引进动点的坐标或动直线中的参数表示变化量,即确定题目中核心变量(通常为变量k );②利用条件找到k 过定点的曲线0(),F x y =之间的关系,得到关于k 与,x y 的等式,再研究变化量与参数何时没有关系,得出定点的坐标;2、由特殊到一般发:由特殊到一般法求解定点问题时,常根据动点或动直线的特殊情况探索出定点,再证明该定点与变量无关.24.(1)曲线1C 的方程为2214x y +=,曲线2C 的方程为24x y =;(2)证明见解析;(3)[)2,+∞. 【分析】(1)根据抛物线的定义,以及双曲线的离心率公式可求出答案;(2)设直线MN 的方程为1y kx =+,与抛物线方程联立,设11,)Mx y (,()2,2N x y ,根据韦达定理可得答案;(3)根据弦长公式求出|OM |,|ON |,|OA |,|OB |的长,再根据三角形的面积公式和基本不等式即可求出λ的取值范围. 【详解】(1)由抛物线定义可得7,4M c b ⎛⎫-- ⎪⎝⎭, M 在抛物线24x by =上,∴2744c b b ⎛⎫=- ⎪⎝⎭,即2274c b b =-①又由2c a =,得223c b =将上式代入①,得277b b =解得1,b =∴2c a =∴=,所以曲线1C 的方程为2214x y +=,曲线2C 的方程为24x y =;(2)设直线MN 的方程为1y kx =+,由214y kx x y=+⎧⎨=⎩消去y 整理得2440x kx --=, 设11,)Mx y (,()22,N x y , 则124x x =-, 设221212121221111144164ON OMx xy y kkx x x x x x =⋅=⋅==-; (3)设,ON OM k k m m '==,则有14m m'=-,② 设直线ON 的方程为(0)y mx m =>,由24y mxx y=⎧⎨=⎩,解得4N x m =,所以4N ON ==由②可知,用14m -代替m,可得M OM ==, 由2214y mx x y =⎧⎪⎨+=⎪⎩,解得A x =,所以A OA == 用14m-代替m,可得B OB ==所以=OMNOABON OMSS OA OBλ⋅====⋅1222mm=+≥,当且仅当1m=时等号成立.所以λ的取值范围为[)2,+∞.【点睛】圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.25.(1)22y x=;(2)630x--=【分析】(1)联立直线方程与抛物线方程,利用判别式为0求出p的值,从而可得答案;(2)设21:2l x my=+,联立2212y xx my⎧=⎪⎨=+⎪⎩可得2210y my--=,利用韦达定理以及平面向量的线性运算列方程组求解m的值即可.【详解】(1)联立222212y pxy py py x⎧=⎪⇒=-⎨=+⎪⎩,可得220y py p-+=,因为直线11:2l y x=+与2:2(0)C y px p=>相切所以24401p p p=-=⇒=,抛物线方程为22y x=,(2)由(1)可知1,02F⎛⎫⎪⎝⎭,设21:2l x my=+,联立2212y xx my⎧=⎪⎨=+⎪⎩可得2210y my--=,设()()11221,,,,0M x y N x y y>,结合MF FN=3,可得12121212,3y y y y m m y y=-⎧⎪+=⇒=⎨⎪=-⎩,21:2l x y =+,即630x --=. 【点睛】 求抛物线标准方程的方法一般为待定系数法,根据条件确定关于p 的方程,解出p ,从而写出抛物线的标准方程.解决直线与抛物线的位置关系的相关问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.26.(1)2212x y +=;(2)存在;1)y x =-.【分析】(1)由余弦定理可得12d d +=.(2)设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=,先假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,与椭圆方程联立,韦达定理代入求出k 的值,再检验斜率不存在的情况.【详解】(1)当0θ≠时,在ABM 中,由余弦定理得:22121242cos2d d d d θ=+-. 又212cos1d d θ=,整理得,12d d +=所以点M 的轨迹E 是以(1,0)A -和(1,0)B为焦点,长轴长为个端点)又当点M 为该椭圆的长轴的两个端点时,0θ=,也满足212cos1d d θ=.所以点M 的轨迹E 的方程是2212x y +=.(2)假设存在直线l 满足题设,设直线l 的方程为(1)y k x =-,由22(1)12y k x x y =-⎧⎪⎨+=⎪⎩ 得()2222124220k x k x k +-+-= 设P ,Q 两点的坐标依次为()11,x y ,()22,x y ,由韦达定理得,2122412k x x k +=+,21222212k x x k-=+. 由题意以线段PQ 为直径的圆过原点得,0OP OQ ⋅=,即12120x x y y +=.又()()()212121212111y y k x k x k x x x x =--=-++⎡⎤⎣⎦, 整理得:()212121210x k x x x x x =⎡-+⎤⎣⎦++.。
北师大版高中数学选修2-1《圆锥曲线与方程》测验(附解析)
本文档中所有公式在Word中均能正常显示!!!北师大版高中数学选修2-1《圆锥曲线与方程》测验(附答案)(时间:120分钟满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.方程x2+(x2+y2-1)2=0所确定的曲线是()A.y轴或圆B.两点(0,1)与(0,-1)C.y轴或直线y=±1D.以上都不正确2.如图,已知圆O的方程为x2+y2=100,点A(-6,0),M为圆O上任一点,AM的垂直平分线交OM于点P,则点P的轨迹是()A.圆B.抛物线C.椭圆D.两条直线3.双曲线=1(mn≠0)的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为()A. B. C. D.4.若抛物线y2=4x上一点P到焦点F的距离为10,则P点坐标为()A.(9,6)B.(9,±6)C.(6,9)D.(6,±9)5.以双曲线=-1的焦点为顶点,顶点为焦点的椭圆方程为()A.=1B.=1C.=1D.=16.若点P是以F1,F2为焦点的椭圆=1(a>b>0)上一点,且=0,tan∠PF1F2=,则此椭圆的离心率e=()A. B. C. D.7.已知双曲线=1(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=k,则双曲线方程为()A.=1B.=1C.=1D.=18.抛物线y=x2上到直线2x-y-4=0的距离最近的点的坐标是()A. B.(1,1)C. D.(2,4)9.已知点M(-3,0),N(3,0),B(1,0),动圆C与直线MN相切于点B,过M,N与圆C相切的两直线相交于点P,则点P的轨迹方程为()A.x2-=1(x>1)B.x2-=1(x<-1)C.x2+=1(x>0)D.x2-=1(x>1)10.若点P为共焦点的椭圆C1和双曲线C2的一个交点,F1,F2分别是它们的左、右焦点,设椭圆的离心率为e1,双曲线的离心率为e2,若=0,则= ()A.1B.2C.3D.411.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB 的面积为()A. B. C. D.12.在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L-距离”定义为||P1P2|=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L-距离”之和等于定值(大于||F1F2|)的点的轨迹可以是()二、填空题(本大题共4个小题,每小题5分,共20分.把答案:填在题中的横线上)13.平面上一机器人在行进中始终保持与点F(1,0)的距离和到直线x=-1的距离相等.若机器人接触不到过点P(-1,0)且斜率为k的直线,则k的取值范围是.14.设中心在原点的椭圆与双曲线2x2-2y2=1有相同的焦点,且它们的离心率互为倒数,则该椭圆的方程是.15.在抛物线y2=16x内,通过点M(2,4)且在此点被平分的弦所在直线方程是.16.已知双曲线C1:=1(a>0,b>0)与双曲线C2:=1有相同的渐近线,且C1的右焦点为F(,0),则a=,b=.三、解答题(本大题共6个小题,共70分.解答时应写出文字说明、证明过程或演算步骤)17.(满分10分)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,-).(1)求双曲线方程;(2)若点M(3,m)在此双曲线上,求.18.(满分12分)如图,已知抛物线C1:x2+by=b2经过椭圆C2:=1(a>b>0)的两个焦点.(1)求椭圆C2的离心率;(2)设点Q(3,b),又M,N为C1与C2不在y轴上的两个交点,若△QMN的重心在抛物线C1上,求C1和C2的方程.19.(满分12分)在平面直角坐标系xOy中,已知双曲线C:2x2-y2=1.(1)设F是C的左焦点,M是C右支上一点,若|MF|=2,求点M的坐标;(2)设斜率为k(|k|<)的直线l交C于P,Q两点,若l与圆x2+y2=1相切,求证:OP⊥OQ.20.(满分12分)已知椭圆C经过点A,两个焦点为(-1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.21.(满分12分)如图,已知直线l:y=kx-2与抛物线C:x2=-2py(p>0)交于A,B两点,O为坐标原点,=(-4,-12).(1)求直线l和抛物线C的方程;(2)抛物线上一动点P从点A到点B运动时,求△ABP面积的最大值.。
【高一】人教课标版选修2-1数学第二章圆锥曲线与方程达标练习
【高一】人教课标版选修2-1数学第二章圆锥曲线与方程达标练
习
椭圆及其标准方程(1)达标训练
我
1、已知的顶点b,c在椭圆上,顶点a是椭圆的一个焦点,且椭圆的另外一个焦点在bc边上,则的周长是()a.b.6c.d.12
2.称为椭圆的焦点,M是椭圆上的点,然后椭圆的偏心率是()a.b.c.d
3、p为椭圆上的点,是两个焦点,若,则的面积是()a.b.c.d.
4.已知和是椭圆的两个焦点。
穿过该点的直线与椭圆在点a和B处相交。
如果,则()
a.11b.10c.9d.16
5.已知△ ABC在椭圆x23+y2=1上,顶点A是椭圆的焦点,椭圆的另一个焦点在BC边上,然后是椭圆的周长△ ABC是()
a.23b.6c.43d.12
6.已知椭圆的左焦点和右焦点分别为和F2,点P位于椭圆上。
如果P、F1和F2是直
角三角形的三个顶点,则从点P到轴的距离为()a.b.3c。
D
7、已知椭圆的焦点是f1、f2、p是椭圆上的一个动点.如果延长f1p到q,使得
pq=pf2,
所以移动点q的轨迹是()
a.圆b.椭圆c.双曲线的一支d.抛物线
2、头衔
8、已知方程表示椭圆,则的取值范围是。
9.假设椭圆的中心在原点,焦点在,长轴的长度是短轴的两倍,椭圆的标准方程为。
10、求经过两点的椭圆的标准方程。
11.在平面直角坐标系中,如果顶点和已知且顶点位于椭圆上,则
12、如图,f1,f2分别为椭圆的左、右
焦点P在椭圆上△ pof2是一个面积为,
则b2的值是。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2-1《圆锥曲线与方程》复习训练题参考答案1.D 2.A 3.C 4.B 5.B6.A [由|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,可设|PF 1|=4k ,|F 1F 2|=3k ,|PF 2|=2k ,若圆锥曲线为椭圆,则2a =6k,2c =3k ,e =c a =12.若圆锥曲线为双曲线,则2a =4k -2k =2k,2c =3k ,e =c a =32.]7.D 8.C 9.D 10.A 11.D 12.C13.(x -1)2+y 2=4 14.63 15.x 25+y 24=1解析 由题意可得切点A(1,0).切点B(m ,n)满足⎩⎨⎧n -12m -1=-m n ,m 2+n 2=1,解得B(35,45.∴过切点A ,B 的直线方程为2x +y -2=0.令y =0得x =1,即c =1;令x =0得y =2,即b =2.∴a 2=b 2+c 2=5,∴椭圆方程为x 25+y 24=1.16.② 17.解 (1)∵k AB =-2,AB ⊥BC ,∴k CB =22.∴l BC :y =22x -2 2.故BC 边所在的直线方程为x -2y -4=0.(2)在上式中,令y =0,得C(4,0),∴圆心M(1,0).又∵|AM|=3, ∴外接圆的方程为(x -1)2+y 2=9.(3)∵圆N 过点P(-1,0),∴PN 是该圆的半径.又∵动圆N 与圆M 内切,∴|MN|=3-|PN|,即|MN|+|PN|=3>2=|MP|.∴点N 的轨迹是以M 、P 为焦点,长轴长为3的椭圆.∴a =32,c =1,b =a 2-c 2= 54.∴轨迹方程为x 294+y 254=1.18.解 设A(x 1,y 1)、B(x 2,y 2).(1)由⎩⎪⎨⎪⎧y 2=-x ,y =k (x +1), 得ky 2+y -k =0, ∴y 1y 2=-1.又-x 1=y 21,-x 2=y 22,∴x 1x 2=(y 1y 2)2=1,∴x 1x 2+y 1y 2=0.∴OA →·OB →=x 1x 2+y 1y 2=0,∴OA ⊥OB.(6分)(2)如图,由(1)知y 1+y 2=-1k ,y 1y 2=-1,∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2= 1k 2+4=210,(10分)∴k 2=136,∴k =±16,即所求k 的值为±16.(12分)19.解 (1)设M 的坐标为(x ,y),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,∵P 在圆上, ∴x 2+(54y)2=25,即轨迹C 的方程为x 225+y216=1.(6分)(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A(x 1,y 1),B(x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0.(8分)∴x 1=3-412,x 2=3+412.(10分)∴线段AB 的长度为|AB|=(x 1-x 2)2+(y 1-y 2)2=(1+1625)(x 1-x 2)2=4125×41=415.(12分)20.解:(1)依题意,可设直线方程为y =k(x -1)+2代入x 2-y 22=1,整理得 (2-k)x 2-2k(2-k)x -(2-k)2-2=0 ①记A(x 1,y 1),B(x 2,y 2),则x 1、x 2是方程①的两个不同的实数根,所以2-k 2≠0,且x 1+x 2=2k(2-k)2-k 2由N(1,2)是AB 中点得12(x 1+x 2)=1∴ k(2-k)=2-k 2,解得k =1,所易知 AB 的方程为y =x +1.(2)将k =1代入方程①得x 2-2x -3=0,解出 x 1=-1,x 2=3,由y =x +1得y 1=0,y 2=4 即A 、B 的坐标分别为(-1,0)和(3,4)由CD 垂直平分AB ,得直线CD 的方程为y =-(x -1)+2,即 y =3-x ,代入双曲线方程,整理, 得 x 2+6x -11=0 ②记C(x 3,y 3),D(x 4,y 4),以及CD 中点为M(x 0,y 0),则x 3、x 4是方程②的两个的实数根,所以 x 3+x 4=-6, x 3x 4=-11, 从而 x 0=12(x 3+x 4)=-3,y 0=3-x 0=6|CD|=(x 3-x 4)2+(y 3-y 4)2=2(x 3-x 4)2 =2[(x 3+x 4)2-4x 3x 4=410∴ |MC|=|MD|=12|CD|=210, 又|MA|=|MB|=(x 0-x 1)2+(y 0-y 1)2=4+36=210即A 、B 、C 、D 四点到点M 的距离相等,所以A 、B 、C 、D 四点共圆.21.解 方法一 (1)依题意,点P 的坐标为(0,m).因为MP ⊥l ,所以0-m2-0×1=-1,解得m =2,即点P 的坐标为(0,2).(3分)从而圆的半径r =|MP|=(2-0)2+(0-2)2=22, 故所求圆的方程为(x -2)2+y 2=8.(6分)(2)因为直线l 的方程为y =x +m ,所以直线l ′的方程为y =-x -m. 由⎩⎪⎨⎪⎧y =-x -m ,x 2=4y得x 2+4x +4m =0.Δ=42-4×4m =16(1-m). 当m =1时,即Δ=0时,直线l ′与抛物线C 相切;当m ≠1时,即Δ≠0时,直线l ′与抛物线C 不相切.(10分) 综上,当m =1时,直线l ′与抛物线C 相切; 当m ≠1时,直线l ′与抛物线C 不相切.(12分)方法二 (1)设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2. 依题意,所求圆与直线l :x -y +m =0相切于点P(0,m),则⎩⎪⎨⎪⎧4+m 2=r 2,|2-0+m|2=r ,解得⎩⎨⎧m =2,r =2 2.(4分)所以所求圆的方程为(x -2)2+y 2=8.(6分)(2)同方法一.22.(1)证明 ①当直线l 的斜率不存在时,P ,Q 两点关于x 轴对称,所以x 2=x 1,y 2=-y 1.因为P(x 1,y 1)在椭圆上,因此x 213+y 212=1.①又因为S △OPQ =62,所以|x 1|·|y 1|=62.②由①②得|x 1|=62,|y 1|=1,此时x 21+x 22=3,y 21+y 22=2.②当直线l 的斜率存在时,设直线l 的方程为y =kx +m ,由题意知m ≠0,将其代入x 23+y 22=1,得(2+3k 2)x 2+6kmx +3(m 2-2)=0,其中Δ=36k 2m 2-12(2+3k 2)(m 2-2)>0,即3k 2+2>m 2.(*)又x 1+x 2=-6km 2+3k 2,x 1x 2=3(m 2-2)2+3k2,所以|PQ|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·263k 2+2-m 22+3k 2.因为点O 到直线l 的距离为d =|m|1+k2, 所以S △OPQ =12|PQ|·d =121+k 2·263k 2+2-m22+3k 2·|m|1+k 2=6|m|3k 2+2-m 22+3k 2.又S △OPQ =62, 整理得3k 2+2=2m 2,且符合(*)式,(2分)此时x 21+x 22=(x 1+x 2)2-2x 1x 2=(-6km 2+3k 2)2-2×3(m 2-2)2+3k 2=3,y 21+y 22=23(3-x 21)+23(3-x 22)=4-23(x 21+x 22)=2,综上所述,x 21+x 22=3,y 21+y 22=2,结论成立.(4分)(2)解 方法一 ①当直线l 的斜率不存在时,由(1)知|OM|=|x 1|=62,|PQ|=2|y 1|=2,因此|OM|·|PQ|=62×2= 6.②当直线l 的斜率存在时,由(1)知:x 1+x 22=-3k 2m ,y 1+y 22=k(x 1+x 22)+m =-3k 22m+m =-3k 2+2m 22m =1m ,|OM|2=(x 1+x 22)2+(y 1+y 222=9k 24m 2+1m 2=6m 2-24m 2=12(3-1m 2).|PQ|2=(1+k 2)24(3k 2+2-m 2)(2+3k 2)2=2(2m 2+1)m 2=2(2+1m 2),所以|OM|2·|PQ|2=12×(3-1m 2)×2×(2+1m 2) =(3-1m 2)(2+1m 2)≤⎝ ⎛⎭⎪⎫3-1m 2+2+1m 222=254所以|OM|·|PQ|≤52,当且仅当3-1m 2=2+1m2,即m =±2时,等号成立.综合①②得|OM|·|PQ|的最大值为52.(8分)方法二 因为4|OM|2+|PQ|2=(x 1+x 2)2+(y 1+y 2)2+(x 2-x 1)2+(y 2-y 1)2=2[(x 21+x 22)+(y 21+y 22)]=10.所以2|OM|·|PQ|≤4|OM|2+|PQ|22=102=5.即|OM|·|PQ|≤52,当且仅当2|OM|=|PQ|=5时等号成立.因此|OM|·|PQ|的最大值为52.(3)解 椭圆C 上不存在三点D ,E ,G ,使得S △ODE =S △ODG =S △OEG =62.证明:假设存在D(u ,v),E(x 1,y 1),G(x 2,y 2)满足S △ODE =S △ODG =S △OEG =62, 由(1)得u 2+x 21=3,u 2+x 22=3,x 21+x 22=3;v 2+y 21=2,v 2+y 22=2,y 21+y 22=2,(10分)解得u 2=x 21=x 22=32v 2=y 21=y 22=1,因此u ,x 1,x 2只能从±62中选取,v ,y 1,y 2只能从±1中选取.因此D ,E ,G 只能在(±62,±1)这四点中选取三个不同点,而这三点的两两连线中必有一条过原点,与S △ODE =S △ODG =S △OEG =62矛盾,所以椭圆C 上不存在满足条件的三点D ,E ,G . (12分)。