人教版高二数学选修1-1第二章测试题
数学选修1-1第二章测试卷(含答案)

第二章测试卷 (本栏目对应学生用书P81)一、选择题(每小题5分,共60分) 1.抛物线y =-2x 2的准线方程是( ) A .x =-12B .x =12C .y =18D .y =-18【答案】C【解析】化成标准方程为x 2=-12y ,所以准线方程为y =18.2.已知P ,Q 是椭圆9x 2+16y 2=1上的两个动点,O 为坐标原点,若OP ⊥OQ ,则点O 到弦PQ 的距离必等于( )A .1B .2C .15D .3 【答案】C【解析】选用特殊值法.选P ⎝⎛⎭⎫0,14,Q ⎝⎛⎭⎫13,0即可. 3.设抛物线y =ax 2(a >0)与直线y =kx +b (k ≠0)有两个公共点,其横坐标分别是x 1,x 2,而x 3是直线与x 轴交点的横坐标,则x 1,x 2,x 3关系是( )A .x 3=x 1+x 2B .x 3=1x 1+1x 2C .x 1x 2=x 2x 3+x 1x 3D .x 1x 3=x 2x 3+x 1x 2 【答案】C【解析】联立直线和抛物线的方程,得ax 2-kx -b =0,x 1x 2=-b a ,x 1+x 2=ka ,由直线方程x 3=-bk,结合得出答案. 4.若以x 2=-4y 上任一点P 为圆心作与直线y =1相切的圆,那么这些圆必定过平面内的点( ) A .(0,1) B .(-1,0) C .(0,-1) D .(-1,-1) 【答案】C【解析】由抛物线的定义可得.5.已知双曲线kx 2-y 2=1的一条渐近线与直线2x +y +1=0垂直,则双曲线的离心率是( )A .52B .2C .3D . 5【答案】A【解析】由于直线2x +y +1=0的斜率为-2,故k =14,∴x 24-y 2=1,由离心率e =1+b 2a 2=54=52. 6.若抛物线y 2=mx与椭圆x 29+y 25=1有一个共同的焦点,则m 的值为( )A .8B .-8C .±8D .±4【答案】C【解析】由已知椭圆的焦点为(2,0),(-2,0),∴m 4=2或m4=-2.∴m =8或m =-8.7.椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝⎛⎭⎫b 2+c 2有四个交点.其中c 为椭圆的半焦距,则椭圆的离心率范围是( )A .55<e <35B .0<e <25C .25<e <35D .35<e <45【答案】A【解析】数形结合可知圆与椭圆有四个交点,则满足b <b2+c <a ,结合b =a 2-c 2可求得离心率的范围是55<e <35. 8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率e ∈[2,2],令双曲线两条渐近线构成的角中,以实轴为角平分线的角为θ,则此角的取值范围是( )A .⎣⎡⎦⎤π6,π2B .⎣⎡⎦⎤π3,π2C .⎣⎡⎦⎤π2,2π3D .⎣⎡⎦⎤2π3,5π6【答案】C 【解析】b a=e 2-1∈[1,3],∴θ2∈⎣⎡⎦⎤π4,π3.∴θ∈⎣⎡⎦⎤π2,2π3.9.双曲线x 2a 2-y 2b 2=1与椭圆x 2m 2+y 2b 2=1(a >0,m >b >0)的离心率互为倒数,那么以a ,b ,m 为边长的三角形一定是( )A .锐角三角形B .钝角三角形C .直角三角形D .等腰三角形【答案】C【解析】双曲线的离心率e 21=a 2+b 2a 2,椭圆的离心率e 22=m 2-b 2m 2,由已知e 21e 22=1,即a 2+b 2a 2×m 2-b 2m 2=1,化简,得a 2+b 2=m 2.10.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A ,B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且只有一条B .有且只有两条C .有无穷多条D .不存在【答案】B【解析】抛物线的焦点弦中最短的是通径,长为2p =4<5,所以这样的直线有两条.11.(2015年菏泽模拟)设双曲线x 2m +y 2n =1的离心率为2且一个焦点与抛物线x 2=8y 的焦点相同,则此双曲线的方程为( )A .x 23-y 2=1B .x 24-y 212=1C .y 2-x 23=1 D .x 212-y 24=1【答案】C【解析】抛物线x 2=8y 的焦点为(0,2),所以n >0>m ,n -m =4,2n=2.所以n =1,m =-3.故选C . 12.(2015年太原模拟)已知P 是抛物线y 2=2x 上动点,A ⎝⎛⎭⎫72,4,若点P 到y 轴的距离为d 1,点P 到点A 的距离为d 2,则d 1+d 2的最小值是( )A .4B .92C .5D .112【答案】B【解析】因为点P 在抛物线上,所以d 1=|PF |-12(其中点F 为抛物线的焦点),则d 1+d 2=|PF |+|P A |-12≥|AF |-12=⎝⎛⎭⎫72-122+42-12=5-12=92,当且仅当点P 是线段AF 与抛物线的交点时取等号,故选B.二、填空题(每小题5分,共20分)13.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =________. 【解析】抛物线y 2=2px (p >0)的焦点坐标是⎝⎛⎭⎫p 2,0,由两点间距离公式,得⎝⎛⎭⎫p 2+22+32=5,解得p =4.【答案】414.过(0,3)作直线l ,若l 和双曲线x 24-y 23=1只有一个公共点,则这样的直线l 共有________条.【解析】直线与双曲线有一个公共点时有两种情况,一是相交,此时与渐近线平行,一是相切,要考虑全面.【答案】415.过抛物线y 2=x 的焦点F 的直线l 的倾斜角θ≥π4,l 交抛物线于A ,B 两点且A 在x 轴上方,则|F A |的取值范围是____________.【解析】直线过焦点,AF 的长可转化为点A 到准线的距离,所以A 点的横坐标越大,AF 的长越大,最小在O 点时,|OF |=14.最大是AF 的倾斜角为π4时,设A (x 0,y 0),过A 作x 轴的垂线,垂足为C ,在△ACF 中,|AC |=y 0,|CF |=x 0-14.因为|AC |=|CF |,即y 0=x 0-14,结合y 20=x 0,得y 0=2+12,|AF |=2y 0=1+22. 【答案】⎝⎛⎦⎤14,1+2216.过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为________.【解析】由题意知右焦点坐标为(1,0), 斜率为2的直线方程为 2x -y -2=0.则⎩⎪⎨⎪⎧2x -y -2=0,x 25+y 24=1,消去x ,得 3y 2+2y -8=0.解得y 1=-2,y 2=43.∴S △AOB =12×1×⎝⎛⎭⎫|-2|+43=53. 【答案】53三、解答题(共70分)17.(10分)指出方程(m -1)x 2+(3-m )y 2=(m -1)(3-m )所表示的曲线的形状. 【解析】当m ≠1,m ≠3时,把方程写成x 23-m +y 2m -1=1.当1<m <3,m ≠2时,方程表示椭圆; 当m =2时,方程表示圆;当m <1或m >3时,方程表示双曲线; 当m =1时,方程表示x 轴; 当m =3时,方程表示y 轴.18.(12分)已知圆(x +1)2+y 2=16的圆心为B 及点A (1,0),点C 为圆上任意一点,求线段AC 的垂直平分线l 与线段CB 的交点P 的轨迹方程.【解析】如图,因为P 在AC 的垂直平分线上,所以|P A |=|PC |,半径R =4=|BC |=|PC |+|PB |,所以|P A |+|PB |=|PC |+|PB |=4>|AB |=2.所以P 点轨迹是以A ,B 为焦点的椭圆,此椭圆中a =2,c =1,所以b 2=3,方程为x 24+y 23=1.19.(12分)已知顶点在原点,焦点在x 轴上的抛物线被直线y =2x -1截得的弦长为15,求抛物线方程.【解析】设抛物线方程为y 2=ax ,直线与抛物线的两交点为A (x 1,y 1),B (x 2y 2),联立方程得⎩⎪⎨⎪⎧y =2x -1,y 2=ax ,消去y 得4x 2-(4+a )x +1=0,x 1x 2=14,x 1+x 2=4+a 4,|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2= 5 ×⎝⎛⎭⎫1+a 42-1=15, 解得a =-12或a =4,所以抛物线方程为y 2=-12x 或y 2=4x .20.(12分)设双曲线方程与椭圆x 227+y 236=1有共同焦点且与椭圆相交,在第一象限的交点为A 且A的纵坐标为4,求此双曲线的方程.【解析】由椭圆方程x 227+y 236=1得椭圆的两个焦点为F 1(0,-3),F 2(0,3). ∵椭圆与双曲线的交点A 的纵坐标为4, ∴这个交点为A (15,4).设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧42a2-(15)2b 2=1,a 2+b 2=32,解得⎩⎪⎨⎪⎧a 2=4,b 2=5.故所求双曲线方程为y 24-x 25=1.21.(12分)若抛物线y =-x 2-2x +m 和直线y =2x 相交于不同的两点A ,B . (1)求m 的取值范围; (2)求|AB |;(3)求线段AB 的中点坐标. 【解析】联立方程得⎩⎪⎨⎪⎧y =2x ,y =-x 2-2x +m ,消y 得x 2+4x -m =0. (1)∵直线与抛物线有两个相异交点, ∴Δ>0,即42-4(-m )>0. ∴m >-4.(2)当m >-4时,方程x 2+4x -m =0有两个相异实根,设为x 1,x 2,由根与系数的关系x 1+x 2=-4,x 1·x 2=-m ,∴|AB |=1+k 2|x 1-x 2| =1+k 2(x 1+x 2)2-4x 1x 2=25m +20.(3)设线段AB 的中点坐标为(x ,y ),则x =x 1+x 22=-42=-2,y =y 1+y 22=2x 1+2x 22=-4,∴线段AB 的中点坐标为(-2,-4).22.(2014年新课标Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .【解析】(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a .由MN 的斜率为34,可得b 2a 2c =34,即2b 2=3aC .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12或c a =-2(舍去).故C 的离心率为12.(2)由题意,知原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4A .①由|MN |=5|F 1N |, 得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则 ⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c .y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②,得9(a2-4a)4a2+14a=1.解得a=7,b2=4a=28,故a=7,b=2 7.。
人教新课标版数学高二选修1-1练习综合素质检测(2)

第一章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题p :任意x ∈R ,sin x ≤1,则它的否定是( )A .存在x ∈R ,sin x ≥1B .任意x ∈R ,sin x ≥1C .存在x ∈R ,sin x >1D .任意x ∈R ,sin x >1[答案] C[解析] 全称命题的否定为特称命题,故选C.2.两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 0=0垂直的充要条件是( )A .A 1A 2+B 1B 2=0B .A 1A 2-B 1B 2=0C.A 1A 2B 1B 2=-1 D.B 1B 2A 1A 2=1 [答案] A3.设M 、N 是两个集合,则“M ∪N ≠∅”是“M ∩N ≠∅”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] B[解析] 由韦恩图易知“M ∪N ≠∅”⇒/ “M ∩N ≠∅”,且“M ∩N ≠∅”⇒“M ∪N ≠∅”,本题既考查了对集合中交集、并集概念的理解,又考查了对充分条件、必要条件等概念的掌握情况.4.命题p :x =π是y =|sin x |的一条对称轴,命题q :2π是y =|sin x |的最小正周期,下列新命题:①p ∨q ;②p ∧q ;③綈p ;④綈q .其中真命题有( )A.0个B.1个C.2个D.3个[答案] C[解析]由题意知p真q假,则①④为真命题,故选C.5.(2010·湖南文,2)下列命题中的假命题...是()A.∃x∈R,lg x=0B.∃x∈R,tan x=1C.∀x∈R,x3>0D.∀x∈R,2x>0[答案] C[解析]本题主要考查全称命题和存在性命题真假的判断.对于选项C,∃x∈R,x3≤0是真命题,故C是假命题.6.有下列四个命题①“若b=3,则b2=9”的逆命题;②“全等三角形的面积相等”的否命题;③“若c≤1,则x2+2x+c=0有实根”;④“若A∪B=A,则A⊆B”的逆否命题.其中真命题的个数是()A.1B.2C.3D.4[答案] A[解析]“若b=3,则b2=9”的逆命题:“若b2=9,则b=3”假;“全等三角形的面积相等”的否命题是:“不全等的三角形,面积不相等”假;若c≤1,则方程x2+2x+c=0中,Δ=4-4c=4(1-c)≥0,故方程有实根;“若A∪B=A,则A⊆B”为假,故其逆否命题为假.7.B=60°是△ABC三个内角A、B、C成等差数列的()A.充分而不必要条件B.充要条件C.必要而不充分条件D.既不充分也不必要条件[答案] B[解析]在△ABC中,若B=60°,则A+C=120°,∴2B =A +C ,则A 、B 、C 成等差数列;若三个内角A 、B 、C 成等差,则2B =A +C ,又A +B +C =180°,∴3B =180°,B =60°.8.“a =-1”是方程“a 2x 2+(a +2)y 2+2ax +a =0”表示圆的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件[答案] C[解析] 当a =-1时,方程为x 2+y 2-2x -1=0,即(x -1)2+y 2=2,若a 2x 2+(a +2)y 2+2ax +a =0表示圆,则应满足⎩⎪⎨⎪⎧a 2=a +2≠0(2a )2-4a 3>0,解得a =-1,故选C. 9.下列语句是命题的个数为( )①空集是任何集合的真子集;②x 2-3x -4=0;③3x -2>0;④把门关上;⑤垂直于同一条直线的两直线必平行吗?A .1个B .2个C .3个D .4个[答案] A[解析] ①假命题.因为空集是空集的子集而不是真子集.②③是开语句,不是命题.④是祈使句,不是命题.⑤是疑问句,不是命题.故只有①是命题,应选A.10.给出命题:“已知a ,b ,c ,d 是实数,若a =b ,c =d ,则a +c =b +d ”,对其原命题、逆命题、否命题、逆否命题而言,真命题的个数是( )A .0B .2C .3D .4[答案] B[解析] 原命题为真,逆命题为假,故逆否命题为真,否命题为假,所以真命题有两个.11.下列命题为特称命题的是( )A .偶函数的图象关于y 轴对称B .正四棱柱都是平行六面体C .不相交的两条直线是平行直线D .存在实数大于等于3[答案] D[解析] A 、B 、C 三个答案中都含有“所有”这个全称量词,只有D 答案中有存在量词“存在”.12.已知实数a >1,命题p :函数y =log 12(x 2+2x +a )的定义域为R ,命题q :|x |<1是x <a 的充分不必要条件,则( )A .p 或q 为真命题B .p 且q 为假命题C .綈p 且q 为真命题D .綈p 或綈q 为真命题[答案] A[解析] 命题p :当a >1时Δ=4-4a <0,即x 2+2x +a >0恒成立,故函数y =log 12(x 2+2x +a )的定义域为R ,即命题p 是真命题;命题q :当a >1时|x |<1⇔-1<x <1⇒x <a 但x <a ⇒/ -1<x <1,即|x |<1是x <a 的充分不必要条件,故命题q 也是真命题,故得命题p 或q 是真命题,因而选A.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上)13.圆x 2+y 2+Dx +Ey +F =0与x 轴相切的一个充分非必要条件是________.[答案] D =0,E ≠0,F =014.命题“到圆心的距离不等于半径的直线不是圆的切线”的逆否命题是________.[答案] 圆的切线到圆心的距离等于圆的半径15.条件p :|x +1|>2;条件q :13-x>1,则¬p 是¬q 的________条件. [答案] 充分不必要条件[解析] p :|x +1|>2,x +1>2或x +1<-2,∴x >1或x <-3;q :13-x >1,x -23-x>0,(x -2)(x -3)<0,∴2<x <3, ¬p :-3≤x ≤1;¬q :x ≥3或x ≤2.¬p ⇒¬q ,而¬q ⇒/ ¬p .16.给出下列四个命题:①若命题p :“x >2”为真命题,则命题q :“x ≥2”为真命题;②y =2-x (x >0)的反函数是y =-log 2x (x >0);③在△ABC 中,sin A >sin B 的充要条件是A >B ;④平行于同一平面的两直线平行.其中所有正确命题的序号是________.[答案] ①③[解析] y =2-x (x >0)的反函数为y =-log 2x (0<x <1),故②错误;如图.a ∥α,b ∥α,而a 与b 不平行,④错误;在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B .(2R 为△ABC 外接圆直径)⇔sin A >sin B ,故③正确;x >2为真,x ≥2为真,故①正确.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)写出命题:“若x 2+x ≤0,则|2x +1|<1”的逆命题、否命题、逆否命题,并判断它们的真假.[解析] 逆命题:若|2x +1|<1,则x 2+x ≤0,为真;否命题:若x 2+x >0,则|2x +1|≥1,为真.逆否命题:若|2x +1|≥1,则x 2+x >0,为假.18.(本题满分12分)“菱形的对角线互相垂直”,将此命题写成“若p 则q ”的形式,写出它的逆命题、否命题、逆否命题,并指出其真假.[解析] “若p 则q ”形式:“若一个四边形是菱形,则它的对角线互相垂直”逆命题:“若一个四边形的对角线互相垂直,则它是菱形”,假.否命题:“若一个四边形不是菱形,则它的对角线不垂直”,假.逆否命题:“若一个四边形的对角线不垂直,则它不是菱形”,真.19.(本题满分12分)证明一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.[证明] 必要性:由于方程ax 2+bx +c =0有一个正根和一个负根.所以Δ=b 2-4ac >0,x 1x 2=c a<0,所以ac <0. 充分性:由ac <0,可推得b 2-4ac >0,及x 1x 2=c a<0. 所以方程ax 2+bx +c =0有两个相异实根,且两根异号.即方程ax 2+bx +c =0有一正根和一负根.综上可知:一元二次方程ax 2+bx +c =0有一正根和一负根的充要条件是ac <0.[点评] 证明充要条件,即证明原命题和逆命题都成立.证明充要性时一定要注意分类讨论,要搞清它的叙述格式,避免在论证时将充分性错当必要性证,而又将必要性错当充分性证.20.(本题满分12分)已知p :函数f (x )=lg(ax 2-x +116a )的定义域为R ;q :a ≥1.如果命题“p ∨q 为真,p ∧q 为假”,求实数a 的取值范围.[解析] 由p 真可知⎩⎪⎨⎪⎧a >0Δ=1-4a ·116a <0,解得a >2, 由p ∨q 为真,p ∧q 为假知,p 和q 中一个为真、一个为假.若p 真q 假时a 不存在,若p 假q 真时1≤a ≤2.综上,实数a 的取值范围是1≤a ≤2.21.(本题满分12分)(1)是否存在实数p ,使“4x +p <0”是“x 2-x -2>0”的充分条件?若存在,求出p 的取值范围.(2)是否存在实数p ,使“4x +p <0”是“x 2-x -2>0”的必要条件?若存在,求出p 的取值范围.[解析] (1)由4x +p <0⇒x <-p 4. x 2-x -2>0⇒x >2或x <-1,依题意必须有:-p 4≤-1⇒p ≥4. ∴当p ≥4为实数时,使4x +p <0是x 2-x -2>0的充分条件.(2)∵当x >2时,找不到任何一个p 使x <-14p ,∴不存在实数p ,使4x +p <0是x 2-x -2>0的必要条件.22.(本题满分14分)已知数列{a n }的前n 项的和为S n =(n +1)2+t ,(1)证明:t =-1是{a n }成等差数列的必要条件;(2)试问:t =-1时,{a n }是否成等差数列.[解析] (1)证明:∵a n =S n -S n -1=(n +1)2+t -(n -1+1)2-t =2n +1 (n ≥2),∵{a n }为等差数列,∴a 1=3=S 1=4+t ,∴t =-1.∴t =-1是{a n }成等差数列的必要条件.(2)当t =-1时,S n =(n +1)2-1,a n =S n -S n -1=2n +1 (n ≥2),d =a n -a n -1=2.而a 1=S 1=3也满足上式. ∴t =-1时,{a n }成等差数列.。
高中数学(人教A版)选修1-1全册综合测试题(含详解)

综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( ) A .“p 或q ”是真命题 B .“p 且q ”是真命题 C .“綈p ”为真命题 D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件 B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同 C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +a x ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2|=(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2|=162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y =f (x )的导数图像,则正确的判断是( ) ①f (x )在(-3,1)上是增函数; ②x =-1是f (x )的极小值点;③f (x )在(2,4)上是减函数,在(-1,2)上是增函数; ④x =2是f (x )的极小值点. A .①②③ B .②③ C .③④D .①③④解析 从图像可知,当x ∈(-3,-1),(2,4)时,f (x )为减函数,当x ∈(-1,2),(4,+∞)时,f (x )为增函数,∴x =-1是f (x )的极小值点, x =2是f (x )的极大值点,故选B. 答案 B11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是直线l :x =a 2c (c 2=a 2+b 2)上一点,且PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是( )A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a 2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =ca = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8x x 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8xx 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23), ∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________.解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633, ∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1.②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1, ③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12.∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0), ∵a >0,由F ′(x )>0,得x ∈(a ,+∞),∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎨⎧ a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6](3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5. 设直线MA ,MB 的斜率分别为k 1和k 2, A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205. k 1+k 2=y 1-1x 1-4+y 2-1x 2-4=(y 1-1)(x 2-4)+(y 2-1)(x 1-4)(x 1-4)(x 2-4). 上式分子=(x 1+m -1)(x 2-4)+(x 2+m -1)·(x 1-4) =2x 1x 2+(m -5)(x 1+x 2)-8(m -1)=2(4m 2-20)5-8m (m -5)5-8(m -1)=0, 即k 1+k 2=0.所以直线MA,MB与x轴能围成等腰三角形.。
高中数学选修1-1考试题及答案

高中数学选修1-1考试题一、选择题(本大题有12小题,每小题5分,共60分,请从A ,B ,C ,D 四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分。
)1.抛物线24yx 的焦点坐标是A .(0,1)B .(1,0)C .1(0,)16D .1(,0)162.设,aR 则1a是11a的A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件3.命题“若220ab,则,a b 都为零”的逆否命题是A .若220a b ,则,a b 都不为零B .若220ab,则,a b 不都为零C .若,a b 都不为零,则220abD .若,a b 不都为零,则22a b4.曲线32153yxx在1x 处的切线的倾斜角为A .34B .3C .4D .65.一动圆P 与圆22:(1)1A x y外切,而与圆22:(1)64B x y内切,那么动圆的圆心P 的轨迹是A .椭圆B .双曲线C .抛物线D .双曲线的一支6.函数()ln f x x x 的单调递增区间是A .(,1)B .(0,1)C .(0,)D .(1,)21世纪教育网7.已知1F 、2F 分别是椭圆22143xy的左、右焦点,点M 在椭圆上且2MF x轴,则1||MF 等于21世纪教育网A .12B .32C .52D .38.函数2()xf x x e 在[1,3]上的最大值为A .1B .1eC .24eD .39e9. 设双曲线12222by ax 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为().A.45 B. 5C.25 D.510. 设斜率为2的直线l 过抛物线2(0)yax a的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24yx B.28yx C.24yx D.28y x11. 已知直线1:4360l x y 和直线2:1l x,抛物线24y x 上一动点P 到直线1l 和直线2l 的距离之和的最小值是A.2B.3C. 4D. 112. 已知函数()f x 在R 上可导,且2'()2(2)f x xxf ,则(1)f 与(1)f 的大小(1)(1)(1)(1)(1)(1).Af f Bf f Cf f D不确定二、填空题(本大题有4小题,每小题5分,共20分,请将答案写在答题卷上)13.已知命题:,sin 1p x R x ,则p 为________。
最新高二人教版数学选修1-1练习:2章试卷 Word版含答案

最新人教版数学精品教学资料一、选择题(本大题共10小题,每小题5分,共50分)1.(2014·青岛质检)双曲线x 24-y 25=1的渐近线方程为(B )A .y =±54xB .y =±52xC .y =±55xD .y =±255x解析:由题意得双曲线x 24-y 25=1的渐近线方程为x 24-y 25=0,即y =±52x ,故选B.2.已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为(A )A.53B.43C.54D.32解析:由b a =43,得b =43a .平方得b 2=169a 2.又b 2=c 2-a 2.代入,解得c a =53.3.(2014·浙江质检)椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为(A )A.14B.12 C .2 D .4解析:由椭圆x 2+my 2=1,得x 2+y 21m=1,∵焦点在y 轴上,长轴长是短轴长的两倍,∴21m =1,解得m =14.4.若抛物线y 2=-2px 的焦点与椭圆x 216+y 212=1的左焦点重合,则p 的值为(D )A .-2B .2C .-4D .6解析:∵椭圆的左焦点为(-2,0),抛物线的焦点为⎝⎛⎭⎫p 2,0,∴p2=3,p =6. 5.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是(B )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)解析:∵F (1,0),设A (x 0,y 0)是抛物线上一点,则有y 20=4x 0.又OA →·AF →=-4, ∴(x 0,y 0)·(1-x 0,-y 0)=-4,化简得, x 20+3x 0-4=0.解得x 0=1,x 0=-4(舍去). 将x 0=1代入抛物线方程,得y 0=±2.6.曲线x 210-m +y 26-m =1(m <6)与曲线x 25-m +y 29-m=1(5<m <9)的(A )A .焦距相等B .离心率相等C .焦点相同D .准线相同解析:∵m <6,∴曲线x 210-m +y 26-m=1为焦点在x 轴上的椭圆.∴c 2=(10-m )-(6-m )=4,c =2,∴2c =4.又5<m <9,∴曲线x 25-m +y 29-m =1为焦点在y 轴上的双曲线,即y 29-m -x 2m -5=1.∴c 2=(9-m )+(m -5)=4,c =2,∴2c =4.7.(2014·东三省四市联考)以椭圆x 28+y 25=1的焦点为顶点,以椭圆的顶点为焦点的双曲线的渐近线方程为(D )A .y =±35xB .y =±53xC .y =±155xD .y =±153x解析:依题意得双曲线的实轴为2a =28-5=23,焦距2c =28=42,b =c 2-a 2=8-3=5,因此该双曲线渐近线方程是y =±b a x =±153x ,故选D.8.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 为(A )A .-14B .-4C .4 D.14解析:将双曲线方程化为标准形式,得y 21-x 2-1m=1.∴a 2=1,b 2=-1m.根据题意,得2b =2·2a .即2-1m=4.∴m =-14.9.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·PN →=0,则动点P (x ,y )的轨迹方程为(B )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x解析:设点P (x ,y ),∵|MN |=4,|MP |=(x +2)2+y 2,又 MN →·PN →=(4,0)·(2-x ,-y )=4(2-x ),∴4(x +2)2+y 2=-4(2-x ),化简得,y 2=-8x .10.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C )A .(1,2)B .(1,2)C .[2,+∞)D .(2,+∞)解析:∵双曲线的渐近线方程为y =±bax ,又倾斜角为60°的直线的斜率为3,所以根据题意,得ba≥3,即b ≥3a .两边平方得,b 2≥3a 2.又b 2=c 2-a 2,∴ca≥2.二、填空题(本大题共4小题,每小题5分,共20分)11.已知双曲线中心在原点,一个焦点的坐标为(3,0),且焦距与虚轴长之比为5∶4,则双曲线的标准方程是________________.解析:可知焦点在x 轴上,c =3,又2c ∶2b =5∶4,∴5b =4c =12,b =125.根据a 2=c 2-b 2=9-⎝⎛⎭⎫1252=8125,故所求的双曲线方程为x 28125-y 214425=1.答案:x 28125-y214425=112.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P (2,2)为AB 的中点,则抛物线C 的方程为__________.解析:设抛物线为y 2=kx ,与y =x 联立方程组,消去y ,得:x 2-kx =0,x 1+x 2=k =2×2,故y 2=4x .答案:y 2=4x 13.(2014·郴州二监)过抛物线y 2=4x 焦点的直线交抛物线于A ,B 两点,若|AB |=10,则AB 的中点P 到y 轴的距离等于________.解析:抛物线y 2=4x 焦点为E (1,0),准线为x =-1,过点A ,B ,P 分别作准线的垂线,垂足分别为点C ,D ,F ,PF 交y 轴于点H ,如图所示,则PF 为直角梯形ABCD 的中位线,|PF |=|AC |+|BD |2=|AE |+|BE |2=|AB |2=5,故|PH |=|PF |-1=4,即AB 的中点P 到y 轴的距离等于4.14. ax 2+by 2=1与直线y =-x +1交于A 、B 两点,过原点与线段AB 中点的直线斜率为22,则ab=________. 解析:设A (x 1,y 1),B (x 2,y 2),则ax 21+by 21=1,①ax 22+by 22=1,② ①-②可得:a (x 1-x 2)(x 1+x 2)+b (y 1-y 2)(y 1+y 2)=0,从而得a b =-(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-(-1)×22=22.答案:22三、解答题(本大题共6小题,共80分)15.(12分)已知A (2,0)、定圆M :(x +2)2+y 2=25,P 是圆上的动点,线段AP 的垂直平分线交MP 于Q ,求Q 的轨迹方程.解析:如图,|QP |=|QA |,∴|QM |+|QA |=|QM |+|QP |=|MP |=5. ∴动点Q 的轨迹是椭圆,又∵2a =5,c =2,∴b 2=a 2-c 2=94,∴Q 的轨迹方程为x 2254+y294=1.16.(12分)已知抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P ⎝⎛⎭⎫32,6,求抛物线的方程和双曲线的方程.解析:依题意,设抛物线的方程为y 2=2px (p >0),∵点P ⎝⎛⎭⎫32,6在抛物线上∴6=2p ×32. ∴p =2,∴所求抛物线的方程为y 2=4x .∵双曲线的左焦点在抛物线的准线x =-1上, ∴c =1,即a 2+b 2=1,又点P ⎝⎛⎭⎫32,6在双曲线上,∴94a 2-6b2=1, 解方程组⎩⎪⎨⎪⎧a 2+b 2=1,94a 2-6b 2=1,得⎩⎨⎧a 2=14,b 2=34,或⎩⎪⎨⎪⎧a 2=9b 2=-8,(舍去). ∴所求双曲线的方程为4x 2-43y 2=1.17.(14分)已知抛物线方程为y 2=2x ,在y 轴上截距为2的直线l 与抛物线交于M ,N 两点,O 为坐标原点.若OM ⊥ON ,求直线l 的方程.解析:设直线l 的方程为y =kx +2, 由⎩⎪⎨⎪⎧y 2=2x ,y =kx +2,消去x 得ky 2-2y +4=0. ∵直线l 与抛物线相交, ∴⎩⎪⎨⎪⎧k ≠0,Δ=4-16k >0,解得k <14且k ≠0.设M (x 1,y 1),N (x 2,y 2),则y 1y 2=4k,从而x 1x 2=y 212·y 222=4k2.∵OM ⊥ON ,∴x 1x 2+y 1y 2=0, 即4k 2+4k=0,解得k =-1符合题意, ∴直线l 的方程为y =-x +2.18.(14分)已知椭圆x 24+y 29=1及直线l :y =32x +m ,(1)当直线l 与该椭圆有公共点时,求实数m 的取值范围; (2)求直线l 被此椭圆截得的弦长的最大值.解析:(1)由⎩⎨⎧y =32x +m ,x 24+y29=1,消去y ,并整理得9x 2+6mx +2m 2-8=0.① 上面方程的判别式Δ=36m 2-36(2m 2-8)=-36(m 2-8). ∵直线l 与椭圆有公共点,∴Δ≥0,据此可解得-22≤m ≤2 2.故所求实数m 的取值范围为[-22,22].(2)设直线l 与椭圆的交点为A (x 1,y 1),B (x 2,y 2),由①得:x 1+x 2=-6m9,x 1x 2=2m 2-89,故|AB |=1+k2(x 1+x 2)2-4x 1x 2=1+⎝⎛⎭⎫322⎝⎛⎭⎫-6m 92-4×2m 2-89=133-m 2+8. 当m =0时,直线l 被椭圆截得的弦长的最大值为2263. 19.(2014·海淀二模)(14分)已知椭圆G 的离心率为22,其短轴两端点为A (0,1),B (0,-1).(1)求椭圆G 的方程;(2)若C 、D 是椭圆G 上关于y 轴对称的两个不同点,直线AC ,BD 与x 轴分别交于点M ,N ,判断以MN 为直径的圆是否过点A ,并说明理由.解析:(1)由已知可设椭圆G 的方程为x 2a 2+y 21=1(a >1).由e =22得e 2=a 2-1a 2=12,解得a 2=2,所以椭圆的标准方程为x 22+y 21=1.(2)设C (x 0,y 0),且x 0≠0,则D (-x 0,y 0). 因为A (0,1),B (0,-1),所以直线AC 的方程为y =y 0-1x 0x +1.令y =0,得x M =-x 0y 0-1,所以M ⎝⎛⎭⎫-x 0y 0-1,0. 同理直线BD 的方程为y =y 0+1-x 0x -1,求得N ⎝⎛⎭⎫-x 0y 0+1,0. AM →=⎝⎛⎭⎫x 01-y 0,-1,AN →=⎝⎛⎭⎫-x 01+y 0,-1, 所以AM →·AN →=-x 201-y 20+1,由C (x 0,y 0)在椭圆G :x 22+y 2=1上,所以x 20=2(1-y 20), 所以AM →·AN →=-1≠0,所以∠MAN ≠90°, 所以以线段MN 为直径的圆不过点A . 20.(14分)(2014·东三省四市联考)已知圆M 和圆P :x 2+y 2-22x -10=0相内切,且过定点Q (-2,0).(1)求动圆圆心M 的轨迹方程;(2)不垂直于坐标轴的直线l 与动圆圆心M 的轨迹交于A ,B 两点,且线段AB 的垂直平分线经过点⎝⎛⎭⎫0,-12,求△AOB (O 为原点)面积的最大值. 解析:(1)由已知|MP |=23-|MQ |,即|MP |+|MQ |=23,且23大于|PQ |,所以M 的轨迹是以(-2,0),(2,0)为焦点,23为长轴长的椭圆,即其方程为x 23+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2)且过AB 的直线l 的方程为y =kx +t , 代入椭圆方程得(3k 2+1)x 2+6ktx +3t 2-3=0, 因为方程有两个不同的解,所以Δ=4(9k 2+3-3t 2)>0,即3k 2+1>t 2,①又因为x 1+x 2=-6kt 3k 2+1,所以x 1+x 22=-3kt3k 2+1,y 1+y 22=t3k 2+1, 所以y 1+y 22+12x 1+x 22-0=-1k ,化简得到3k 2+1=4t ,②综合①②得0<t <4,又原点到直线的距离为d =|t |k 2+1,|AB |=1+k 2|x 1-x 2|=1+k 2 4(9k 2+3-3t 2)3k 2+1,化简得S △ABO =143(4t -t 2),所以当t =2,即k =±73时,S △AOB 取最大值32.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2→| =(C )A.32B.3C.72D .4 2.抛物线的顶点和椭圆x 225+y 29=1的中心重合,抛物线的焦点和椭圆x 225+y 29=1的右焦点重合,则抛物线的方程为(A )A .y 2=16xB .y 2=8xC .y 2=12xD .y 2=6x3.双曲线x 2-y 2m=1的离心率大于2的充分必要条件是(C )A .m >12B .m ≥1C .m >1D .m >2解析:由e 2=⎝⎛⎭⎫c a 2=1+m 1=1+m >2,m >1.4.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为(B )A.x 236-y 2108=1B.x 29-y 227=1C.x 2108-y 236=1D.x 227-y 29=1 解析:本题主要考查双曲线与抛物线的几何性质与标准方程,属于容易题.依题意知⎩⎨⎧ba=3,c =6,c 2=a 2+b 2,⇒a 2=9,b 2=27,所以双曲线的方程为x 29-y 227=1.5.(2013·惠州一调)已知实数4,m ,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为(C )A.306 B.7 C.306或7 D.56或7解析:因4,m ,9成等比数列,则m 2=36,∴m =±6.当m =6时圆锥曲线为椭圆x 26+y 2=1,其离心率为306;当m =-6时圆锥曲线为双曲线y 2-x26=1,其离心率为7,故选C.6.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是(B)A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)解析:如图所示,直线l 为抛物线y =2x 2的准线,F 为其焦点,PN ⊥l ,AN 1⊥l ,由抛物线的定义知,|PF |=|PN |,∴|AP |+|PF |=|AP |+|PN |≥|AN 1|,当且仅当A ,P ,N 三点共线时取等号,∴P 点的横坐标与A 点的横坐标相同即为1,则可排除A 、C 、D 项,故选B.7.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为(C)A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25=y 24=1 解析:依题意可设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则A ⎝⎛⎭⎫1,b 2a ,B ⎝⎛⎭⎫1,-b 2a ,又|AB |=b 2a-⎝⎛⎭⎫-b 2a =2b 2a =3,∴2b 2=3a .又a 2-b 2=c 2=1,∴a =2,b = 3.故C 的方程为x 24+y23=1. 8.(2013·新课标全国卷Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为(C )A .2B .2 2C .2 3D .4解析:设P (a ,b )为抛物线上在第一象限内的点,则a +2=42,得a =32,因为点P (a ,b )在抛物线上,所以b =26,所以S △POF =12×2×26=23,故选C.9.动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过点(B ) A .(4,0) B .(2,0) C .(0,2) D .(0,-2)解析:直线x +2=0是抛物线的准线,又动圆圆心在抛物线上,由抛物线的定义知,动圆必过抛物线的焦点(2,0).10.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是(C)A .x 2=y -12B .x 2=2y -116C .x 2=2y -1D .x 2=2y -2解析:由y =14x 2⇒x 2=4y ,焦点F (0,1),设PF 中点Q (x ,y )、P (x 0,y 0), 则⎩⎪⎨⎪⎧2x =0+x 0,2y =1+y 0,4y 0=x 20,∴x 2=2y -1. 11.椭圆x 225+y 29=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是(C )A .(5,0)或(-5,0) B.⎝⎛⎭⎫52,332或⎝⎛⎭⎫52,-332C .(0,3)或(0,-3) D.⎝⎛⎭⎫532,32或⎝⎛⎭⎫-532,32解析:|PF 1|+|PF 2|=2a =10,∴|PF 1|·|PF 2|≤⎝⎛⎭⎫|PF 1||PF 2|22=25.当且仅当|PF 1|=|PF 2|=5时,取得最大值, 此时P 点是短轴端点,故选C.12.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率的取值范围是(C )A .(1,3)B .(1,2)C .(1,3]D .(1,2]解析:|PF 2|2|PF 1|=(|PF 1|2a )2|PF 1|=|PF 1|+4a 2|PF 1|+4a ≥8a ,当|PF 1|=4a 2|PF 1|,即|PF 1|=2a 时取等号.又|PF 1|≥c -a ,∴2a ≥c -a .∴c ≤3a ,即e ≤3.∴双曲线的离心率的取值范围是(1,3].二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上)13.抛物线y 2=8x 上一个点P (P 在x 轴上方)到焦点的距离是8,此时P 点的坐标是________. 答案:()6,4314.与椭圆x 24+y 23=1具有相同的离心率且过点(2,-3)的椭圆的标准方程是________________________________________________________________________.答案:x 28+y 26=1或3y 225+4x 225=115.若直线y =32x 与双曲线x 2a 2-y 2b2=1(a >0,b >0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率是________.答案:216.抛物线y 2=x 上存在两点关于直线y =m (x -3)对称,则m 的范围是________________________________________________________________________.解析:设抛物线上两点A (x 1,y 1),B (x 2,y 2)关于直线y =m (x -3)对称,A ,B 中点M (x ,y ),则当m =0时,有直线y =0,显然存在点关于它对称.当m ≠0时,⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2⇒y 1-y 2x 1-x 2=1y 1+y 2=12y =-1m ,所以y =-m 2,所以M 的坐标为(52,-m 2),∵M 在抛物线内,则有52>(m2)2,得-10<m <10且m ≠0,综上所述,m ∈(-10,10). 答案:(-10,10)三、解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)求适合下列条件的双曲线的标准方程:(1)焦点在 x 轴上,虚轴长为12,离心率为 54;(2)顶点间的距离为6,渐近线方程为y =±32x .解析:(1)焦点在x 轴上,设所求双曲线的方程 为x 2a 2-y 2b 2=1.由题意,得 ⎩⎨⎧2b =12,c a =54,b 2=c 2-a 2.解得a =8,b =6,c =10. 所以焦点在x 轴上的双曲线的方程为 x 264-y 236=1. (2)当焦点在x 轴上时,设所求双曲线的方程为 x 2a 2-y 2b 2=1 由题意,得⎩⎪⎨⎪⎧2a =6,b a =32.解得a =3,b =92.所以焦点在x 轴上的双曲线的方程为 x 29-y 2814=1. 同理可求当焦点在y 轴上双曲线的方程为 y 29-x 24=1. 故所求双曲线的方程为x 29-y 2814=1或y 29-x 24=1. 18.(12分) 已知椭圆C 的焦点F 1(-22,0)和F 2(22,0),长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.解析:由已知条件得椭圆的焦点在x 轴上,其中c =22,a =3,从而b =1,所以其标准方程是 x29+y 2=1.联立方程组⎩⎪⎨⎪⎧x 29+y 2=1,y =x +2,消去y 得,10x 2+36x +27=0.设A (x 1,y 1),B (x 2,y 2),AB 线段的中点为M (x 0,y 0),那么:x 1+x 2=-185, x 0=x 1+x 22=-95. 所以y 0=x 0+2=15.也就是说线段AB 的中点坐标为⎝⎛⎭⎫-95,15. 19.(12分)中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3∶7.求这两条曲线的方程.解析:设椭圆的方程为x 2a 21+y 2b 21=1,双曲线的方程为x 2a 22-y2b 22=1,半焦距c =13, 由已知得:a 1-a 2=4, c a 1∶ca 2=3∶7,解得:a 1=7,a 2=3. 所以:b 21=36,b 22=4,故所求两条曲线的方程分别为:x 249+y 236=1 ,x 29-y 24=1.20. (12分)已知动点P 与平面上两定点A (-2,0)、B (2,0)连线的斜率的积为定值-12.(1)试求动点P 的轨迹方程C ;(2)设直线l :y =kx +1与曲线C 交于M 、N 两点,当|MN |=423时,求直线l 的方程.解析:(1)设点P (x ,y ),则依题意有 y x +2·y x -2=-12,整理得x 22+y 2=1.由于x ≠±2,所以求得的曲线C 的方程为x22+y 2=1(x ≠±2). (2)联立方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +1,消去y 得:(1+2k 2)x 2+4kx =0. 解得x 1=0, x 2=-4k1+2k 2(x 1,x 2分别为M ,N 的横坐标).由|MN |=1+k 2|x 1-x 2|=1+k 2⎪⎪⎪⎪4k 1+2k 2=432,解得:k =±1.所以直线l 的方程x -y +1=0或x +y -1=0.21.(12分)设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),抛物线C 2:x 2+by =b 2. (1)若C 2经过C 1的两个焦点,求C 1的离心率;(2)设A (0,b ),Q ⎝⎛⎭⎫33,54b ,又M ,N 为C 1与C 2不在y 轴上的两个交点,若△AMN 的垂心为B ⎝⎛⎭⎫0,34b ,且△QMN 的重心在C 2上,求椭圆C 1和抛物线C 2的方程. 解析:(1)由已知椭圆焦点(c ,0)在抛物线上,可得c 2=b 2,由a 2=b 2+c 2=2c 2,有c 2a 2=12⇒e =22.(2)由题设可知M 、N 关于y 轴对称,设M (-x 1,y 1),N (x 1,y 1)(x 1>0),由△AMN 的垂心为B ,有BM →·AN →=0⇒-x 21+⎝⎛⎭⎫y 1-34b (y 1-b )=0 由点N (x 1,y 1)在抛物线上,x 21+by 1=b 2,解得y 1=-b 4,或y 1=b (舍去), 故x 1=52b ,M ⎝⎛⎭⎫-52b ,-b 4,N ⎝⎛⎭⎫52b ,-b 4, 得△QMN 重心坐标⎝⎛⎭⎫3,b 4. 由重心在抛物线上得3+b 24=b 2, ∴b =2,M ⎝⎛⎭⎫-5,-12,N ⎝⎛⎭⎫5,-12, 又∵M ,N 在椭圆上,得a 2=163, 椭圆方程为x 2163+y 24=1, 抛物线方程为x 2+2y =4.22.(12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63. 过点A (0,-b )和B (a ,0)的直线与原点的距离为32. (1)求椭圆的方程;(2)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C ,D 两点,问:是否存在k 的值,使以CD 为直径的圆过E 点,请说明理由.解析:(1)直线AB 方程为:bx -ay -ab =0.依题意⎩⎪⎨⎪⎧c a =63,ab a 2+b 2=32,解得⎩⎪⎨⎪⎧a =3,b =1. ∴椭圆方程为x 23+y 2=1. (2)假若存在这样的k 值,由⎩⎪⎨⎪⎧y =kx +2,x 2+3y 2-3=0,得 (1+3k 2)x 2+12kx +9=0.∴Δ=(12k )2-36(1+3k 2)>0.①设C (x 1,y 1),D (x 2,y 2),则⎩⎨⎧x 1+x 2=-12k 1+3k 2,x 1·x 2=91+3k 2.② 而y 1·y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+4. 要使以CD 为直径的圆过点E (-1,0),当且仅当CE ⊥DE 时,则y 1x 1+1·y 2x 2+1=-1. 即y 1y 2+(x 1+1)(x 2+1)=0.∴(k 2+1)x 1x 2+(2k +1)(x 1+x 2)+5=0.③将②式代入③整理解得k =76.经验证k =76使①成立. 综上可知,存在k =76,使得以CD 为直径的圆过点E .。
高二数学选修1-1第一、二章测试题

高二数学选修1-1第一、二章测试题班级: 姓名: 座号: 一.选择题(本大题共12小题,每小题4分,共48分)1. “21sin =A ”是“︒=30A ”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件 2. 平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么( )A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C . 甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件3.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,4.双曲线121022=-y x 的焦距为( ) A .22 B .24 C .32 D .345. 已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A. 2 3 B . 6 C . 4 3 D . 126. 双曲线19422-=-y x 的渐近线方程是( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±=7.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .B .C .12D .138.已知两点)0,1(1-F 、)0,1(F ,且21F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .191622=+y xB .1121622=+y xC .13422=+y xD .14322=+y x9. 已知双曲线x 2a 2-y 2b2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )A .53B. 43C . 54D. 3210.抛物线281x y -=的准线方程是 ( )A . 321=xB .2=yC . 321=y D .2-=y11.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .412. 抛物线214x y =-的一点M 到焦点的距离为1,则点M 的纵坐标是:( ) A .17-B .15-C .7D .1513. 椭圆2214x y +=的离心率为 .14. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = .15.已知双曲线11222-=-+ny n x n = . 16.已知抛物线的方程是x y 82=,双曲线的右焦点是抛物线的焦点,离心率为2,则双曲线的标准方程是 .三.解答题(本大题共5小题,共40分) 17.(12分) 求下列各曲线的标准方程(1)实轴长为12,离心率为32,焦点在x 轴上的椭圆;(2)抛物线的焦点是双曲线14491622=-y x 的左顶点.(3) 顶点间的距离为6,渐近线方程为x y 23±=的双曲线。
(压轴题)高中数学选修1-1第二章《圆锥曲线与方程》测试卷(答案解析)(2)

一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D 2.平面α内有一条直线m ,过平面α外一点P 作直线n 与m 所成角为6π,则直线n 与平面α交点的轨迹是( ) A .直线B .抛物线C .椭圆D .双曲线3.已知椭圆221124y x +=,圆22:4O x y +=,过椭圆上任一与顶点不重合的点G 引圆的两条切线,切点分别为,P Q ,直线PQ 与x 轴,y 轴分别交于点,M N ,则2231OMON+=( )A .54 B .45C .43D .344.已知椭圆22:13620x y C +=的右焦点是F ,直线()0y kx k =≠与椭圆C 交于A 、B 两点,则222AF BF +的最小值是( ) A .36B .48C .72D .965.已知点A 是抛物线24x y =的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上,且满足||||PA m PF =,则m 的最大值是( )A .1BC .2D .46.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1167.已知M 是抛物线2:C x y =上一点,记点M 到抛物线C 的准线的距离为1d ,到直线:3490l x y ++=的距离为2d ,则12d d +的最小值为( )A .1B .2C .3D .48.在正方体1111ABCD A B C D -中,点P 是侧面11BCC B 内一点,且点P 满足到平面11ABB A 的距离等于到点1C 的距离,则点P 的轨迹是( )A .一条线段B .圆的一部分C .椭圆的一部分D .抛物线的一部分9.设F 为双曲线C :22221(0,0)x y a b a b-=>>的左焦点,O 为坐标原点,以F 为圆心,FO 为半径的圆与C 交于,A B 两点.若55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,则C 的离心率取值范围为( )A .4,33⎡⎤⎢⎥⎣⎦B .(C .5,43⎡⎤⎢⎥⎣⎦D .10.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F ,2F ,()1221,2i i M F M F a i -==,且1M ,2F ,2M 三点共线,点D 在线段21M F 上,且1121F M D M M D ∠=∠1112122M F M F M D +=,则双曲线C 的渐近线方程为( )A .2y x =±B .y =C .2y x =±D .y =11.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .812.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件二、填空题13.已知双曲线()22210y x a a -=>的离心率e =12,F F 分别是它的下焦点和上焦点,若Р为该双曲线上支上的一个动点,则1PF 与P 到一条渐近线的距离之和的最小值为_________.14.双曲线()222210,0x y a b a b-->>的左右焦点分别为1F ,2F ,过1F 作直线l 与双曲线有唯一交点P ,若124sin 5F PF ∠=,则该双曲线的离心率为___________. 15.已知椭圆22:143x y C +=的左、右焦点分别为12F F 、,过2F 且倾斜角为π4的直线l交椭圆C 于A B 、两点,则1F AB 的面积为___________.16.已知点A ,B 为抛物线C :24y x =上不同于原点O 的两点,且OA OB ⊥,则OAB 的面积的最小值为__________.17.已知抛物线C :2y x =的焦点为F ,A ()00,x y 是C 上一点,054AF x =,则0x =________.18.已知椭圆222:1(06)6x y G b b+=<<的两个焦点分别为1F 和2F ,短轴的两个端点分别为1B 和2B ,点P 在椭圆G 上,且满足1212PB PB PF PF +=+.当b 变化时,给出下列三个命题:①点P 的轨迹关于y 轴对称;②存在b 使得椭圆G 上满足条件的点P 仅有两个;③||OP 的最小值为2,其中,所有正确命题的序号是___________.19.已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点,则该双曲线的离心率的取值范围___________.20.在平面直角坐标系xOy 中,已知双曲线22:17y x Γ-=的两个焦点分别为1F ,2F ,以2F 为圆心,12F F 长为半径的圆与双曲线Γ的一条渐近线交于M ,N 两点,若OM ON ≥,则OMON的值为________. 三、解答题21.已知抛物线2:2(0)C y px p =>的焦点F 到直线:l y x =的距离为2,A B ,为抛物线C 上两个动点,满足线段AB 的中点M 在直线l 上,点(0,2)N .(1)求抛物线C 的方程; (2)求NAB △面积的取值范围.22.在平面直角坐标系xOy 中,已知两点()1,0M -,()1,0N ,动点Q 到点M 的距离为,线段NQ 的垂直平分线交线段MQ 于点K ,设点K 的轨迹为曲线E . (1)求曲线E 的方程;(2)已知点()2,0P ,设直线l :10x my +-=与曲线E 交于A ,B 两点,求证:OPA OPB ∠=∠.23.设1F 、2F 分别是椭圆2214xy +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求1PF ·2PF 的取值范围;(2)设过定点(0,2)M 的直线l 与椭圆交于不同的两点A 、B ,且AOB ∠为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.24.已知椭圆()2222:10x y C a b a b+=>>经过点()2,1A ,椭圆C 在点A 处的切线方程为3y x =-+.(1)求椭圆C 的方程;(2)设过点()3,0B 且与x 轴不重合的直线l 与椭圆C 交于不同的两点M ,N ,直线AM ,AN 分别与直线3x =-分别交于P ,Q ,记点P,Q 的纵坐标分别为p ,q ,求p q +的值.25.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别为1F 、2F ,点M 为短轴的一个端点,离心率为12,12MF F △的面积S = (1)求椭圆C 的方程;(2)设A 是椭圆上的一点,B 是点A 关于x 轴的对称点,P 是椭圆C 上异于A 、B 的任意一点,且直线PA 、PB 分别于x 轴交于不同的点C 、D ,O 为坐标原点,求POC POD S S ⋅△△的最大值,并求出此时P 点的坐标26.已知椭圆()2222:10x y C a b a b+=>>的离心率为1,,2A B 分别是它的左、右顶点,F是它的右焦点,过点F 作直线与C 交于,P Q (异于,A B )两点,当PQ x ⊥轴时,APQ∆的面积为92. (1)求C 的标准方程;(2)设直线AP 与直线BQ 交于点M ,求证:点M 在定直线上.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a bx y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得62ce a . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.D解析:D 【分析】过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系,设出坐标,分别表示出直线AB 与PM 的方向向量,利用夹角公式即可得出. 【详解】解:过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系.不妨设1OP =,30PBO ∠=︒,OB ∴=. 则(0P ,0,1),B .设点(Q x ,y ,0),则(,,1)PQ x y =-,取直线m 的方向向量为(0,1,0)u =. 直线AB 与PQ 所成的角为30,2||cos30||||PQ u PQ u x ∴︒===+化为2213yx-=,即为点Q的轨迹.故选:D.【点睛】熟练掌握通过建立如图所示的空间直角坐标系利用异面直线的夹角公式求得轨迹的方法是解题的关键.3.D解析:D【分析】设112233(,),(,),(,)P x y Q x y G x y,则可得切线,GP GQ的方程,即可得到直线PQ的方程,进而可求出点点,M N的坐标,再结椭圆方程可求出2231OM ON+的值【详解】解:设112233(,),(,),(,)P x y Q x y G x y,则切线GP的方程为114x x y y+=,切线GQ的方程为224x x y y+=,因为点G在切线,GP GQ上,所以13134x x y y+=,23234x x y y+=,所以直线PQ的方程为334x x y y+=,所以3344(,0),(0,)M Nx y,因为点33(,)G x y在椭圆221124y x+=上,所以2233312x y+=,所以22223333223311123(3)161616164x yx yOM ON+=+=+==,故选:D【点睛】关键点点睛:此题考查椭圆的标准方程,以及简单性质有应用,解题的关键是设点33(,)G x y ,再由已知条件得到直线PQ 的方程为334x x y y +=,从而可得,M N 的坐标,进而可得答案,考查计算能力和转化能力,属于中档题4.D解析:D 【分析】求得2AF BF a +=,结合a c BF a c -<<+,利用二次函数的基本性质可求得222AF BF +的最小值.【详解】设椭圆C 的左焦点为F ',在椭圆C 中,6a =,25b =,则224c a b =-=,由题意可知,点A 、B 关于原点对称,且O 为FF '的中点, 所以,四边形AFBF '为平行四边形,所以,BF AF '=,由椭圆的定义可得212AF BF AF AF a '+=+==,0k ≠,a c BF a c ∴-<<+,即210BF <<,()()2222222122324144349696AF BF BFBF BF BF BF ∴+=-+=-+=-+≥,当且仅当4BF =时,等号成立,因此,222AF BF +的最小值为96. 故选:D. 【点睛】关键点点睛:解决本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应曲线的定义,本题中利用对称性结合椭圆定义可得出AF BF +;(2)利用椭圆的几何性质得出焦半径的取值范围.5.B解析:B 【分析】由抛物线的对称性可不妨设P 在第一象限或为原点,过P 作准线1y =-的垂线,垂足为E ,利用抛物线的定义可得1sin PAE m=∠,求出sin PAE ∠的最小值后可得m 的最大值. 【详解】由抛物线24x y =可得准线方程为:1y =-,故()0,1A -.如图,由抛物线的对称性可不妨设P 在第一象限或为原点, 过P 作准线1y =-的垂线,垂足为E ,则PE PF =,故1||||sin ||||PF PE PAE m PA PA ===∠, 当直线AP 与抛物线相切时,PAE ∠最小, 而当P 变化时,02PAE π<∠≤,故当直线AP 与抛物线相切时sin PAE ∠最小,设直线:1AP y kx =-,由241x yy kx ⎧=⎨=-⎩得到2440x kx -+=,216160k ∆=-=,故1k =或1k =-(舍),所以直线AP 与抛物线相切时4PAE π∠=,故1m 的最小值为22即m 2, 故选:B. 【点睛】方法点睛:与抛物线焦点有关的最值问题,可利用抛物线的定义把到焦点的距离问题转化为到准线的距离问题.6.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y ,则124y y t +=,124y y =-,则()241AB t ==+,同理2141CD t ⎛⎫=+⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭, 故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 7.B解析:B 【分析】作出图形,过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A ,由抛物线的定义得出1d MB MF ==,可得出12d d MF MA +=+,利用FM 与直线3490x y ++=垂直时,12d d +取最小值,然后计算出点F 到直线3490x y ++=的距离,即为所求.【详解】 如下图所示:过点M 分别作抛物线C 的准线l 和直线3490x y ++=的垂线,垂足分别为点B 、A , 由抛物线的定义可得1d MB MF ==,则12d d MF MA +=+, 当且仅当FM 与直线3490x y ++=垂直时,12d d +取最小值, 点F 到直线3490x y ++=的距离为22130494234d ⨯+⨯+==+,因此,12d d +的最小值为2. 故答案为:2. 【点睛】关键点点睛:本题求出抛物线上一点到准线和定直线的距离之和最小值问题,解题的关键就是利用F 、A 、M 三点共线取最小值,结合抛物线的定义转化求解.8.D解析:D 【分析】由题意画出图形,可知点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线. 【详解】如图,点P 是侧面11BCC B 内的一动点,点P 到直线1BB 的距离即为点P 到面11ABB A 的距离, 因为点P 到直线BC 的距离与点P 到点1C 的距离相等, 所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线, 故选:D . 【点睛】方法点睛:求动点的轨迹方法之定义法:将动点轨迹化归为某一基本轨迹(圆,椭圆,双曲线,抛物线等),然后利用基本轨迹的定义,直接写出方程.9.A解析:A 【分析】根据题意写出,,''AF AF FF ,根据余弦定理表示出cos ∠OFA ,然后根据55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,列出关于e 的不等式,求解范围.【详解】取右焦点F ',连接AF ',因为点A 为圆和双曲线的交点,所以AF OF c ==,则22,2''=+=+=AF AF a c a FF c ,所以22222222224(2)444cos 244''+-+-+--∠==='AF FF AF c c c a c ac a OFA AF FF c c 221111⎛⎫=--=-- ⎪⎝⎭a a c c e e,又因为55cos 169OFA ⎡⎤∠∈⎢⎥⎣⎦-,,所以251151169-≤--≤e e ,即2249902116160e e e e ⎧--≤⎨--≥⎩,解得433≤≤e . 故选:A.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合222b c a =-转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).10.B解析:B 【分析】先取11M F 的中点E ,由题意分析12M F DE 为菱形,得到()()222442c a a =-,从而求出渐近线方程. 【详解】由()1221,2i i M F M F a i -==知:M 1、M 2在双曲线上. 取11M F 的中点E ,连接DE ,2DF ,由111211111222,22,M F M F M D M F M D M F +=∴=-,即112122,M F F D F DE M =∴=,可知四边形12MF DE 为平行四边形;又1M D 为112F M F 的角平分线,故四边形12M F DE 为菱形,1212M E F M F D DE ===又21//DE M M 故D 为线段21M F 的中点; 因为211//DF M F ,故2F 为线段12M M 的中点, 故1222M F F M =; 所以21112M F M F =由双曲线的定义:11122M F M F a -=,所以21114,2M F a M F a == 而12M M x ⊥轴,故222121112F F M F M F =-, 故()()222442c a a =-,故==ce a, 故双曲线C的渐近线方程为y = 故选B . 【点睛】求双曲线的渐近线的方法:(1)直接令标准方程22221x y a b-=中的1变成0,得到22220x y a b -=,利用平方差公式得到渐近线方程: bxy a=±; (2)根据题意,找到找到a 、b 、c 的关系,消去c ,从而求出渐近线方程.11.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点,所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==,所以1122PF a c =-,且1222PF c a =-, 所以122222a c c a -=-,可得122a a c +=, 所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===, 所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D. 【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.12.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.二、填空题13.【分析】根据离心率先求出双曲线的方程得出渐近线方程根据双曲线的定义可得:所以设点到一条渐进线的距离为则从而得出答案【详解】双曲线的离心率所以解得所以双曲线由的双曲线的渐进线方程为由为该双曲线上支上的 解析:5【分析】根据离心率先求出双曲线的方程,得出渐近线方程,根据双曲线的定义可得:1224PF PF a -==,所以124PF PF =+,设点Р到一条渐进线的距离为d ,则124PF d PF d +=++,从而得出答案.【详解】双曲线()22210y x a a -=>的离心率e =所以221514e a =+=,解得2a =,所以((120,,F F 双曲线2214y x -=,由2204y x -=,的双曲线的渐进线方程为2y x =±由Р为该双曲线上支上的一个动点,根据双曲线的定义可得:1224PF PF a -== 所以124PF PF =+,设点Р到渐进线2y x =的距离为d则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,垂足为M ,如图.所以21F M ==所以122445PF d PF d F M +=++≥+=同理1PF 与P 到渐近线2y x =-的距离之和的最小值为5 故答案为:5【点睛】关键点睛:本题考查利用双曲线的定义解决距离之和的最值问题,解答本题的关键是根据双曲线的定义可得:1224PF PF a -==,所以124PFPF =+,设点Р到渐进线2y x =的距离为d ,则124PF d PF d +=++,过2F 作渐进线2y x =的垂线,属于中档题.14.或【分析】首先设出直线的方程与双曲线方程联立求得点的坐标利用弦长公式求得并根据定义表示中根据余弦定理表示再求离心率【详解】如图当直线与渐近线平行时与双曲线有唯一交点设与双曲线方程联立得解得:中由余弦217 【分析】首先设出直线l 的方程,与双曲线方程联立,求得点P 的坐标,利用弦长公式求得1PF ,并根据定义表示2PF ,12F PF △中,根据余弦定理表示12281cos 3F PF e ∴-∠=+,再求离心率. 【详解】如图,当直线与渐近线平行时,l 与双曲线有唯一交点P ,设():bl y x c a=+,与双曲线方程联立,得222cx a c -=+,解得:22a cx c+=-,()22222122122P b c a c b PF c c a a c a +=+--=+=,2221422b a PF PF a a +=+=,122F F c =, 12F PF △中,124sin 5F PF ∠=,123cos 5F PF ∴∠=±, 由余弦定理222121212122cos F F PF PF PF PF F PF =+-∠()()212121221cos PF PF PF PF F PF =-+-∠,()()()2222212244221cos 4b a b c a F PF a+∴=+⋅-∠,2212222228881cos 433a a F PFb ac a e ∴-∠===+++, 当123cos 5F PF ∠=时,28235e =+,17e =, 当123cos 5F PF ∠=-时,28835e =+,2e =,172 【点睛】方法点睛:本题考查双曲线基本性质,意在考查数形结合分析问题和解决问题的能力,属于中档题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a =求解;2.公式法:222111c b e a a b c ==+=⎛⎫- ⎪⎝⎭3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.15.【分析】先求出直线的方程与椭圆方程联立消去x 求出|y1-y2|利用即可求出的面积【详解】由题意得:直线:设则有:消去x 得:7y2+6y-9=0∴即的面积为【点睛】求椭圆(双曲线)的焦点弦三角形的面积 解析:1227【分析】先求出直线l 的方程,与椭圆方程联立,消去x ,求出| y 1- y 2|,利用11212|1|||2F AB S F F y y =-△即可求出1F AB 的面积. 【详解】由题意得: 直线l :1y x =-, 设1122(,),(,)A x y B x y ,则有:2213412y x x y =-⎧⎨+=⎩消去x 得:7y 2+6y -9=0,∴121269,77y y y y +=-=-12211111|||227|2227F AB S F F y y -∴=⨯=⨯⨯==△即1F AB 的面积为7【点睛】求椭圆(双曲线)的焦点弦三角形的面积: (1)直接求出弦长|AB |,利用11||2F AB AB d S =△; (2)利用11212|1|||2F AB S F F y y =-△. 16.【分析】设利用可得即可求得利用两点间距离公式求出面积利用基本不等式即可求最值【详解】设由可得解得:所以当且仅当时等号成立所以的面积的最小值为故答案为:【点睛】关键点点睛:本题解题的关键点是设坐标采用 解析:16【分析】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭,利用OA OB ⊥可得0OA OB ⋅=即可求得1216y y =-,利用两点间距离公式求出OA 、OB ,面积12OABS OA OB =,利用基本不等式即可求最值. 【详解】设211,4y A y ⎛⎫ ⎪⎝⎭,222,4y B y ⎛⎫⎪⎝⎭, 由OA OB ⊥可得2212121212104416y y y y OA OB y y y y ⎛⎫⋅=⨯+=+= ⎪⎝⎭, 解得:1216y y =-,1OA y ==OB y ==11122OABSO y O y A B ==12⨯=≥=,22221212216161616y y y y +=+≥=,所以16OABS≥==,当且仅当12y y =时等号成立, 所以OAB 的面积的最小值为16, 故答案为:16. 【点睛】关键点点睛:本题解题的关键点是设A ,B 坐标,采用设而不求的方法,将OA OB ⊥转化为0OA OB ⋅=,求出参数之间的关系,再利用基本不等式求12OABSOA OB =的最值. 17.【分析】根据焦半径公式可得:结合抛物线方程求解出的值【详解】由抛物线的焦半径公式可知:所以故答案为:【点睛】结论点睛:抛物线的焦半径公式如下:(为焦准距)(1)焦点在轴正半轴抛物线上任意一点则;(2 解析:1【分析】根据焦半径公式可得:00524x p x +=,结合抛物线方程求解出0x 的值. 【详解】由抛物线的焦半径公式可知:0015224AF x x =+=,所以01x =, 故答案为:1. 【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+; (2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 18.①③【分析】运用椭圆的定义可得也在椭圆上分别画出两个椭圆的图形即可判断①正确;通过的变化可得②不正确;由图象可得当的横坐标和纵坐标的绝对值相等时的值取得最小即可判断③【详解】解:椭圆的两个焦点分别为解析:①③ 【分析】运用椭圆的定义可得P 也在椭圆222166y x b+=-上,分别画出两个椭圆的图形,即可判断①正确;通过b 的变化,可得②不正确;由图象可得当P 的横坐标和纵坐标的绝对值相等时,||OP 的值取得最小,即可判断③.【详解】解:椭圆222:1(06x y G b b+=<<的两个焦点分别为1F ,0)和2(F 0),短轴的两个端点分别为1(0,)B b -和2(0,)B b ,设(,)P x y ,点P 在椭圆G 上,且满足1212||||||||PB PB PF PF +=+,由椭圆定义可得,12||||22PB PB a b +==>,即有P 在椭圆222166y x b+=-上. 对于①,将x 换为x -方程不变,则点P 的轨迹关于y 轴对称, 故①正确;对于②,由图象可得轨迹关于x ,y 轴对称,且0b <<则椭圆G 上满足条件的点P 有4个,不存在b 使得椭圆G 上满足条件的点P 仅有两个,故②不正确;对于③,点P 靠近坐标轴时(0b →或b →,||OP 越大,点P 远离坐标轴时,||OP 越小,所以226b b -=,即23b =时,取得最小值,此时22:163x y G +=,与22163y x +=两方程相加得222222x y +=⇒=,即||OP 的最小值为 2,故③正确.故答案为:①③.【点睛】本题考查椭圆的对称性及由椭圆上的点到焦点的距离之和等于到短轴的顶点距离之和可得另一个椭圆,及到定点距离的最值的判断.19.【分析】作出图形根据已知条件可得出与的大小关系再利用公式可求得双曲线的离心率的取值范围【详解】如下图所示双曲线的渐近线方程为由于过点且倾斜角为的直线与双曲线的右支有且只有一个公共点由图可知直线的倾斜解析:23,⎡⎫+∞⎪⎢⎪⎣⎭【分析】作出图形,根据已知条件可得出b a 与tan 6π的大小关系,再利用公式21b e a ⎛⎫=+ ⎪⎝⎭可求得双曲线的离心率的取值范围. 【详解】如下图所示,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,由于过点F 且倾斜角为6π的直线与双曲线的右支有且只有一个公共点,由图可知,直线by xa=的倾斜角6πα≥,所以,tan63baπ≥=,因此,cea====≥所以,该双曲线的离心率为取值范围是3⎡⎫+∞⎪⎢⎪⎣⎭.故答案为:3⎡⎫+∞⎪⎢⎪⎣⎭.【点睛】方法点睛:求双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a、b、c的齐次关系式,将b用a、e表示,令两边同除以a或2a化为e的关系式,进而求解.20.【分析】求出双曲线的两个焦点坐标和渐近线方程再求圆的方程与渐近线方程联立可得MN两点的横坐标由即为横坐标的绝对值的比可得答案【详解】由已知得取双曲线的一条渐近线所以圆的方程为由整理得解得取双曲线的另解析:32【分析】求出双曲线的两个焦点坐标和渐近线方程,再求圆的方程与渐近线方程联立可得M,N两点的横坐标,由OMON即为横坐标的绝对值的比可得答案.【详解】由已知得2221,7,8a b c===,2c=,12(F F-,取双曲线的一条渐近线y=,所以圆的方程为(2232x y+=-,由(2232yx y⎧=⎪⎨-+=⎪⎩整理得2260x-=,解得2NMx x==,32MNMOxxON===.取双曲线的另一条渐近线y=,(2232yx y⎧=⎪⎨-+=⎪⎩整理得2260x-=与上同,综上32OMON=.故答案为:32. 【点睛】关键点点睛:本题考查了直线与双曲线、圆的位置关系,解答本题的关键是求出渐近线与圆的方程然后联立,得到M ,N 两点的横坐标再由绝对值做比值,考查了学生的运算求解能力.三、解答题21.(1)24y x =;(2)(0,4]. 【分析】(1)利用抛物线焦点F 到直线l的距离为2,求出抛物线方程; (2)设出直线AB 的方程与抛物线方程联立,由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法得出NAB △面积的取值范围. 【详解】(1),02p F ⎛⎫ ⎪⎝⎭由2pd ==,解得2p = 所以抛物线方程为24y x =(2)设直线AB 的方程为:221212,,,,44y y x my t A y B y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭联立方程组24y x x my t ⎧=⎨=+⎩,消去x 得2440y my t --=所以121244y y m y y t +=⎧⎨=-⎩,得(2,2)M m m有2212444y y m +=,即()21212216y y y y m +-= 所以222t m m =- 点N 到AB的距离h =||AB ==所以1||2|2|2NABSAB h m t =⋅⋅=+42m m =-令u =u = 由24y xy x =⎧⎨=⎩,得l 与抛物线的两交点坐标为(0,0),(4,4), 因点M 在l 上可得(0,2)m ∈ 所以(0,1]μ∈ 得34(0,4]NABSu =∈【点睛】关键点点睛:本题考查抛物线的方程,考查直线与抛物线的位置关系,考查面积公式,解决本题的关键点是由弦长公式和点线距公式表示出NAB △的面积,并由线段AB 的中点M 在直线l 上减少参数,利用换元法和函数的性质得出NAB △的面积的取值范围,考查了学生计算能力,属于中档题.22.(1)2212x y +=;(2)证明见解析.【分析】(1)利用中垂线的性质可得KN KQ =,从而得到2KM KN QM MN +==>=,利用椭圆的定义进行分析求解即可;(2)根据点P 的位置,确定OPA ∠,OPB ∠都是锐角,然后联立直线与椭圆的方程,得到韦达定理,再将问题转化为求证两个角的正切值相等,代入化简求解,即可证明. 【详解】(1)∵线段NQ 的垂直平分线交MQ 于点K ,∴||||KN KQ =,∴||||||||||2||KM KN KM KQ MQ MN +=+==>= ∴点K 的轨迹是以原点为中心,以,M N 为焦点的椭圆.设椭圆方程为22221(0)x y a b a b+=>>,则a =1c =,1b =,所以曲线E 的方程为2212x y +=(2)由221210x y x my ⎧+=⎪⎨⎪+-=⎩消去x 可得()222210m y my +--=.设()11,A x y ,()22,B x y ,则12222m y y m +=+,12212y y m =-+. 易知PA ,PB 的斜率存在,则()()121212121212122221111PA PB y y y y y y my y k k x x my my my my +++=+=+=-------++,又因为121222222022m my y my y m m ++=-=++ 所以0PA PB k k +=,所以OPA OPB ∠=∠. 【点睛】方法点睛:解答直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 23.(1)[]2,1-;(2)22k -<<-或22k <<. 【分析】(1)根据椭圆的标准方程可得())12,F F ,设(),P x y ,利用向量数量积的坐标运算可得()2121384PF PF x ⋅=-,再由[]2,2x ∈-即可求解. (2)由题意可得直线0x =不满足题设条件,可设直线:2l y kx =+,将直线与椭圆方程联立,消去y ,可得()221416120kxkx +++=,0∆>,且12120OA OB x x y y ⋅=>+,结合韦达定理即可求解.【详解】解:(1)易知2,1,a b c ===())12,F F ,设(),P x y,则())2212,,,3PF PF x y x y x y ⋅=---=+-()2221133844x x x =+--=-因为[]2,2x ∈-,故当0x =,即点P 为椭圆短轴端点时,12PF PF ⋅有最小值2-; 当2x =±,即点P 为椭圆长轴端点时,12PF PF ⋅有最大值1; ∴1PF ·2PF 的取值范围是[]2,1-(2)显然直线0x =不满足题设条件,可设直线:2l y kx =+,联立22244y kx x y =+⎧⎨+=⎩,消去y ,整理得:()221416120k x kx +++= 由题意,()()2216414120k k ∆=-+⋅>得2k <-或2k >,① 令()()1122,,,A x y B x y ,∴1212221612,1414k x x x x k k+=-=++∵AOB ∠为锐角,∴cos 0AOB ∠>即0OA OB ⋅>, ∴12120OA OB x x y y ⋅=>+又()()()2121212122224y y kx kx k x x k x x =++=+++22222212322044141414k k k k k k=-+=-++++ ∴2221220401414k OA OB k k⋅=-+>++,解得24k <, ∴22k -<<,② 故由①、②得22k -<<-或22k <<. 【点睛】关键点点睛:本题考查了直线与椭圆的位置关系,解题的关键是利用数量积()2121384PF PF x ⋅=-,确定[]2,2x ∈-,并且根据题意得出0OA OB ⋅>,考查了运算求解能力.24.(1)22163x y +=;(2)12.【分析】(1)椭圆C 过点()2,1A ,()2,1B --,在点A 处的切线方程为3y x =-+,可用待定系数法求椭圆的标准方程;(2)用设而不求法把p ,q 表示出来,整理化简即可. 【详解】(1)由题意知椭圆C 在()2,1A 处的切线方程为2221x y a b +=也为3y x =-+,∴222113a a b b ⎧=⎪==⇒⎨=⎪⎩椭圆C 的方程为22163x y +=.(2)直线l 的方程为()3y k x =-,()11,M x y ,()22,N x y()()2222232696026y k x x k x x x y ⎧=-⇒+-+-=⎨+=⎩ ()222212121860k xk x k +-+-=直线AM 方程为:()111212y y x x -=-+-,令()1151312y x p x --=-⇒=+- 直线AN 方程为()221212y y x x -=-+-,令()2251312y x q x --=-⇒=+- ∴()()1212121231311152522222k x k x y y p q x x x x ⎡⎤----⎛⎫--+=-++=-++⎢⎥⎪----⎝⎭⎣⎦()()()()()121212122121452105122222k x k k x k x x k k x x x x ⎡⎤------+-=-++=-++⋅+⎢⎥----⎣⎦()()()222222221241210512186244121244105122210512212k k k k k k k kk k k k k k -+=-++⋅+--+++-=-++⋅+-=-++⋅+=.即12p q +=.【点睛】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.25.(1)22143x y+=;(2)POC PODS S⋅△△的最大值为3,此时P点坐标为(0,和(.【分析】(1)由面积得bc=,,a b c,得椭圆方程;(2)设()00,A x y,则()00,B x y-,不妨设y>,设()11,P x y,写出直线,PA PB方程,求得,C D两点的横坐标,计算C Dx x⋅,注意点,A P是椭圆上的点由此可得4C Dx x⋅=为常数,这样可计算出POC PODS S⋅△△=2Py,最大值易得.【详解】解:(1)由12ca=,2a c=,得b=,又12122MF FS c b=⨯⨯=△所以1c=,2a=,b=所以椭圆C的方程为22143x y+=(2)设()00,A x y,则()00,B x y-,不妨设y>,设()11,P x y则直线PA的方程为:()011101y yy y x xx x--=--,令y=,得100101Cx y x yxy y-=-,同理100101Dx y x yxy y+=+,所以222210012201C Dx y x yx xy y-⋅=-,又点A与点P均在椭圆上,故220413yx⎛⎫=-⎪⎝⎭,2211413yx⎛⎫=-⎪⎝⎭,得()222212201012222010141414334C Dyyy yy yx xy y y y⎛⎫⎛⎫---⎪⎪-⎝⎭⎝⎭⋅===--,所以4C DOC CD x x⋅=⋅=为定值,因为221114224POC POD P p p pS S OC y OD y y y⋅=⋅⋅⋅=⨯⨯=△△由P为椭圆上的一点,所以要使POC PODS S⋅△△最大,只要2py最大而2py最大为3,所以POC POD S S ⋅△△的最大值为3,此时P 点坐标为(0,和(. 【点睛】关键点点睛:本题考查由离心率求椭圆方程,考查椭圆中的最值问题,解题方法是解析几何的基本方程:设点,A P 坐标,:求直线方程,求交点坐标,计算面积之积,得出结论:即设点,A P 坐标,求出直线,AP BP 方程,求出交点,C D 的坐标(横坐标,纵坐标为0),而2111224POC POD P p C D p S S OC y OD y x x y ⋅=⋅⋅⋅=⨯⋅⨯△△,再计算CD x x ⋅可得最大值时P 点位置.26.(1)22143x y +=;(2)证明见解析.【分析】(1)根据椭圆离心率和椭圆的性质可知b =,再根据PQ x ⊥轴时,APQ 的面积为 92,由面积公式可知()212922b ac a +⋅=,由此即可求出椭圆方程; (2)设直线PQ 的方程为1x my =+,联立椭圆方程,设1122(,),(,)P x y Q x y ,由韦达定理,可知 12122269,3434m y y y y m m +=-=-++,将直线AP 的方程()112+2y y x x =+与直线 BQ 的方程()2222y y x x =--联立,利用韦达定理,化简计算,即可证明结果. 【详解】 解:(1)由题意知12c a =,所以2a c =,又222a b c =+,所以b =当PQ x ⊥轴时,APQ 的面积为92, 所以()212922b ac a +⋅=解得21,c = 所以224,3a b ==,所以椭圆C 的标准方程为22143x y +=.(2)由(1)知()1,0F ,设直线PQ 的方程为 1x my =+,与椭圆22143x y +=联立,得 ()2234690m y my ++-=.显然0∆>恒成立. 设1122(,),(,)P x y Q x y ,。
(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学选修1-1第二章测试题一、选择题1.椭圆1422=+y x 的离心率为 ( ) A .21 B .23 C . ±21 D .±232. 如果椭圆22110036x y +=上一点P 到焦点F 1的距离为6,则点P 到另一个焦点F 2的距离为( ) A . 10 B . 6 C . 12 D . 143.双曲线19422=-y x 的渐近线方程是 ( ) A .x y 23±= B .x y 32±= C .x y 49±= D .x y 94±= 4. 在同一坐标系中,方程a 2x 2+b 2y 2=1与ax +b y 2=0(a >b >0)的曲线大致是( )5. 方程11422=-+-t y t x 表示的曲线为C,给出下面四个命题,其中正确命题的个数是( ) ①若曲线C 为椭圆,则1<t<4 ②若曲线C 为双曲线,则t<1或t>4 ③曲线C 不可能是圆 ④若曲线C 表示焦点在x 轴上的椭圆,则1<t<23 .2 C6. 3k >是方程22131x y k k +=--表示双曲线的( )条件。
A.充分但不必要 B.充要 C.必要但不充分 D.既不充分也不必要 7.抛物线24(0)y ax a =<的焦点坐标是( ) A.1(,0)4a B.1(0,)16a C. 1(0,)16a - D. 1(,0)16a8.过点(0,2)与抛物线28y x =只有一个公共点的直线有( ) 条 条 条 D.无数多条9.设12,F F 为双曲线2214x y -=的两个焦点,点P 在双曲线上,且满足120PF PF ⋅=,则12F PF ∆的面积是( ) 2310.已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为31,则椭圆的方程是( ) A.1442x +1282y =1 B.362x +202y =1 C.322x +362y =1 D.362x +322y =1 11.双曲线22a x -22by =1的两条渐近线互相垂直,那么它的离心率为( )B.3C.2D.23 12.动圆C 经过定点F(0,2)且与直线y+2=0相切,则动圆的圆心C 的轨迹方程是( )=8y=8x =2=213.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为 ( ) A .191622=-x y B .191622=-y x C .116922=-x y D .116922=-y x 14. 若椭圆22221(0)x y a b a b +=>>的离心率是32,则双曲线22221x y a b-=的离心率是( )A .54B .5C .32D .515.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .14B .12C . 2D .416. 若双曲线1922=-myx 的渐近线l 方程为x y 35±=,则双曲线焦点F 到渐近线l 的距离为 ( ) A .2B .14C .5D .2517.“ab <0”是“方程ax 2+by 2=c 表示双曲线”的 ( )(A )必要不充分条件 (B )充分不必要条件 (C )充要条件 (D )非充分非必要条件 ,F 2是定点,|F 1F 2|=7,动点M 满足|MF 1|+|MF 2|=7,则M 的轨迹是( ) (A )椭圆 (B )直线 (C )线段 (D )圆19.椭圆2x 2+3y 2=6的长轴长是( )(A(B(C)(D)20.已知抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28y B .y 2=28x C .y 2=-28x D .x 2=28y21.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )+y 24=1 +y 23=1 +y 22=1 +y 23=122.双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m >12B .m ≥1C .m >1D .m >223.已知双曲线222x y 1a 0a-=(>)的右焦点与抛物线y 2=8x 的焦点重合,则此双曲线的渐近线方程是( )(A )y=(B )y=(C)y=(D )y=24.设椭圆2222x y 1m n +=、双曲线2222x y 1m n-=、抛物线y 2=2(m+n )x (其中m >n >0)的离心率分别为e 1,e 2,e 3,则( )(A )e 1e 2>e 3 (B )e 1e 2<e 3 (C )e 1e 2=e 3 (D )e 1e 2与e 3大小不确定 25.抛物线y=-x 2上的点到直线4x+3y-8=0的距离的最小值是( )(A )43 (B )75 (C )85(D )3 26.设k <3,k ≠0,则二次曲线22x y 13k k -=-与22x y 152+=必有( ) (A)不同的顶点 (B)不同的准线 (C)相同的焦点 (D)相同的离心率27.设双曲线的—个焦点为F ,虚轴的—个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) (A(B (C )12 (D )12+ 28.椭圆x 225+y 29=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是( )A .(5,0)或(-5,0)B .(52,332)或(52,-332)C .(0,3)或(0,-3)D .(532,32)或(-532,32) 29.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x的准线上,则双曲线的方程为( )-y 2108=1 -y 227=1 -y 236=1 -y 29=130.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)31.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上点M (m ,-2)到焦点的距离为4,则m 的值为( ) A .4或-4 B .-2 C .4 D .2或-232.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( ) +y 2=1 +y 22=1 +y 23=1 +y 24=133.椭圆x 2a 2+y 2b2=1(a >b >0)上任意一点到两焦点的距离分别为d 1,d 2,焦距为2c ,若d 1,2c ,d 2成等差数列,则椭圆的离心率为( )34.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )A .x 2=y -12B .x 2=2y -116C .x 2=2y -1D .x 2=2y -235.已知双曲线222x y 1a 2a 2-=(>)的两条渐近线的夹角为3π,则双曲线的离心率为( )(A )233 (B )263(C )3 (D )2 二、填空1.过点P(-2, -4)的抛物线的标准方程为2、已知直线x -y =2与抛物线y 2=4x 交于A 、B 两点,那么线段AB 的中点坐标是 3、在抛物线y=x 2上的点___________处的切线倾斜角为4π 4.椭圆x 2+4y 2=16被直线y =x +1截得的弦长为 .5.若双曲线x 24-y 2b 2=1(b >0)的渐近线方程为y =±12x ,则b 等于________.6.若中心在坐标原点,对称轴为坐标轴的椭圆经过点(4,0),离心率为32,则椭圆的标准方程为________.7.设F 1和F 2是双曲线x24-y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积为________.8.过双曲线C :x2a2-y 2b2=1(a >0,b >0)的一个焦点作圆x 2+y 2=a 2的两条切线,切点分别为A ,B .若∠AOB =120°(O 是坐标原点),则双曲线C 的离心率为________.9.以抛物线2y 83x =的焦点F 为右焦点,且两条渐近线是x 3y=0的双曲线方程为______. 三、解答题1.(10分)已知抛物线y 2=6x ,过点P (4,1)引一条弦P 1P 2使它恰好被点P 平分,求这条弦所在的直线方程及|P 1P 2|.2.(12分)双曲线与椭圆有共同的焦点F 1(0,-5),F 2(0,5),点P (3,4)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的标准方程.3.已知双曲线的中心在原点,焦点为F 1()022,-,F 2(0,22),且离心率324e =曲线的标准方程.4.设21,F F 分别为椭圆C :)0(12222>>=+b a by a x 的左右两个焦点,椭圆上的点A (1,23)到21,F F 两点的距离之和等于4,求:①写出椭圆C 的方程和焦点坐标②过1F 且倾斜角为30°的直线,交椭圆于A,B 两点,求△AB 2F 的周长5.已知抛物线顶点在原点,焦点在y 轴上,抛物线上一点M (a , 4)到焦点的距离等于5,求抛物线的方程和a 值。
6.已知定点A (1,0),定直线l : x=5,动点M (x,y )(1)若M 到点A 的距离与M 到直线l 的距离之比为55,试求M 的轨迹曲线C 1的方程;(2)若曲线C 2是以C 1的焦点为顶点,且以C 1的顶点为焦点,试求曲线C 2的方程;。