飞机飞行控制课件(严选)

合集下载

《飞机飞行控制》课件

《飞机飞行控制》课件

02
人机界面必须设计得简单、直观、易操作,使飞行员能够快速
地获取飞行状态信息并发出控制指令。
人机界面也是飞行员紧急情况下进行人工操纵的通道,必须保
03
证在任何情况下都能迅速有效地发挥作用。
飞行控制系统的基
03
本原理
飞行动力学基础
飞行动力学是研究飞 行器在气动力作用下 的运动规律的科学。
飞行动力学主要研究 飞行器的飞行性能, 包括稳定性和操纵性 。
飞行控制系统硬件
飞行控制系统硬件是实现飞行控制功能的物理设备,包括传感器、控制 器、执行器等。
传感器用于检测飞机的状态参数,如姿态、速度、高度和角速度等;控 制器用于处理传感器信号并计算出控制指令;执行器用于接收控制指令
并操纵飞行控制面。
飞行控制系统硬件必须具有高可靠性和高精度性,以确保飞行的安全和 稳定。
调查结论
调查报告认为,波音公司在MCAS的设计和认证过程中存在严重失误,
同时美国联邦航空局(FAA)也未能有效监管。
波音737 MAX的飞行控制系统简介
飞行控制系统
波音737 MAX的飞行控制系统包括自动驾驶系统、飞行指引系统、机动特性增强系统等 。
MCAS系统
MCAS系统是一种自动防失速系统,旨在防止飞机机翼上的失速。当传感器检测到机翼上 的气流分离时,MCAS会自动调整机头的角度以减少机翼的失速。
它以空气动力学为基 础,研究飞行器在空 气中运动的力学规律 及其应用。
飞行控制系统的工作原理
飞行控制系
它通过接收飞行员输入的指 令,经过处理后发送控制指 令给执行机构,使飞行器按 照预定的轨迹和姿态飞行。
飞行控制系统通常由传感器、 控制器和执行机构三部分组成
飞行控制系统的历史与发展

自动飞行控制系统PPT课件

自动飞行控制系统PPT课件

远前方的大。若迎面气流速度逐渐增大,则翼面上流速的最大值也会增大,该处的温度则要降低,因而音
速也降低。当迎面气流的速度达到某一值时,翼面上最大速度处的流速等于当地音速,此时我们把远前方的
迎面气流速度 与远前方的空气音速
M

cr
比 ,定义为该机的临界马赫数

a
18
V
第18页/共92页
Mcr
第二节 空气动力学的基本知识
路;其作用是稳定与控制飞机姿态。 • 控制(制导)回路:由稳定回路加上飞机轨迹反馈元件、放大计算装置组成飞机轨迹自动驾驶仪,并与飞
机形成的回路;其作用是稳定与控制飞机轨迹。
8
第8页/共92页
第一章 飞行原理
• 飞机控制系统的核心问题是研究由控制系统和飞行器组成的闭合回路的静、动态性能,为此必须建立控制 系统和飞行器的数学模型,其形式可以是微分方程、传递函数或状态空间表达式等。
4
第4页/共92页
第一节 飞行器的自动飞行
二、控制面 1、控制飞行器的目的是改变飞行器的姿态或空间位置,并在受干扰情况下保持飞行器的
姿态或位置。因而必须对飞行器施加力和(或)力矩,飞行器则按牛顿力学定律产生运动。 2、作用于飞行器而与控制有关的力和力矩主要是偏转控制面(即操纵面)产生的空气动
力和力矩。一般飞机有三个控制面:升降舵、方向舵和副翼。 3、由于航空技术的发展,仅靠改善飞机的气动布局和发动机的性能难以达到对飞机性能
V a
19
Vmax a
第19页/共92页
第二节 空气动力学的基本知识
• 飞机飞行速度的范围划分如下:
• 飞行马赫数 为飞行速度与远前方空气音速之比,
时为低速飞行;
为亚音速飞行;

飞机飞行控制课件

飞机飞行控制课件

特点:智能化、自动化、高 精度、高可靠性
应用场景:无人机在军事、 农业、物流、救援等领域的 应用
发展趋势:智能化、网络化、 小型化、低成本化
航天飞行控制系统
航天飞行控制系 统是飞机飞行控 制系统的重要组 成部分
航天飞行控制系 统主要用于控制 航天器的姿态、 轨道和速度
航天飞行控制系 统可以保证航天 器在太空中的稳 定飞行和精确定 位
计算机技术
飞行控制计算机: 负责处理飞行控 制指令和传感器 数据
飞行控制算法: 实现飞行控制功 能,如姿态控制、 导航控制等
传感器技术:提供 飞行状态和外部环 境信息,如加速度 计、陀螺仪等
通信技术:实现飞 行控制计算机与传 感器、执行器之间 的数据传输和通信
导航技术
惯性导航系统(INS):利用陀 螺仪和加速度计等传感器测量飞 机的加速度和角速度,计算飞机 的位置和姿态。
法规限制:技术创新需要遵守相关法规 和标准,确保产品的合法性和安全性
合作与交流:加强与行业内外的合作 与交流,共同应对技术创新的挑战和 应对策略
安全保障的挑战和应对策略
挑战:飞机飞行控制系统的安全性要求 越来越高
应对策略:加强飞机飞行控制系统的测 试和验证,确保系统的稳定性和可靠性
应对策略:加强飞机飞行控制系统的安 全性设计,提高系统的可靠性和稳定性
早期的飞行控制系统20世纪源自,飞机开始使用 机械式飞行控制系统,如操 纵杆、舵面等
20世纪30年代,飞机开始 使用液压式飞行控制系统,
提高了控制精度和稳定性
19世纪末,莱特兄弟发明 了飞机,开启了飞行控制系 统的发展历程
20世纪50年代,飞机开始 使用电动式飞行控制系统,
实现了自动化控制
现代的飞行控制系统

《飞行操纵系统》课件

《飞行操纵系统》课件

THANKS
感谢观看
飞行员通过Байду номын сангаас纵杆、脚蹬等输入装置 ,将控制指令传递给飞行操纵系统, 以改变飞机的飞行姿态和轨迹。
它包括主操纵系统和辅助操纵系统, 主操纵系统包括升降舵、方向舵和副 翼,辅助操纵系统包括襟翼、缝翼和 起落架收放机构等。
飞行操纵系统的动力学基础
飞行操纵系统的动力学基础包 括空气动力学和飞行力学。
空气动力学是研究气体流动和 物体在气体中运动的科学,它 为飞行操纵系统的设计和性能 提供了理论基础。
分类
根据飞行器类型和设计需求的不同,飞行操纵系统有多种分类方式。例如,按照传力介质的不同,可以分为机械 式操纵系统、液压式操纵系统和电气式操纵系统等;按照控制方式的不同,可以分为助力操纵系统和主动控制系 统等。
发展历程与趋势
发展历程
飞行操纵系统的发展经历了多个阶段,从早期的机械操纵系统到现代的电传操纵系统和 主动控制系统。随着科技的不断进步,飞行操纵系统的性能和安全性得到了极大的提升
权限管理与安全认证
限制飞行员对系统的操作权限,防止误操作或 恶意干扰。
自适应容错控制
在系统发生故障时,自动调整控制策略,降低故障对飞行安全的影响。
05
飞行操纵系统的应用与案例分析
飞行操纵系统在无人机中的应用
1 2 3
无人机飞行操纵系统概述
无人机飞行操纵系统是无人机控制的重要组成部 分,负责无人机的起飞、巡航、降落等操作。
飞行操纵系统的传感器
01
02
03
04
角位移传感器
检测飞行员的操纵角度,转换 为电信号。
力矩传感器
检测飞行员施加在操纵杆上的 力矩,转换为电信号。
侧杆传感器

飞行操纵ppt课件

飞行操纵ppt课件
传动杆 摇臂 导向滑轮
❖ 软式传动机构
钢索 滑轮 扇型轮/扇型摇臂 松紧螺套 钢索张力补偿器
传动机构特点比较
类型 优点
软式 构造简单
传动 尺寸较小
机构
重量较轻 比较容易绕过机内设备
硬式 刚度较大
传动
铰接点用滚珠轴承减小摩 擦力,并消除间隙
机构 具有较佳的操纵灵敏度
缺点
刚度较小 弹性间隙 操纵灵敏度差 钢索在滑轮处容易磨损
构造复杂 重量加大 难于“绕”过机内设备 易与发动机发生共振
混合 兼有硬式和软式的优点和缺点
钢索
只承受拉力,不能承受压力 用两根钢索构成回路,以保证舵面能在两
个相反的方向偏转
钢索构造和规格
❖ 规格型号

7×7
股数

7×19
钢丝数
钢索构造和规格
❖ 类型
碳钢、不锈钢
❖ 尺寸
1/16到3/8英寸 名义直径相同的钢索,股数越多,它的柔性越好;
❖ 变松将发生弹性间隙,过 紧将产生附加摩擦
❖ 钢索张力补偿器的功用是 保持钢索的正确张力
1.传动杆
硬式传动机构中的操纵力由传动杆传递,传动杆 可承受拉力和压力
传动杆的刚度较大 可调接头
❖调整接头端部有检查小孔,把传动杆调长时,接头螺 杆的末端不应超过小孔的位置
失效形式——失稳
2. 摇臂
❖材料:硬铝 ❖特点:在连接处装有轴承 ❖分类:单摇臂/双摇臂/复摇臂
方向舵操纵钢索
脚蹬
脚蹬位置调整
手操纵机构与脚操纵机构的匹配
驾驶杆
驾驶盘
平 平放式脚蹬为了取得较大的
放 操纵力臂,两脚蹬之间距离 式 较大
脚 蹬
与左右活动范围较大的驾驶 杆配合使用

飞机飞行控制课件

飞机飞行控制课件

添加标题
添加标题
控制过程:通过传感器获取数据, 计算控制量,输出到执行机构,实 现对飞机的控制
飞机飞行控制系统的硬件组成
飞行控制系统的主要硬件设备
飞行控制计算机:负责处 理飞行控制指令和飞行数 据
传感器:包括加速度计、 陀螺仪、高度计等,用于 测量飞机的姿态、速度、 高度等参数
执行机构:包括舵机、电 动机、液压泵等,用于执 行飞行控制指令
飞行控制系统的功能
控制飞机的飞行姿态和速度
确保飞机的安全性和舒适性
添加标题
添加标题
保持飞机的稳定性和操纵性
添加标题
添加标题
提高飞机的飞行效率和性能
飞机飞行控制系统的工作原理
飞行控制系统的基本原理
飞机飞行控制系统主要由传感 器、执行器和控制器组成
传感器负责收集飞机的各种飞 行参数,如速度、高度、姿态 等
环境适应性:设计 适应各种恶劣环境 的硬件,如高温、 低温、振动等
维护与升级:定期 维护和升级硬件, 确保系统始终处于 最佳工作状态
飞机飞行控制系统的软件设计
飞行控制系统软件的功能和特点
飞行控制系统软 件是飞机飞行控 制的核心部分, 负责控制飞机的 飞行姿态、速度 和高度等参数。
飞行控制系统软 件具有高度的可 靠性和稳定性, 能够保证飞机在 各种飞行条件下 的安全飞行。
通信设备:包括无线电、 卫星通信等,用于传输飞 行控制指令和飞行数据
显示设备:包括显示器、 指示灯等,用于显示飞行 状态电力支持
飞行控制系统硬件的连接方式
传感器:用于检测 飞机的飞行状态和 参数
计算机:用于处理 传感器数据,生成 控制指令
飞行控制系统包括自动驾驶仪、飞行控制计算机、传感器、执行机构等 部分。 飞行控制系统的主要功能包括姿态控制、航向控制、高度控制、速度控 制等。 飞行控制系统是飞机安全飞行的重要保障,也是现代飞机的重要标志之 一。

飞机飞行操纵系统课件


01 02
飞行控制系统计算机功能
飞行控制系统计算机整飞行操纵系统核心,负责接收自传感器飞行员输 入信号,根据预设控制算法计算出控制指令,驱动执行机构完成飞机操 纵。
计算机硬件组成
飞行控制系统计算机由高性能处理器、存储器、输入输出接口等组成, 确保快速、准确处理各种信息指令。
03
软件与算法ห้องสมุดไป่ตู้
飞行控制系统计算机运行着各种软件算法,如控制律设计、传感器融合
导航与制导功能
01
自动导航
接收面导航台信号,自动计算飞 机位置航向,引导飞机沿着预定 航路飞行。
02
雷达与卫星导航
03
任务规划与制导
利雷达卫星信号,提供精确飞机 位置、速度时间信息,支持飞机 自动着陆等功能。
根据飞行任务求,规划飞行轨迹 ,引导飞机按预定路线执行任务 。
飞机状态监测与故障诊断
传感器数据采集
飞机飞行操纵系统工作原理
飞行员通过驾驶舱内操纵器件(如驾驶杆、脚蹬等)发出操作指令,指令通过传动 装置传递给控制机构(如舵机、调整片驱动机构等)。
控制机构进一步将指令转换相应机械或液压动作,驱动执行机构(如升降舵、副翼 、方向舵等)运动。
执行机构根据控制机构动作产生相应力矩位移,改变飞机翼面形状舵面偏转角度, 进而影响空气动力力矩,实现飞机操纵。
法规与标准
未飞行操纵系统需符合更加严格法规标准求,确保飞行安全性可靠性。也需制定完善相 关法规标准体系,适应技术发展变化。
传感器与测量装置检测飞机各种参数,如姿态、速度、高 度等,并将些参数转换可处理信号,供飞行控制系统使。
常见传感器类型
包括陀螺仪、加速度计、空速管、高度表等,它能够提供 飞机姿态、速度、位置等关键信息。

飞机结构与系统(飞行操纵系统)课件

理方案,提高飞行经济性安全性。
04
飞行操纵系统维护与检修
飞行操纵系统日常维护
01
02
03
每日检查
检查飞行操纵系统外观, 确保没明显损坏或异常情 况。
清洁润滑
飞行操纵系统进行清洁润 滑,保持其良好工作状态 。
校准
飞行操纵系统进行校准, 确保其准确性可靠性。
飞行操纵系统定期检修
定期检查
按照规定周期飞行操纵系 统进行检查,包括内部结 构元件。
飞行管理系统
飞行管理系统现代飞行操纵系统核心组 成部它集成导航、气象、通讯等多种功 能,能够飞行员提供全面飞行信息支持

飞行管理系统通过接收处理自各种传感 器数据,飞行员提供实时飞行计划、航 向、速度、高度等信息,帮助飞行员更
好掌握飞行状态决策。
飞行管理系统还可根据气象条件飞行计 划,飞行员提供最佳飞行轨迹发动机管
安全标准与规范
参考相关安全标准规范,如国际民航组织(ICAO)美国联邦航空局(FAA)等发布相关指南标准,飞行操纵系统进 行安全性评估。些标准规范评估提供指导参考框架。
安全改进措施
根据安全性评估结果,制定并实施相应安全改进措施,提高飞行操纵系统安全性可靠性。些措施可能包 括硬件升级、软件修复、操作程序改进等各方面。
飞行操纵系统历史与发展
历史
早期飞机采简单机械式操纵系统,通过钢索、连杆等机械部件实现飞行员翼面舵面直接控制。随着技术发展,液 压式操纵系统电传式操纵系统逐渐取代机械式操纵系统。电传式操纵系统目前最先进飞行操纵系统,具更高可靠 性灵活性。
发展
未飞行操纵系统将朝着更加智能化、自主化协同化方向发展。智能化能够提高系统自主决策能力容错能力;自主 化能够减轻飞行员工作负担提高飞行安全性;协同化则能够实现飞行员与无机之间效协作,提高整体作战效能。

飞行控制系统典型飞行控制系统工作原理课件PPT


L
e
*
me
mV I 不太大时,修正高度过程中,俯仰运动也不会剧烈,所以速度相对变化
飞机上采用助力器,飞机超音速飞行时,舵机控制不受铰链力矩的影响。
也不会太大y,为此可用短周期运动方程。
❖ 为便于操纵飞机,有必要增加阻尼器。
飞机操纵机构
升降舵偏角e:平尾后缘下偏为正 e〉0 产生纵向低头力矩M<0 副翼偏转角a:右翼后缘下偏(右下左上)为正 a〉0 产生滚转力矩L<0 方向舵偏转角r:方向舵后缘向左偏为正 r〉0 产生偏航力矩N<0 油门杆位置T: 向前推杆为正 T〉0 加大油门、加大推力
飞机结构特点及受空气动力影响情况
为满足大包线,及良好的飞行性能要求,飞机设 ❖ 再由力、力矩平衡:
起削弱 作用, 向上转变慢,当
时,纵轴不再转q=0,动态过程结束。
计时采用薄的翼型,小的展弦比和具有上反效应 平飞迎角
这个等级是按能见度条件分类的,(包括垂直方向上指允许的最小云雾底部的高度;
阻尼器由角速率陀螺,放大器和舵回路
L K
)
其中:L K K K Ke 为角速率到舵偏角传动比
❖ 简化闭环传函:
q(s) pe (s)
K j KeKd (T S 1)
Td2eS 2 2deTdeS 1
式中:
Kd
K 1 L K
Tde
Td 1 L K
de
d
( K T L ) 2Td
1 L K
❖ 适当选择 L 可增大 de ,即增大了阻尼,
❖ 保持升降速度 H 0 ―必使飞机沿法线方
向力平衡,即 L cos G mg
❖ 保证飞机在水平面内盘旋―向心力等于惯
性力 L sin mu

《飞机飞行控制》课件


导航控制
飞行控制系统集成了先进的导航 技术,如惯性导航、卫星导航等 ,能够实时确定飞机位置和航向 ,确保飞机沿着预定航线飞行。
防碰撞警告系统
飞行控制系统通过与空中交通管 制系统的交互,实时监测周围空 域的飞机,当存在碰撞风险时, 及时发出警告,避免空中交通事
故的发生。
飞行控制系统在军事航空领域的应用
飞行控制系统的发展趋势与未来展望
智能化控制
随着人工智能技术的发展,未来的飞行控制系统将更加智能化,能 够自适应地处理各种复杂情况,提高飞行的安全性与效率。
集成化与模块化设计
为了降低成本和提高可靠性,未来的飞行控制系统将采用集成化与 模块化设计,便于维护和升级。
自主可控技术
随着航空工业的发展,未来的飞行控制系统将更加注重自主可控技术 的研发和应用,以提高我国航空工业的竞争力。
融合技术
传感器融合技术是指将多个传感器的信息进行综合处理,以 获得更加准确和可靠的数据。在飞行控制系统中,传感器融 合技术能够提高飞机的导航精度和稳定性。
舵机与舵面
舵机
舵机是飞行控制系统中的执行机构, 能够根据控制系统的指令,精确地调 整舵面的角度,从而控制飞机的姿态 和轨迹。
舵面
舵面是飞机机翼和尾翼上的可动翼面 ,包括副翼、升降舵和方向舵等。通 过调整舵面的角度,可以改变飞机的 气动性能,实现飞机的姿态和轨迹控 制。
飞机飞行控制系统
03
的控制算法
线性控制算法
PID控制算法
通过比例、积分和微分三个环节 ,对飞机飞行过程中的误差进行 调节,以减小误差。
线性回归算法
通过对飞机飞行数据的线性回归 分析,预测飞行状态,为控制算 法提供参考。
非线性控制算法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根变化情况
若特征方程
5
Imag Axis
(S)=D(S)+kN(S)=0
当k=0时,D(S)=0,对应 0 系统极点
当k=时,N(S)=0,对应
系统零点
-5
Matlab:rlocus,rltool
-10
-1.4
-1.2
技术类
-1
-0.8
-0.6
-0.4
-0.2
Real Axis
0
控制增稳系统 自动驾驶仪
9
典型电传飞控系统
技术类
10
第四代战斗机
布局:隐身气动一体化设计
武器:先进格斗导弹、超远程空 空导弹、精确制导
火飞推一体化、主动控制技 术……
作战方式:?
技术类
11
驾驶员 vs 飞行控制系统
驾驶员的缺点
有限的反应速度 有限的感知能力 会紧张、疲劳
飞机飞行控制
技术类
1
绪论
技术类
2
飞行控制的历史
1891年,海诺姆.
马克西姆设计并制 造的飞机已经装有 用于改善纵向稳定 性的控制系统。
早期的飞机基本上
没有固有稳定性, 靠飞行员的能力来 保证飞机的稳定。
技术类
3
飞行控制的历史
后来设计的飞机
一般具有一定的 固有稳定性,但 没有保证。
1920年以后,飞
助力器 马赫数配平机构 增稳器 阻尼器 电液系统
7
典型助力器及力臂调节器
技术类
8
第三代战斗机
技术类
布局:翼身融合、边条 放宽静稳定性
武器:近距、超视距空 空导弹
作战方式:格斗、超视 距空战
模拟式和数字式电传控 制系统(FBW,fly by wire)。按其作用可以 分为两种:
0.2
27
根轨迹分析
每一对共轭复根表示一
个振荡模态
每一个实跟对应着一个
非周期(单调)模态
虚轴上的特征根, =0,
等幅振荡
左半平面的根对应着收
敛的模态,右半平面发 散
技术类
Im Re
Im Re
28
根轨迹分析
典型二阶环节 S 2 2S 2 0 特征根
j 1 2
飞机+控制系统特性的分析方法; 人机系统的特性分析;
选择飞行控制系统的控制律的基本原理:
常见控制系统类型及其分析、选择;
技术类
13
本课程的地位
以自动控制
原理、飞行 动力学为基 础的一门提 高课程; 飞机本体
从事飞行器
设计、飞行 动力学工作 的基础之一。
需求分析,任务分解 飞行控制 武器系统
采用反馈控制不改变传
递函数的分子多项式 N(S),仅改变分母多项 式(特征方程)
从物理角度讲,反馈控
制改变了模态特性,而 对模态比没有影响。就 是说,加入反馈后飞机 各运动参数之间的幅值 比和相位差不变。
技术类
26
根轨迹法
Root Locus
在复平面内判断反馈系
数变化引起的闭环特征 10a源自)G sin
a>0
阻尼
M Iy
, (Maa )
q
Mq
频率
技术类
短周期
22
Lbb<0
b>0
荷兰滚 频率
Nbb>0
Ybb<0
荷兰滚阻尼
p < 0 p<0
滚转 收敛
Lpp>0
r > 0 r>0
荷兰滚阻尼
Nrr<0
荷兰滚模态
b<0
f<0 Npp>0
y>0
Lrr>0 p>0
螺旋模态
b>0
若 G(S) N(S)
D(S)

X(S)
Y(S) G(S)
_
k
W (S) N(S) D(S) N(S)
对于反馈系数为k的负反馈
W (S)
N (S )
D(S) k N(S)
技术类
25
反馈控制的特点
G(S) N(S) D(S)
W (S)
N (S )
D(S) k N(S)
飞机综合评估
发动机……
技术类
14
内容
引论 飞行控制系统概述(自学) 飞机的闭环动态特性 人机闭环系统分析 各类飞行控制系统的分析
技术类
15
考核
课堂、作业:40% 考试(闭卷):60%
技术类
16
背景知识
技术类
17
控制过程的描述
飞行控制(驾驶员操纵飞机)过程的物理描述
开环操纵
技术类
Gsinf>0
f>0
23
飞机的振荡模态
振荡模态 弹簧振子
短周期 长周期 荷兰滚
频率的决定因素 阻尼的决定因素
弹簧系数
阻尼系数
纵向静稳定导数
Ma
以Zu为主
航向静稳定性导数
Nb
纵向阻尼导数
Mq
以Xu为主
偏航阻尼导数等
Nr、Yb
技术类
24
闭环系统
单位负反馈(k=1)的传递函数
W (S) G(S) 1 G(S)
驾驶员的优点
学习能力 应付意外的能力
飞行控制系统:在飞
行过程中,利用自动 控制系统,能够对飞 行器构形、飞行姿态 和运动参数实施控制 的系统。
技术类
12
本课程的目的
飞机引入飞行控制系统的飞行力学机理:
飞行控制系统如何改变飞机的模态特性; 不同的反馈改变不同的模态特性;
飞机、飞控、驾驶员组合的动力学特性分析:
19
弹簧振子系统
Fy F k y f y m y y f y k y F( y)
mm m
y
f
k
m
F
(S2 f S k )Y(S) F(S)
mm
m
零初值拉氏变换
Y (S)
1
1
G(S)

F(S) S2
f
S k
S2 2S 2
机的稳定性靠外 形布局及重心定 位来保证。
技术类
4
第一代战斗机
多采用后掠翼布局 武器以航炮为主
作战方式以尾后攻击为

超音速
操纵系统为机械传动方

技术类
5
典型杆式操纵机构
技术类
6
第二代战斗机
技术类
三角翼、后掠翼 武器:第一代空空导弹 作战方式:视距内、尾 后攻击 M>2,H>20000m 操纵系统大量采用:
mm
k , f
m 2 mk
技术类
20
弹簧振子的振荡成因
形成振荡的因素决
f
定了系统频率
频率
弹簧的 位移扰动
恢复力
弹簧系数k
阻尼
阻尼力 阻尼系数f
x
k
m
阻碍振荡的因素决 定了系统阻尼
n
k m
, n

f 2m
技术类
21
纵向模态的物理成因
长周期
阻尼
频率
V Xuu
L G
,
(CLa
矢径为,矢径越长,频率越高
飞行员
杆位移 Fs
闭环操纵
控制系统
舵偏角 e
飞机本体
运动参数
com

杆位移
舵偏角
运动参数
飞行员
控制系统
飞机本体

Fs
e

内环
外环
测量及显示
技术类
18
传递函数
线性系统 零初始条件下拉氏变换 输出量比输入量 优点:
将时域转换成频域 将微分方程转换为代数方程
技术类
相关文档
最新文档