高考数学课时11对数和对数函数单元滚动精准测试卷文311

合集下载

高中数学-对数与对数函数测试题及答案

高中数学-对数与对数函数测试题及答案

高中数学-对数与对数函数测试题及答案高中数学-对数与对数函数测试题满分150分,时间120分钟)班级:__________ 姓名:__________ 成绩:__________ 第Ⅰ卷(选择题,共60分)一、选择题(共12小题,60分)1.对数式loga 25a)b中,实数a的取值范围是()A。

(∞,5) B。

(2,5) C。

(2,+∞) D。

(2,3)∪(3,5)2.如果lgx lga3lgb5lgc,那么()A。

x=a+3b-c B。

x=ab/33 C。

x=a+b/3-c/3 D。

x=a-b/3+c/53.设函数y=lg(x^2-5x)的定义域为M,函数y=XXX(x-5)+lgx的定义域为N,则()A。

M∪N=R B。

M=N C。

M⊊N D。

M⊆N4.已知a = log0.70.8,b = log1.10.9,c = 1.1^9,则a,b,c的大小关系是()A。

a<c<b B。

b<a<c C。

a<b<XXX<c<a5.若函数y=log2kx^2+4kx+3)的定义域为R,则k的取值范围是()A。

(3/4,2) B。

(3/4,3/2) C。

(3/4,∞) D。

(-∞,3/4]∪[2,∞)6.设a,b,c∈R,且3a= 4b= 6c,则()。

A。

a=b+c B。

b=a+c C。

c=a+b D。

a+b+c=0 7.下列函数中,在(0,2)上为增函数的是()A。

y=log1x+1) B。

y=log2x^2-1) C。

y=log21/x D。

y=log1x^2-4x+5)8.已知函数f(x)=log3x+1),若f(a)=1,则a=()A。

2 B。

1 C。

-1 D。

-29.已知loga21,则a的取值范围是()A。

(0,2/3) B。

(2/3,1) C。

(1,2) D。

(2,∞)10.函数y=34x-3)log0.5的定义域为()A。

(0,1) B。

2025年高考数学一轮复习课时作业-对数与对数函数【含解析】

2025年高考数学一轮复习课时作业-对数与对数函数【含解析】

2025年高考数学一轮复习课时作业-对数与对数函数【原卷版】(时间:45分钟分值:85分)【基础落实练】1.(5分)计算:lg4+2lg5+log28+823=()A.8B.9C.10D.12.(5分)函数f(x)=log0.5(2 -1)的定义域为()A.(12,1]B.[12,1)C.(-∞,12]D.[1,+∞)3.(5分)若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数且f(2)=1,则f(x)等于()A.log2xB.12C.lo g12x D.2x-24.(5分)设a=14log213,b=(12)0.3,则有()A.a+b>abB.a+b<abC.a+b=abD.a-b=ab5.(5分)(2023·濮阳模拟)已知a>0且a≠1,函数y=a x的图象如图所示,则函数f(x)=log a(-x+1)的部分图象大致为()6.(5分)(多选题)已知函数f(x)=|log a(x+1)|(a>1),下列说法正确的是()A.函数f(x)的图象恒过定点(0,0)B.函数f(x)在区间(0,+∞)上单调递减C.函数f(x)在区间[-12,1]上的最小值为0D.若对任意x∈[1,2],f(x)≥1恒成立,则实数a的取值范围是(1,2]7.(5分)已知lg2=a,lg3=b,用a,b表示log1815=.8.(5分)(2023·泸州模拟)若函数y=f(x)与y=5x互为反函数,则y=f(x2-2x)的单调递减区间是.9.(5分)已知f(x)=ln(x2+2x+m).若f(x)的值域为R,则实数m的取值范围是.10.(10分)已知f(x)=log a x+log a(4-x)(a>0,且a≠1),且f(2)=2.(1)求a的值及f(x)的定义域;(2)求f(x)在[1,72]上的值域.11.(10分)已知函数f(x)=(log2x)2-log2x-2.(1)若f(x)≤0,求x的取值范围;(2)当14≤x≤8时,求函数f(x)的值域.【能力提升练】12.(5分)(多选题)已知函数f(x)=ln(e2x+1)-x,则()A.f(ln2)=ln52B.f(x)是奇函数C.f(x)在(0,+∞)上单调递增D.f(x)的最小值为ln213.(5分)设实数a,b是关于x的方程|lg x|=c的两个不同实数根,且a<b<10,则abc 的取值范围是.14.(10分)已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log a(x+1)(a>0,且a≠1).(1)求函数f(x)的解析式;(2)若-1<f(1)<1,求实数a的取值范围.2025年高考数学一轮复习课时作业-对数与对数函数【解析版】(时间:45分钟分值:85分)【基础落实练】1.(5分)计算:lg4+2lg5+log28+823=()A.8B.9C.10D.1【解析】选B.因为lg4+2lg5=lg4+lg52=lg4+lg25=lg100=2,log28=log223=3, 823=(23)23=22=4,所以lg4+2lg5+log28+823=2+3+4=9.2.(5分)函数f(x)=log0.5(2 -1)的定义域为()A.(12,1]B.[12,1)C.(-∞,12]D.[1,+∞)【解析】选A.由题意,要使函数f(x)=log0.5(2 -1)有意义,则满足log0.5(2x-1)≥0,所以0<2x-1≤1,解得12<x≤1,即函数f(x)的定义域为(12,1].3.(5分)若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数且f(2)=1,则f(x)等于()A.log2xB.12C.lo g12x D.2x-2【解析】选A.函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以a=2.故f(x)=log2x.4.(5分)设a=14log213,b=(12)0.3,则有()A.a+b>abB.a+b<abC.a+b=abD.a-b=ab【解析】选A.因为a=14log213=-14log23,32<log23<2,所以-12<-14log23<-38,即-12<a<-38,b=(12)0.3>(12)1=12,所以a+b>0,ab<0,所以a+b>ab.5.(5分)(2023·濮阳模拟)已知a>0且a≠1,函数y=a x的图象如图所示,则函数f(x)=log a(-x+1)的部分图象大致为()【解析】选D.由函数y=a x的图象可判断出a>1.当a>1时,y=log a x的图象经过定点(1,0),且为增函数.因为y=log a x与y=log a(-x)的图象关于y轴对称,所以y=log a(-x)的图象经过定点(-1,0),为减函数.而f(x)=log a(-x+1)可以看作y=log a(-x)的图象向右平移1个单位长度得到的.所以f(x)=log a(-x+1)的图象经过定点(0,0),为减函数.6.(5分)(多选题)已知函数f(x)=|log a(x+1)|(a>1),下列说法正确的是()A.函数f(x)的图象恒过定点(0,0)B.函数f(x)在区间(0,+∞)上单调递减C.函数f(x)在区间[-12,1]上的最小值为0D.若对任意x∈[1,2],f(x)≥1恒成立,则实数a的取值范围是(1,2]【解析】选ACD.将(0,0)代入函数f(x)=|log a(x+1)|(a>1),成立,故A正确;当x∈(0,+∞)时,x+1∈(1,+∞),又a>1,所以f(x)=|log a(x+1)|=log a(x+1),由复合函数单调性可知,当x∈(0,+∞)时,f(x)=|log a(x+1)|=log a(x+1)单调递增,故B错误;当x∈[-12,1]时,x+1∈[12,2],所以f(x)=|log a(x+1)|≥log a1=0,故C正确;当x∈[1,2]时,f(x)=|log a(x+1)|=log a(x+1)≥1恒成立,所以由函数为增函数知log a2≥1,解得1<a≤2,故D正确.7.(5分)已知lg2=a,lg3=b,用a,b表示log1815=.【解析】log1815=lg15lg18=lg3+lg5lg2+2lg3= - +12 + .lg2+2lg3=lg3+1-lg2答案: - +12 +8.(5分)(2023·泸州模拟)若函数y=f(x)与y=5x互为反函数,则y=f(x2-2x)的单调递减区间是.【解析】因为y=f(x)与y=5x互为反函数,所以f(x)=log5x,则f(x2-2x)=log5(x2-2x).设μ=x2-2x,则f(μ)=log5μ,由x2-2x>0,解得x<0或x>2,因为f(μ)=log5μ在其定义域上单调递增,又μ=x2-2x在(-∞,0)上单调递减,在(2,+∞)上单调递增,所以y=f(x2-2x)的单调递减区间是(-∞,0).答案:(-∞,0)9.(5分)已知f(x)=ln(x2+2x+m).若f(x)的值域为R,则实数m的取值范围是.【解析】因为f(x)的值域为R,所以x2+2x+m取遍大于0的所有实数,则4-4m≥0,解得m≤1,所以实数m的取值范围是(-∞,1].答案:(-∞,1]10.(10分)已知f(x)=log a x+log a(4-x)(a>0,且a≠1),且f(2)=2.(1)求a的值及f(x)的定义域;【解析】(1)由f(2)=2得,log a2+log a(4-2)=2,解得a=2,所以f(x)=log2x+log2(4-x).由 >0,4- >0,解得0<x<4,故f(x)的定义域为(0,4).(2)求f(x)在[1,72]上的值域.【解析】(2)由(1)及条件知f(x)=log2x+log2(4-x)=log2[x(4-x)]=log2[-(x-2)2+4],设t(x)=-(x-2)2+4,x∈[1,72],则当x=2时,t(x)max=4;当x=1时,t(x)=3;当x=72时,t(x)=74,所以当x∈[1,72]时,t(x)∈[74,4],所以f(x)max=log24=2,f(x)min=log274=log27-2,所以f(x)在[1,72]上的值域为[log27-2,2].11.(10分)已知函数f(x)=(log2x)2-log2x-2.(1)若f(x)≤0,求x的取值范围;【解析】(1)令log2x=t,则y=t2-t-2,t∈R,由f(x)≤0得t2-t-2≤0,解得-1≤t≤2,所以-1≤log2x≤2,解得12≤x≤4,即x的取值范围为[12,4].(2)当14≤x≤8时,求函数f(x)的值域.【解析】(2)当14≤x≤8时,-2≤t≤3,因为y=t2-t-2,则当t=12时,有最小值-94;当t=-2或3时,有最大值4.所以函数f(x)的值域为[-94,4].【能力提升练】12.(5分)(多选题)已知函数f(x)=ln(e2x+1)-x,则()A.f(ln2)=ln52B.f(x)是奇函数C.f(x)在(0,+∞)上单调递增D.f(x)的最小值为ln2【解析】选ACD.f(ln2)=ln(e2ln2+1)-ln2=ln52,A正确;f(x)=ln(e2x+1)-x=ln(e2x+1)-ln e x=ln e2 +1e =ln(e x+e-x),所以f(-x)=ln(e x+e-x)=f(x),所以f(x)为偶函数,B错误;当x>0时,y=e x+e-x在(0,+∞)上单调递增,因此y=ln(e x+e-x)在(0,+∞)上单调递增,C正确;由于f(x)在(0,+∞)上单调递增,又f(x)为偶函数,所以f(x)在(-∞,0]上单调递减,所以f(x)的最小值为f(0)=ln2,D正确.13.(5分)设实数a,b是关于x的方程|lg x|=c的两个不同实数根,且a<b<10,则abc 的取值范围是.【解析】由题意知,在(0,10)上,函数y=|lg x|的图象和直线y=c有两个不同交点(如图),所以ab=1,0<c<lg10=1,所以abc的取值范围是(0,1).答案:(0,1)14.(10分)已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log a(x+1)(a>0,且a≠1).(1)求函数f(x)的解析式;【解析】(1)当x<0时,-x>0,由题意知f(-x)=log a(-x+1),又f(x)是定义在R上的偶函数,所以f(-x)=f(x).所以当x<0时,f(x)=log a(-x+1),所以函数f(x)的解析式为f(x)=log ( +1), ≥0,log (- +1), <0.(2)若-1<f(1)<1,求实数a的取值范围.【解析】(2)因为-1<f(1)<1,所以-1<log a2<1,所以log a1 <log a2<log a a.①当a>1时,<2,>2,解得a>2;②当0<a<1时,>2,<2,解得0<a<12.综上,实数a的取值范围为(0,12)∪(2,+∞).。

高考数学专题《对数与对数函数》习题含答案解析

高考数学专题《对数与对数函数》习题含答案解析

专题3.6 对数与对数函数1.(2021·安徽高三其他模拟(理))函数()ln ||f x x x =+的图象大致是( )A .B .C .D .【答案】D 【解析】确定函数的奇偶性,排除两个选项,再由0x >时的单调性排除一个选项,得正确选项. 【详解】易知()ln ||f x x x =+是非奇非偶函数,所以排除选项A ,C ; 当x >0时,()f x 单调递増、所以排除选项B. 故选:D .2.(2021·江西南昌市·高三三模(文))若函数()3log ,12,1x x x f x x ≥⎧=⎨<⎩.则()0f f ⎡⎤=⎣⎦( ) A .0 B .1C .2D .3【答案】A 【解析】利用函数()f x 的解析式由内到外逐层计算可得()0f f ⎡⎤⎣⎦的值.练基础()3log ,12,1x x x f x x ≥⎧=⎨<⎩,则()0021f ==,因此,()()301log 10f f f ===⎡⎤⎣⎦. 故选:A.3.(2021·浙江高三其他模拟)已知a 为正实数,则“1a >”是“32212log log a a ->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C 【解析】利用充分、必要条件的定义,即可推出“1a >”与“32212log log a a ->”的充分、必要关系.【详解】因为32212log log a a ->等价于3222log log a a >,由a 为正实数且1a >,故有32a a >,所以3222log log a a >成立;由a 为正实数,3222log log a a >且函数2log y x =是增函数,有32a a >,故()210a a ->,所以1a >成立. 故选:C .4.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( )A .B .C .D .【答案】D 【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩,所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩,当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ; 当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ; 当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .5.(2021·江苏南通市·高三三模)已知1331311log 5,,log 26a b c ⎛⎫=== ⎪⎝⎭,则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c b a >> D .c a b >>【答案】D 【解析】 由于1331log g 66lo c ==,再借助函数3log y x =的单调性与中间值1比较即可. 【详解】1331log g 66lo c ==,因为函数3log y x =在()0,∞上单调递增, 所以333131log 31log 5log 6log 6a c =<=<<=, 因为函数12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以10312112b <⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭=⎭,所以c a b >> 故选:D6.(2021·辽宁高三月考)某果农借助一平台出售水果,为了适当地给鲜杏保留空气呼吸,还会在装杏用的泡沫箱用牙签戳上几个小洞,同时还要在鲜杏中间放上冰袋,来保持泡沫箱内部的温度稳定,这样可以有效延长水果的保鲜时间.若水果失去的新鲜度h 与其采摘后时间t (小时)满足的函数关系式为t h m a =⋅.若采摘后20小时,这种杏子失去的新鲜度为10%,采摘后40小时,这种杏子失去的新鲜度为20%.在这种条件下,杏子约在多长时间后会失去一半的新鲜度( )(已知lg 20.3≈,结果取整数) A .42小时 B .53小时 C .56小时 D .67小时【答案】D 【解析】利用指数的运算得出1202a =,再利用对数的运算即可求解. 【详解】由题意可得200010m a =⋅,①400020m a =⋅,②②÷①可得202a =,解得1202a =,所以0050tm a =⋅,③③÷①可得205t a -=, 所以202025t -=,即20lg 2lg51lg 20.720t -==-=, 解得67t ≈(小时). 故选:D7.【多选题】(2021·辽宁高三月考)已知2log 3a =,34b =,22log 31c =+,则下列结论正确的是( ) A .a c < B .2ab = C .1abc a =+ D .22bc b =+【答案】BCD 【解析】先判断1a >,即可判断A ; 利用222log 3b a==判断B ;利用B 的结论判断C ;利用C 的结论判断D. 【详解】因为2log 31a =>,所以22log 3112c a a c a =+=+<⇒<,即A 不正确; 因为33222log 42log 2log 3b a====,所以2ab =,即B 正确; 由2ab =可知,21abc c a ==+,C 正确;由1abc a =+可知,2ab c ab b =+,则22bc b =+,即D 正确. 故选:BCD.8.【多选题】(2021·山东日照市·高三一模)已知113log 0x x +=,222log 0xx +=,则( ) A .2101x x <<< B .1201x xC .2112lg lg 0x x x x -<D .2112lg lg 0x x x x ->【答案】BC 【解析】根据对数函数的性质可判断AB 正误,由不等式的基本性质可判断CD 正误. 【详解】由131log 0x x =->可得101x <<,同理可得201x <<, 因为(0,1)x ∈时,恒有23log log x x <所以122231log log 0x x x x -=-<,即12x x <,故A 错误B 正确; 因为1201x x ,所以12lg lg 0x x <<,即210lg lg x x <-<-,由不等式性质可得1221lg lg x x x x -<-,即2112lg lg 0x x x x -<,故C 正确D 错误. 故选:BC9.(2021·浙江高三期末)已知2log 3a =,则4a =________. 【答案】9 【解析】把2log 3a =代入4a 可得答案. 【详解】因为2log 3a =,所以222log 3log 34429a ===.故答案为:9.10.(2021·河南高三月考(理))若41log 32a =,则39a a +=___________; 【答案】6 【解析】首先利用换底公式表示3log 2a =,再代入39a a +求值.【详解】 由条件得331log 4log 22a ==,所以3333log 2log 2log 2log 4393933246a a +=+=+=+=. 故答案为:61.(2021·浙江高三专题练习)如图,直线x t =与函数()3log f x x =和()3log 1g x x =-的图象分别交于点A ,B ,若函数()y f x =的图象上存在一点C ,使得ABC 为等边三角形,则t 的值为( )A B C D .3【答案】C 【解析】由题意得()3,log A t t ,()3,log 1B t t -,1AB =,根据等边三角形的性质求得C 点的横坐标x t =-,结合A ,B 两点的纵坐标和中点坐标公式列方程t ,解方程即可求得t 的值. 【详解】由題意()3,log A t t ,()3,log 1B t t -,1AB =. 设()3,log C x x ,因为ABC 是等边三角形, 所以点C 到直线AB 所以t x -=x t =根据中点坐标公式可得练提升33333log log 11log log log 22t t t t ⎛+-==-= ⎝⎭,所以t -=,解得t =故选:C2.(2021·安徽高三其他模拟(文))已知函数()()14,12ln 1,1xx f x x x ⎧⎛⎫-≤-⎪ ⎪=⎨⎝⎭⎪+>-⎩,若()0f f x <⎡⎤⎣⎦,则x 的取值范围为( ) A .()2,0-B .21,1e ⎛⎫-∞- ⎪⎝⎭C .212,1e ⎛⎫-- ⎪⎝⎭D .()212,11,0e ⎛⎫--⋃-⎪⎝⎭【答案】D 【解析】先由()0f f x <⎡⎤⎣⎦可得出()20f x -<<,然后再分1x ≤-、1x >-两种情况解不等式()20f x -<<,即可得解. 【详解】若()1f x ≤-,则()()1402f x f f x ⎛⎫=-<⎡⎤ ⎪⎣⎦⎝⎭,解得()2f x >-,此时,()21f x -<≤-;若()1f x >-,则()()ln 10f f x f x =+<⎡⎤⎡⎤⎣⎦⎣⎦,可得()011f x <+<,解得()10f x -<<. 综上,()20f x -<<.若1x ≤-,由()20f x -<<可得12402x ⎛⎫-<-< ⎪⎝⎭,可得1242x⎛⎫<< ⎪⎝⎭,解得21x -<<-,此时21x -<<-;若1x >-,由()20f x -<<可得()2ln 10x -<+<,可得2111x e <+<,解得2110x e -<<,此时,2110x e-<<.综上,满足()0f f x <⎡⎤⎣⎦的x 的取值范围为()212,11,0e ⎛⎫--⋃- ⎪⎝⎭. 故选:D.3.(2021·全国高三三模)已知函数()x x f x e e -=+,若()()4561log ,log 6,log 45a f b f c f ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系正确的是( )A .b a c >>B .a b c >>C .c b a >>D .c a b >>【答案】B 【解析】先判断函数的奇偶性,再利用导数判断函数的单调性,最后根据对数函数的性质,结合基本不等式、比较法进行判断即可. 【详解】 因为()()xx f x ee f x --=+=,所以()f x 为偶函数,()21x xxxe x eef e --=='-, 当0x >时,()0f x '>,函数单调递增,当0x <时,()0f x '<,函数单调递减,()()()()444561log log 5log 5,log 6,log 45a f f f b f c f ⎛⎫==-=== ⎪⎝⎭,因为lg4lg6+>故2222lg4lg6lg 24lg25lg4lg6(lg5)242+⎛⎫⎛⎫⋅<=<= ⎪ ⎪⎝⎭⎝⎭245lg5lg6lg 5lg4lg6log 5log 60lg4lg5lg4lg5-⋅-=-=>⋅所以456log 5log 61log 40>>>>,则.a b c >> 故选:B.4.【多选题】(2021·辽宁高三月考)若1a b >>,则( ) A .log 3log 3a b <B .33a b <C .11log ()log 21ab ab a b+≥-D .11+11a b <+ 【答案】ACD 【解析】由已知,A 选项,借助对数换底公式及对数函数单调性可判断;B 选项,利用幂函数单调性可判断;C 选项,利用对数函数单调性可判断;D 选项,利用反比例函数单调性可判断. 【详解】对于A 选项:3log y x =在(0,+∞)上单调递增,1a b >>,则333311log log 0log log a b a b>>⇒<,即log 3log 3a b <,A 正确;对于B 选项:函数y =x 3在R 上递增,则33a b >,B 错误; 对于C 选项:1a b >>,则ab >1,a +b >2,11log ()log log ()1ab abab a ba b a b ab++==+-log 21ab >-, 有11log ()log 21ab ab a b+≥-成立,即C 正确;对于D 选项:1112a b a b >>⇒+>+>,而函数1y x =在(0,+∞)上递减,则有11+11a b <+,即D 正确.故选:ACD5.【多选题】(2021·全国高三专题练习(理))已知0a b >>,且4ab =,则( ) A .21a b -> B .22log log 1a b -> C .228a b +> D .22log log 1a b ⋅<【答案】ACD 【解析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断. 【详解】因为0a b >>,且4ab =,对A ,0a b ->,所以0221a b ->=,故A 正确;对B ,取83,32a b ==,所以2222216log log log log log 219a ab b -==<=,故B 错误;对C ,22a b ≥+,当且仅当a b =取等号,又因为4a b +≥=,当且仅当a b =取等号,所以228a b ≥≥=+,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故C 正确;对D ,当10>>>a b ,22log 0,log 0a b ><,所以22log log 1a b ⋅<;当1a b >>,22log 0,log 0a b >>,所以()()2222222log log log log log 144a b ab a b +⋅≤==,当且仅当a b =取等号,因为0a b >>,所以不能取等号,故D 正确. 故选:ACD.6.【多选题】(2021·湖南高三二模)若正实数a ,b 满足a b >且ln ln 0a b ⋅>,下列不等式恒成立的是( ) A .log 2log 2a b > B .ln ln a a b b ⋅>⋅ C .122ab a b ++> D .log 0a b >【答案】CD 【解析】由已知不等式,求出,a b 之间的关系,结合选项一一判断即可. 【详解】由ln ln 0a b ⋅>有01b a <<< 或1a b >> ,对于选项A ,当01b a <<<或1a b >>都有log 2log 2a b < ,选项A 错误;对于选项B ,比如当11,24a b == 时,有211111111ln ln 2ln ln 44424222⎛⎫==⨯= ⎪⎝⎭故ln ln a a b b ⋅>⋅不成立,选项B 错误;对于C ,因为()()1110ab a b a b +--=-->,所以1ab a b +>+ ,则122ab a b ++> ,选项C 正确; 对于选项D ,因为ln ln 0a b ⋅>,所以ln log 0ln a bb a=>,选项D 正确, 故选:CD .7.【多选题】(2021·山东临沂市·高三二模)若5log 2a =,1ln 22b =,1ln55c =,则( )A .a b >B .b c >C .c a >D .2a b >【答案】AB 【解析】对四个选项一一验证:对于A :利用换底公式,化为同底结构,利用函数的单调性比较大小; 对于B :利用换底公式,化为同底结构,利用函数的单调性比较大小; 对于C :利用不等式的传递性比较大小;对于D :利用换底公式,化为同底结构,利用函数的单调性比较大小; 【详解】对于A :522221111ln o 21l g 2,log 522log log a b e e ====⨯=, 又25e >,且2log y x =为增函数,所以222l l g 5og o e <,所以22251l og 1l og e <,即a b >.故A 正确;对于B:1ln 2ln 2b ==1ln 55c ==因为101052232,525,ln y x =====为增函数,所以b c >;故B 正确;对于C :因为a b >,b c >,所以a c >,故C 错误; 对于D :因为1ln 22b =,所以212ln 2log b e ==,而521log 2,log 5a == 又5e <,所以22log log 5e <,所以2211log log 5e >,所以2b a >,故D 错误. 故选:AB.8.(2021·浙江高三专题练习)已知函数()f x 满足()(1)f x f x =-+,当(0,1)x ∈时,函数()3xf x =,则13(log 19)f =__________.【答案】2719- 【解析】由()(1)f x f x =-+得函数的周期为2,然后利用周期和()(1)f x f x =-+对13(log 19)f 化简可得13(log 19)f 33927(log 1)(log )1919f f =-+=-,从而可求得结果【详解】解:由题意,函数()f x 满足()(1)f x f x =-+,化简可得()(2)f x f x =+, 所以函数()f x 是以2为周期的周期函数,又由(0,1)x ∈时,函数()3xf x =,且()(1)f x f x =-+,则133339(log 19)(log 19)(log 192)(log )19f f f f =-=-+= 327log 193392727(log 1)(log )3191919f f =-+=-=-=-.故答案为:2719-. 9.(2021·千阳县中学高三其他模拟(文))已知函数()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩,则不等式()1f x >的解集为___________. 【答案】11,3⎛⎫- ⎪⎝⎭【解析】根据分段函数的定义,分段讨论即可求解. 【详解】解:()()()11330log 0x x f x x x +⎧≤⎪=⎨>⎪⎩,()10131x x f x +≤⎧∴>⇔⎨>⎩或130log 1x x >⎧⎪⎨>⎪⎩,解得10-<≤x 或103x <<,即113x -<<, ∴不等式()1f x >的解集为11,3⎛⎫- ⎪⎝⎭.故答案为:11,3⎛⎫- ⎪⎝⎭.10.(2021·浙江丽水市·高三期末)已知()()()1log 1log 01a a a a a ++<<<,则a 的取值范围是__________.【答案】12⎛⎫-+ ⎪ ⎪⎝⎭【解析】通过作差将()()()1log 1log 01a a a a a ++<<<转化为(1)log (1)log 0++-<a a a a ,利用换底公式计算可得[][](1)lg(1)lg lg(1)lg log (1)log lg lg(1)++-+++-=+a a a a a a a a a a ,分别判断每个因式的正负,最终转化为211()124+->a 成立,结合二次函数图像,即可求得a 的取值范围.【详解】∵(1)lg(1)lg log (1)log lg lg(1)a a a aa a a a +++-=-+ 22lg (1)lg lg (1)a aalg a +-=+[][]lg(1)lg lg(1)lg lg lg(1)a a a a a a +-++=+而当01a <<时,lg 0a <,g(0)l 1a +>,1lg(1)lg lglg10a a a a++-=>= 211lg(1)lg lg (1)lg ()24a a a a a ⎡⎤++=+=+-⎢⎥⎣⎦,所以()()()1log 1log 01a a a a a ++<<<即为211lg ()024⎡⎤+->⎢⎥⎣⎦a ,由于lg u 单调递增,所以211()124+->a .211()24u a =+-的图象如图,当1u =时,0a =,1a <<时,12u <<,lg 0u >, 可得()()log 1log 10a a a a a +-+<.故答案为:⎫⎪⎪⎝⎭1.(2020·全国高考真题(文))设3log 42a =,则4a-=( )A .116B .19C .18 D .16【答案】B 【解析】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=, 故选:B.2.(2020·全国高考真题(理))设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减【答案】D 【解析】 由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称, 又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;练真题当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭, 2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确. 故选:D.3.(2020·天津高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<【答案】D 【解析】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<. 故选:D.4.(2019年高考全国Ⅲ卷理)设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .5.(2020·全国高考真题(理))若2233x y x y ---<-,则( ) A .ln(1)0y x -+> B .ln(1)0y x -+< C .ln ||0x y -> D .ln ||0x y -<【答案】A 【解析】由2233x y x y ---<-得:2323x x y y ---<-, 令()23t t f t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A.6.(2019·天津高考真题(文))已知a =log 27,b =log 38,c =0.30.2,则a,b,c 的大小关系为( ) A.c <b <a B.a <b <c C.b <c <a D.c <a <b【答案】A【解析】c=0.30.2<0.30=1;log27>log24=2;1<log38<log39=2. 故c<b<a.故选A.。

高中必修一对数与对数函数练习题及答案(2021年整理)

高中必修一对数与对数函数练习题及答案(2021年整理)

1.高中必修一对数与对数函数练习题及答案(word版可编辑修改)2.3.4.编辑整理:5.6.7.8.9.尊敬的读者朋友们:10.这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中必修一对数与对数函数练习题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

11.本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中必修一对数与对数函数练习题及答案(word版可编辑修改)的全部内容。

12.一、 选择题1.若3a =2,则log 38—2log 36用a 的代数式可表示为( )(A)a-2 (B )3a —(1+a )2 (C )5a —2 (D )3a —a 22。

2log a (M-2N )=log a M+log a N,则N M 的值为( ) (A )41(B )4 (C )1 (D )4或13.已知x 2+y 2=1,x 〉0,y>0,且log a (1+x )=m ,loga y a n xlog ,11则=-等于( ) (A )m+n (B)m —n (C )21(m+n) (D )21(m —n )4。

已知log 7[log 3(log 2x )]=0,那么x 21-等于( )(A )31 (B )321 (C )221 (D )3315.函数y=log 2x —123-x 的定义域是( )(A)(32,1)⋃(1,+∞) (B)(21,1)⋃(1,+∞)(C )(32,+∞) (D)(21,+∞)6.函数y=log 21(x 2—6x+17)的值域是( )(A )R (B )[8,+∞](C )(—∞,-3) (D)[3,+∞]7.若log m 9<log n 9〈0,那么m,n 满足的条件是( )(A )m>n>1 (B)n>m 〉1(C )0〈n<m 〈1 (D)0<m<n 〈18.log a 132<,则a 的取值范围是( )(A)(0,32)⋃(1,+∞) (B )(32,+∞)(C )(1,32) (D)(0,32)⋃(32,+∞)9.(369a )4(639a )4等于( )(A )a 16 (B )a 8 (C )a 4 (D )a 210.函数f(x)=(a 2—1)x 在R 上是减函数,则a 的取值范围是( )(A)1>a (B )2<a (C )a 〈2 (D )1〈2<a11。

2019年高考数学课时11对数和对数函数单元滚动精准测试卷文011

2019年高考数学课时11对数和对数函数单元滚动精准测试卷文011

课时11 对数和对数函数模拟训练(分值:60分 建议用时:30分钟) 1.已知log 7[log 3(log 2x )]=0,那么x 12- 等于( )A.13 B.36 C.24D.33【答案】C【解析】由条件知,log 3(log 2x )=1,∴log 2x =3,∴x =8, ∴x12-=24. 2.设a =log 32,b =ln2,c =512-,则( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a【答案】C【解析】a =log 32=ln2ln3<ln2=b ,又c =512-=15<12,a =log 32>log 33=12,因此c <a <b .[知识拓展]比较对数式的大小,或证明等式问题是对数中常见题型,解决此类问题的方法很多,①当底数相同时可直接利用对数函数的单调性比较;②若底数不同,真数相同,可转化为同底(利用换底公式)或利用对数函数图象,数形结合解得;③若不同底,不同真数,则可利用中间量进行比较.3.函数的递减区间为( )A.()+∞,1B. ⎥⎦⎤ ⎝⎛∞-43, C. ⎪⎭⎫ ⎝⎛+∞,21 D.⎥⎦⎤ ⎝⎛∞-21,【答案】A4.已知函数(b 为常数),若[)+∞∈,1x 时,0)(≥x f 恒成立,则( )A.1≤bB.1<bC.1≥bD.1=b 【答案】A【解析】因为1≥x ,所以,又1≥x ,0)(≥x f 恒成立,即12≥-b 恒成立,所以1≤b .故选A.5已知函数f (x )满足:当x ≥4时,f (x )=(12)x;当x <4时,f (x )=f (x +1),则f (2+log 23)=( )A.124B.112C.18D.38【答案】A【解析】∵2<3<4=22,∴1<log 23<2. ∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)2log 24=22log 24-=221log 24=124.6.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2010x+log 2010x ,则方程f (x )=0的实根个数为( ) A .1 B .2 C .3 D .4【答案】C7.定义:区间[]21,x x (21x x <)的长度为12x x -.已知函数的定义域为[]b a ,,值域为[]2,0,则区间[]b a ,的长度的最大值为 .【答案】415【解析】由≤0x 5.0log 2≤解得441≤≤x ,所以区间[]b a ,的长度的最大值为415414=-. 8.已知函数f (x )=⎩⎪⎨⎪⎧3x +1x ≤0,log 2x x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是________.【答案】{x |-1<x ≤0或x >2} 【解析】当x ≤0时,由3x +1>1,得x +1>0,即x >-1.∴-1<x ≤0.当x >0时,由log 2x >1,得x >2.∴x 的取值范围是{x |-1<x ≤0或x >2}.9.已知f (x )=log a 1+x1-x (a >0,且a ≠1).(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)求使f (x )>0的x 的取值范围.10.已知函数f (x )=log a (2-ax ),是否存在实数a ,使函数f (x )在[0,1]上是关于x 的减函数,若存在,求a 的取值范围.【解析】∵a >0,且a ≠1,∴u =2-ax 在[0,1]上是关于x 的减函数.又f (x )=log a (2-ax )在[0,1]上是关于x 的减函数, ∴函数y =log a u 是关于u 的增函数,且对x ∈[0,1]时,u =2-ax 恒为正数.其充要条件是⎩⎪⎨⎪⎧a >12-a >0,即1<a <2.∴a 的取值范围是(1,2).[新题训练] (分值:20分 建议用时:10分钟) 11.(10分)求函数的值域和单调区间.【解析】(1)由2x x ->0得01x <<,所以函数的定义域是(0,1)因为0<2x x -=,所以,当01a <<时,,函数的值域为1[log ,)4a +∞.当1a >时,函数的值域为(2)令2t x x =-,则log a y t =,当01a <<时,函数log a y t =在(0,)+∞为减函数,2t x x =-在1(0,]2上是增函数,在1[,1)2上是减函数,故所给函数在在1(0,]2上是减函数,在1[,1)2上是增函数; 当1a >时,函数log a y t =在(0,)+∞为增函数,2t x x =-在1(0,]2上是增函数,在1[,1)2上是减函数,故所给函数在在1(0,]2上是增函数,在1[,1)2上是减函数. 12.(10分)若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1),且log 2f (x )<f (1).。

贵州省贵阳高考数学复习 对数与对数函数同步练习 试题

贵州省贵阳高考数学复习 对数与对数函数同步练习 试题

心尺引州丑巴孔市中潭学校 对数与对数函数同步练习一、选择题:〔此题共12小题,每题4分,共48分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1、32a=,那么33log 82log 6-用a 表示是〔 〕A 、2a -B 、52a -C 、23(1)a a -+ D 、 23a a - 2、2log (2)log log a a a M N M N -=+,那么NM的值为〔 〕A 、41B 、4C 、1D 、4或1 3、221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于〔 〕A 、m n +B 、m n -C 、()12m n +D 、()12m n -4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=的两根是,αβ,那么αβ的值是〔 〕A 、lg5lg7B 、lg35C 、35D 、351 5、732log [log (log )]0x =,那么12x-等于〔 〕A 、13 B C6、函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于〔 〕A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称7、函数(21)log x y -= 〕A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭8、函数212log (617)y x x =-+的值域是〔 〕A 、RB 、[)8,+∞ C 、(),3-∞- D 、[)3,+∞9、假设log 9log 90m n <<,那么,m n 满足的条件是〔 〕A 、 1 m n >>B 、1n m >>C 、01n m <<<D 、01m n <<< 10、2log 13a<,那么a 的取值范围是〔 〕 A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭11、以下函数中,在()0,2上为增函数的是〔 〕A 、12log (1)y x =+ B 、2log y =C 、21log y x=D 、2log (45)y x x =-+12、()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,那么1()x f x a +=是〔 〕 A 、在(),0-∞上是增加的 B 、在(),0-∞上是减少的 C 、在(),1-∞-上是增加的 D 、在(),0-∞上是减少的二、填空题:〔此题共4小题,每题4分,共16分,请把答案填写在答题纸上〕 13、假设2log 2,log 3,m n a a m n a +=== 。

2025届高考数学一轮复习北师大版多选题专题练: 对数运算和对数函数(含解析)

2025届高考数学一轮复习北师大版多选题专题练: 对数运算和对数函数A.C. D.4.设,当时,对这三个函数的增长速度进行比较,下列结论中,错误的是( )A.的增长速度最快, 的增长速度最慢B.的增长速度最快, 的增长速度最慢C.的增长速度最快, 的增长速度最慢D.的增长速度最快, 的增长速度最慢5.已知函数,则下列说法正确的是( ).A.B.函数的图象与x 轴有两个交点C.函数的最小值为-434log 9log 2+=212log 3=+5log 3259=225511log 25log log 8log 252⎛⎫⎛⎫++= ⎪⎪⎝⎭⎝⎭()()()22,2,log x f x x g x h x x ===(4,)x ∈+∞()f x ()h x ()g x ()h x ()g x ()f x ()f x ()g x ()2222()log log 3f x x x =--(4)3f =-()y f x =()y f x =D.函数的最大值为46.下列运算正确的是( ).A. B.C.若,则 D.若,则7.下列运算正确的是( ).A. B.C.若,则 D.若,则8.已知,且,下列说法中错误的是( ).A.若,则B.若,则C.若,则D.若,则9.下列运算错误的是( ).A. B.C. D.10.下列运算错误的是( )A.B.C.D.11.若,,且,则( )A. B.C. D.12.下列式子中正确的是( )()y f x =lg(lg10)0=lg(ln e)0=lg 10x =10x =ln e x =2e x=1232=129ln e 4+=3log (lg )1x =1000x=log a c =7cb a =0a >1a ≠M N =log log a a M N =log log a a M N =M N =22log log a a M N =M N =M N =22log log a a M N =11552log 10log 0.252+=42598log 27log 8log 59⨯⨯=23511log 25log log 16169⨯⨯=lg 2lg 5010+=11552log 10log 0.252+=42598log 27log 8log 59⋅⋅=lg 2lg 5010+=((2225log (2log 4-=-1a >1b >lg()lg lg a b a b +=+lg(1)lg(1)0a b -+-=11lg 0a b ⎛⎫+= ⎪⎝⎭lg(1)lg(1)1a b -+-=11lg 1a b ⎛⎫+= ⎪⎝⎭A.若,则B.若C.D.13.在天文学中,星等是衡量天体光度的量,是表示天体相对亮度的数值.天体亮度越强,星等的数值越小,星等的数值越大,天体的亮度就越暗.两颗星的星等与亮度满足的星的亮度为.已知太阳的星等是-26.7,天狼星的星等是-1.45,南极星的星等是-0.72,则( )A.天狼星的星等大约是南极星星等的2倍B.太阳的亮度与天狼星的亮度的比值是10.1C.天狼星的亮度与太阳的亮度的比值是D.天狼星的亮度与南极星的亮度的比值是14.已知且A. B. C. D.15.下列运算正确的是( )A. B.C. D.16.下列运算中正确的是( )A. B.C. D.17.下列运算正确的是( )A. B.C. D.18.下列运算中正确的是( )A. B.C. D.552log 10log 0.252+=42598log 27log 8log 59⨯⨯=lg 2lg5010+=ln 2ln3e 6+=10lg x =10x =25log x =5=±lg(lg10)0=24log 5280+=2152m m -=k ()1,2k E k =10,110-0,29210-0a b >>ln a =22log log a b>2e ab >122ab a b ++<a b b aa b a b >lg 5lg 21+=42log 32log 3=ln πe π=5lg 5lg 2log 2÷=lg5lg 21+=ln πe π=42log 32log 3=2lg 5lg 2log 5÷=52log 10log 0.252s +=42598log 27log 8log 59⨯⨯=lg2lg5010+=ln 2ln36e +=19.下面对函数与在区间上的衰减情况的说法中错误的有( )A.的衰减速度越来越慢,的衰减速度越来越快B.的衰减速度越来越快,的衰减速度越来越慢C.的衰减速度越来越慢,的衰减速度越来越慢D.的衰减速度越来越快,的衰减速度越来越快20.已知,,则的值可能为( )A.B.C.24D.12()log f x x =1()2g x x ⎛⎫= ⎪⎝⎭()0,+∞()f x ()g x ()f x ()g x ()f x ()g x ()f x ()g x ,a b ∈R 249a b ==2a b -8338124参考答案解析:对选项A:,正确;对选项C:,正确;341log 9log 222+=+=2212log 32log 3==-=+555log 3log 3log 9225559===对选项D:,正确;故选:BCD 4.答案:ACD解析:画出函数,,的图象,如图所示,结合图象,可得三个函数,,中,当时,函数增长速度最快,增长速度最慢.所以选项B 正确;选项ACD 不正确.故选:ACD.5.答案:ABC解析:对于A ,,正确;对于B ,,,令,得,即得或,所以或,即的图象与x 轴有两个交点,正确;对于C ,,,当,即时,,正确;对于D ,易知没有最大值.6.答案:AB 解析:7.答案:BCD 解析:8.答案:ACD 解析:()2222(4)log 4log 433f =--=-()222()log 2log 3f x x x =--(0,)x ∈+∞()0f x =()()22log 1log 30x x +-=2log 1x =-2log 3x =12x =2255252511log 25log log 8log log 5log 42log 5log 2252⎛⎫⎛⎫++=⨯=⨯= ⎪⎪⎝⎭⎝⎭()2f x x =()2x g x =()2log h x x =()2f x x =()2x g x =()2log h x x =(4,)x ∈+∞()2x g x =()2log h x x =8x =()f x ()22()log 14f x x =--(0,)x ∈+∞2log 1x =2x =min ()4f x =-()f x9.答案:ABD 解析:对于A ,,故A 错误.对于B ,误.对于C ,,故C 正确.对于D ,,故D 错误.10.答案:ABC解析:对于A ,,A 错误;对于B ,对于C ,,C 错误;对于D ,故选:ABC.11.答案:AB解析:依题意,,由,得,所以,且,即,.故选AB12.答案:CD解析:若,则,故A 错误;若,故B 错误;因为,则,故C 正确;()221111115555552log 10log 0.25log 10log 0.25log 100.25log 252+=+=⨯==-4259lg 27lg8lg 53lg 33lg 2lg 5log 27log 8log 5lg 4lg 25lg 92lg 22lg 52lg 3⨯⨯=⨯⨯=⨯⨯=242235235112lg 54lg 22lg 3log 25log log log 5log 2log 316169lg 2lg 3lg 5----⨯⨯=⨯⨯=⨯⨯=lg 2lg 50lg1002+==()22111155552log 10log 0.25log 100.25log 52+=⨯==-334259222lg 312lg 533log 27log 8log 5lg 215lg 3222g g ⨯⋅⋅=⋅⋅==⨯⨯lg 2lg 50lg1002+==((22221log (2log 12⎛⎫-=--= ⎪⎝⎭1a >1b >lg()lg lg lg()a b a b ab +=+=a b ab +=(1)(1)()1a b ab a b --=-++=111a b=+=[]lg(1)lg(1)lg (1)(1)lg10a b a b -+-=--==11lg 0a b ⎛⎫+= ⎪⎝⎭10lg x =1010x =25log x =12255x ==lg101=lg(lg10)lg10==,故D 正确.故选:CD.13.答案:AC 解析:14.答案:AD解析:对于选项A :因为,又因为在上单调递增,所以,故A 正确;对于选项B :因为,解得或,所以或,故B 错误;对于选项C :因为,且,可得,同号,则有若,同正,可得,则,可得;若,同负,可得,则,可得.综上所述,,又因为在定义域内单调递增,所以,故C 错误;对于选项D :因为,则,可得在上单调递增,可得,且,,所以,故D 正确.故选AD.15.答案:AC解析:,故选项A 正确;,故选项B 错误;根据对数恒等式可知,,选项C 正确;根据换底公式可得:,故选项D 错误.故选:AC.16.答案:AD解析:对于选项A ,,所以选项A 正确;224log 5log 5422216580+==⨯=⨯0a b >>2log y x =()0,+∞22log log a b >2(ln ln )ln ln 4a b a b +<=()2ln 14ab >()ln 2ab >()ln 2ab <-2e ab >210e ab <<0a b >>ln ln 10a b =>ln a ln b ln a ln b e 1a b >>>()()()1110a b ab a b --=-++>1ab a b +>+ln a ln b 110ea b >>>>()()()1110a b ab a b --=-++>1ab a b +>+1ab a b +>+2x y =122ab a b ++>0a b >>0a b ->a b y x -=()0,+∞0a b a b a b -->>0b a >0b b >a b b a a b a b >()lg 5lg 2lg 52lg101+=⨯==224222log 3log 31log 3log 3log 42log 22===ln πe π=5lg 2log 2lg 2lg 5lg 5==÷()2255552log 10log 0.25log 100.25log 52+=⨯==对于选项B ,误;对于选项C ,,所以选项C 错误;对于选项D ,,所以选项D 正确.故选:AD 17.答案:ABD解析:对于选项A ,,故选项A 正确;对于选项B ,根据对数恒等式可知,故选项B 正确;对于选项C ,,故选项C 错误;对于选项D ,根据换底公式可得,故选项D 正确.故选ABD.18.答案:AD解析:对于选项A,,所以选项A 正确;对于选项B,项C,,所以选项C 错误;对于选项D,, 所以选项D 正确.19.答案:ABD解析:在平面直角坐标系中画出与图象如下图所示,由图象可判断出衰减情况为衰减速度越来越慢,衰减速度越来越慢.20.答案:BC解析:由题意得,,则时,,同理时,334259222lg 3lg 2lg 533log 27log 8log 5lg 2lg 5lg 3222⨯⨯⨯=⨯⨯==⨯⨯lg 2lg50lg1002+==ln 2ln3ln 2ln3e e e 236+=⋅=⨯=lg5lg 2lg(52)lg101+=⨯==224222log 3log 31log 3log 3log 42log 22===2lg 5log 5lg 5lg 2lg 2==÷()2255552log 10log 0.25log 100.25log 52+=⨯==334259222lg3lg2lg533log 27log 8log 5lg2lg5lg3222⨯⨯⨯=⨯⨯==⨯⨯lg2lg50lg1002+==ln 2ln 3ln 2ln 3236e e e +=⋅=⨯=()f x ()g x ()f x ()g x 42log 9log 3a ==3b =±3b =23228a a bb -==3b =-22242a a bb -==故选:BC.。

2025高考数学一轮复习-对数与对数函数-专项训练【含解析】

课时过关检测(十)对数与对数函数【原卷版】1.已知a=log23,b=log25,则log415=()A.2a+2b B.a+bC.ab D.12a+12b2.已知函数y=f(x)的图象与函数y=2x的图象关于直线y=x对称,g(x)为奇函数,且当x>0时,g(x)=f(x)-x,则g(-8)=()A.-5B.-6C.5D.63.已知函数f(x)=ln x-1x+1+a sin x+2,且f(m)=5,则f(-m)=()A.-5B.-3C.-1D.34.2020年12月17日凌晨,嫦娥五号返回器携带月球土壤样品,在预定区域安全着陆.嫦娥五号是使用长征五号火箭发射成功的,在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)的函数关系表达式为v=212km/s,则燃料的质量与火箭的质量的关系是()A.M=e6m B.Mm=e6-1C.ln M+ln m=6D.Mm=e6-15.若函数f(x)=log a(x+b)的图象如图所示,其中a,b为常数,则函数g(x)=a x+b的图象大致是()6.(多选)已知函数f(x)=log2x的定义域是[4,8],则下列函数中与f(x)值域相同的函数是()A.y=f(x)+1B.y=f(x+1)C.y=-f(x)D.y=|f(x)|7.(多选)关于函数f(x)=ln(1+x)-ln(3-x),下列结论正确的是()A.f(x)在(-1,3)上单调递增B.y=f(x)的图象关于直线x=1对称C.y=f(x)的图象关于点(1,0)对称D.f(x)的值域为R8.已知a>0,且a≠1,函数y=log a(2x-3)+2的图象恒过点P.若点P也在幂函数f(x)的图象上,则f(x)=________.9.函数f(x)=ln(x+2)+ln(4-x)的单调递减区间是________.10.已知f(x)是定义在R上的偶函数,且当x≥0时,f(x)=log a(x+1)(a>0,且a≠1).(1)求函数f(x)的解析式;(2)若-1<f(1)<1,求实数a的取值范围.11.已知函数f(x)=|log2x|,当0<m<n时,f(m)=f(n),若f(x)在[m2,n]上的最大值为2,则nm=()A.2B.52C.3D.412.(多选)函数f(x)=log a|x-1|在(0,1)上是减函数,那么()A.f(x)在(1,+∞)上递增且无最大值B.f(x)在(1,+∞)上递减且无最小值C.f(x)的图象关于直线x=1对称D.∃a=2020,满足f(x)在(0,1)上是减函数13.已知函数f(x)满足:①定义域为(-∞,0)∪(0,+∞);②值域为R;③f(-x)=f(x).写出一个满足上述条件的函数f(x)=________.14.已知函数f(x)=log a(3-ax)(a>0,且a≠1).(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上单调递减,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.15.设实数a,b是关于x的方程|lg x|=c的两个不同实数根,且a<b<10,则abc的取值范围是________.16.函数f(x)的定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]⊆D使f(x)在[a ,b ]上的值域为a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,求t 的取值范围.课时过关检测(十)对数与对数函数【解析版】1.已知a =log 23,b =log 25,则log 415=()A .2a +2bB .a +bC .abD .12a +12b解析:Dlog 415=12log 215=12(log 23+log 25)=12a +12b ,故选D .2.已知函数y =f (x )的图象与函数y =2x 的图象关于直线y =x 对称,g (x )为奇函数,且当x >0时,g (x )=f (x )-x ,则g (-8)=()A .-5B .-6C .5D .6解析:C由已知,函数y =f (x )与函数y =2x 互为反函数,则f (x )=log 2x .由题设,当x>0时,g (x )=log 2x -x ,则g (8)=log 28-8=3-8=-5.因为g (x )为奇函数,所以g (-8)=-g (8)=5,故选C .3.已知函数f (x )=ln x -1x +1+a sin x +2,且f (m )=5,则f (-m )=()A .-5B .-3C .-1D .3解析:C 根据题意,函数f (x )=ln x -1x +1+a sin x +2,则f (-x )=ln -x -1-x +1+a sin(-x )+2=-lnx -1x +1-a sin x +2,则有f (x )+f (-x )=4,故f (m )+f (-m )=4,若f (m )=5,则f (-m )=-1,故选C .4.2020年12月17日凌晨,嫦娥五号返回器携带月球土壤样品,在预定区域安全着陆.嫦娥五号是使用长征五号火箭发射成功的,在不考虑空气阻力的情况下,火箭的最大速度v (单位:m/s)和燃料的质量M (单位:kg)、火箭(除燃料外)的质量m (单位:kg)的函数关系表达式为v =212km/s ,则燃料的质量与火箭的质量的关系是()A .M =e 6mB .Mm =e 6-1C .ln M +ln m =6D .Mm =e 6-1解析:D 依题意可知v =212000,可得6,即1+Mm=e 6,可得M m =e 6-1.如果火箭的最大速度达到12km/s ,则燃料的质量与火箭的质量的关系是M m =e 6-1.故选D .5.若函数f (x )=log a (x +b )的图象如图所示,其中a ,b 为常数,则函数g (x )=a x +b 的图象大致是()解析:D 由f (x )的图象可知0<a <1,0<b <1,∴g (x )的图象应为D .6.(多选)已知函数f (x )=log 2x 的定义域是[4,8],则下列函数中与f (x )值域相同的函数是()A .y =f (x )+1B .y =f (x +1)C .y =-f (x )D .y =|f (x )|解析:BD 函数f (x )=log 2x 在[4,8]单调递增,f (4)=log 24=2,f (8)=log 28=3,所以f (x )值域为[2,3].对于选项A :y =f (x )+1值域为[3,4],故选项A 不正确;对于选项B :因为f (x )=log 2x 的定义域是[4,8],所以4≤x +1≤8,可得3≤x ≤7,f (x +1)=log 2(x +1)∈[2,3],所以y =f (x +1)值域为[2,3],故选项B 正确;对于选项C :y =-f (x )值域为[-3,-2],故选项C 不正确;对于选项D :y =|f (x )|的值域为[2,3],故选项D 正确.故选B 、D .7.(多选)关于函数f (x )=ln(1+x )-ln(3-x ),下列结论正确的是()A .f (x )在(-1,3)上单调递增B .y =f (x )的图象关于直线x =1对称C .y =f (x )的图象关于点(1,0)对称D .f (x )的值域为R 解析:ACD函数f (x )的定义域是(-1,3),f (x )=lnx +13-x .令t (x )=x +13-x =-4x -3-1(x ≠3),易知t (x )在(-1,3)上单调递增,所以t (x )>t (-1)=0,所以f (x )=ln t (x )在(-1,3)上单调递增,且值域为R .故A 、D 正确.当x ∈(-2,2)时,1+x ∈(-1,3),1-x ∈(-1,3),f (1+x )=ln 2+x2-x,f (1-x )=ln2-x2+x,所以f (1+x )=-f (1-x ),f (1+x )≠f (1-x ).所以y =f (x )的图象关于点(1,0)对称.故B 错误,C 正确.故选A 、C 、D .8.已知a >0,且a ≠1,函数y =log a (2x -3)+2的图象恒过点P .若点P 也在幂函数f (x )的图象上,则f (x )=________.解析:设幂函数为f (x )=x α,因为函数y =log a (2x -3)+2的图象恒过点P (2,2),则2α=2,所以α=12,故幂函数为f (x )=x 12.答案:x129.函数f (x )=ln(x +2)+ln(4-x )的单调递减区间是________.解析:+2>0,-x >0,得-2<x <4,因此函数f (x )的定义域为(-2,4).f (x )=ln(x +2)+ln(4-x )=ln(-x 2+2x +8)=ln [-(x -1)2+9],设u =-(x -1)2+9,又y =ln u 是增函数,u =-(x -1)2+9在(1,4)上是减函数,因此f (x )的单调递减区间为(1,4).答案:(1,4)10.已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=log a (x +1)(a >0,且a ≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围.解:(1)当x <0时,-x >0,由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,∴f (-x )=f (x ).∴当x <0时,f (x )=log a (-x +1),∴函数f (x )的解析式为f (x )a (x +1),x ≥0,a (-x +1),x <0(a >0,且a ≠1).(2)∵-1<f (1)<1,∴-1<log a 2<1,∴log a 1a<log a 2<log a a .①当a >1,,解得a >2;②当0<a <1,,解得0<a <12.综上,实数a (2,+∞).11.已知函数f (x )=|log 2x |,当0<m <n 时,f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则n m=()A .2B .52C .3D .4解析:D如图所示,根据函数f (x )=|log 2x |的图象,得0<m <1<n ,所以0<m 2<m <1.结合函数图象,易知当x =m 2时f (x )在[m 2,n ]上取得最大值,所以f (m 2)=|log 2m 2|=2,又0<m <1,所以m =12,再结合f (m )=f (n ),可得n =2,所以nm=4.故选D .12.(多选)函数f (x )=log a |x -1|在(0,1)上是减函数,那么()A .f (x )在(1,+∞)上递增且无最大值B .f (x )在(1,+∞)上递减且无最小值C .f (x )的图象关于直线x =1对称D .∃a =2020,满足f (x )在(0,1)上是减函数解析:ACD由题意,函数f (x )=log a |x -1|在(0,1)上是减函数,即f (x )=log a (1-x )在(0,1)上是减函数,因为y =1-x 是减函数,根据复合函数的单调性的判定方法,可得a >1,当x ∈(1,+∞)时,f (x )=log a |x -1|=log a (x -1),因为y =x -1是增函数,根据复合函数的单调性的判定方法,可得函数f (x )在(1,+∞)上单调递增,且无最大值,所以A 正确,B 错误;又由f (2-x )=log a |2-x -1|=log a |x -1|=f (x ),所以f (x )的图象关于直线x =1对称,所以C 正确;由a >1可知,当a =2020时,函数f (x )在(0,1)上是减函数,所以D 正确.故选A 、C 、D .13.已知函数f (x )满足:①定义域为(-∞,0)∪(0,+∞);②值域为R ;③f (-x )=f (x ).写出一个满足上述条件的函数f (x )=________.解析:f (x )=ln|x |的定义域为(-∞,0)∪(0,+∞),值域为R ,且f (-x )=ln|-x |=ln|x |=f (x ),因此f (x )=ln|x |符合题意.答案:ln|x |(答案不唯一)15.已知函数f (x )=log a (3-ax )(a >0,且a ≠1).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上单调递减,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)∵a >0且a ≠1,设t (x )=3-ax ,则t (x )=3-ax 为减函数,当x ∈[0,2]时,t (x )的最小值为3-2a ,∵当x ∈[0,2]时,f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0,∴a <32.又a >0且a ≠1,∴0<a <1或1<a <32,∴实数a 的取值范围为(0,1)(2)由(1)知函数t (x )=3-ax 为减函数.∵f (x )在区间[1,2]上单调递减,∴y =log a t 在区间[1,2]上单调递增,∴a >1,当x ∈[1,2]时,t (x )的最小值为3-2a ,f (x )的最大值为f (1)=log a (3-a ),∴-2a >0,a (3-a )=1,<32,=32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上单调递减,并且最大值为1.15.设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.解析:由题意知,在(0,10)上,函数y =|lg x |的图象和直线y =c 有两个不同交点(如图),∴-lg a =lg b .即ab =1,0<c <lg 10=1,∴abc 的取值范围是(0,1).答案:(0,1)16.函数f (x )的定义域为D ,若满足①f (x )在D 内是单调函数;②存在[a ,b ]⊆D 使f (x )在[a ,b ]上的值域为a 2,b 2,那么就称y =f (x )为“半保值函数”,若函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,求t 的取值范围.解:∵函数f (x )=log a (a x +t 2)(a >0,且a ≠1)是“半保值函数”,且定义域为R ,当a >1时,z =a x +t 2在R 上单调递增,y =log a z 在(0,+∞)上单调递增,可得f (x )为R 上的增函数;当0<a <1时,f (x )仍为R 上的增函数,∴f (x )在定义域R 上为增函数,∴方程log a (a x +t 2)=12x 有两个不同的根,∴a x +t 2=a 12x ,即a x -a 12x +t 2=0,令u =a 12x ,u >0,即u 2-u +t 2=0有两个不同的正数根,可得1-4t 2>0,且t 2>0,1 2,解得t-。

人教A版数学必修一《对数与对数函数》单元测试卷.docx

《对数与对数函数》单元测试卷注意事项:1.考察内容:对数与对数函数 2.题目难度:中等难度题型3.题型方面:8道选择,4道填空,4道解答。

4.参考答案:有详细答案5.资源类型:试题/课后练习/单元测试一、选择题1.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( )A .a b c >> B. a c b >>C .b a c >> D. c a b>>2.已知2x =72y=A ,且1x +1y=2,则A 的值是A .7B .7 2C .±7 2D .983.若a>0且a ≠1,且143log a <,则实数a 的取值范围是( )A .0<a<1B .43a 0<< C .43a 043a <<>或 D .43a 0<<或a>14.函数y = log 2 ( x 2– 5x – 6 )单调递减区间是( )A .⎪⎭⎫ ⎝⎛∞-25,B .⎪⎭⎫⎝⎛+∞,25C .()1,-∞-D .(+∞,6)5.巳知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)nn a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++= ( )A.(21)n n - B.2(1)n + C.2n D.2(1)n -6.若)1()1(32log ,log ,10+-+-==<<a a aa a aQ P a ,则P 与Q 的大小关系是 ( )A .P >QB .P <QC .P =QD .P 与Q 的大小不确定7.若函数y = log 12| x + a |的图象不经过第二象限,则a 的取值范围是( )(A )( 0,+ ∞ ), (B )[1,+ ∞ ) (C )( – ∞,0 ) (D )( – ∞,– 1 ]8.已知函数6s i n c o s 2111)(++⎪⎭⎫⎝⎛+-=x b x a x f x(a 、b 为常数,且1>a ),8)1000o (lg 8=g l f ,则)2lg (lg f 的值是( )(A) 8 (B) 4 (C) -4 (D) 与a 、b 有关的数二、填空题9.对于实数,,a b c ,若在⑴lg 21a c =--⑵lg32a b =-⑶lg 4222a c =--⑷lg5a c =+⑸lg 61a b c =+--中有且只有两个式子是不成立的,则不成立的式子是 10.已知函数()log (0,1)a f x x a a =>≠,若12()()3f x f x -=,则2212()()f x f x -= . 11.函数2()log (2)f x x =-的单调减区间是 .12.已知函数()()()[]111lg 22+++-=x a x a x f 的定义域为()+∞∞-,,则实数a 的取值范围是________________________.三、解答题13.设方程x 2-10x +2=0的两个根分别为α,β,求log 4α2-αβ+β2(α-β)2的值.14.设关于x 的方程(m+1)x 2-mx+m-1=0有实根时,实数m 的取值范围是集合A ,函数f(x)=lg[x 2-(a+2)x+2a]的定义域是集合B. (1)求集合A ;(2)若A B=B ,求实数a 的取值范围.15.已知函数()ln()(10)xxf x a b a b =->>>.(1) 求函数()f x 的定义域I ;(2) 判断函数()f x 在定义域I 上的单调性,并说明理由; (3)当,a b 满足什么关系时,()f x 在[)1+∞,上恒取正值。

精选-江苏专版2020版高考数学一轮复习课时跟踪检测十对数与对数函数理含解析

课时跟踪检测(十)对数与对数函数一抓基础,多练小题做到眼疾手快.(·淮安调研)函数()=(-)的定义域为.解析:由->,解得>,所以函数()的定义域为.答案:.函数()=(-+)的值域为.解析:令=-+=(-)+≥,故函数()可化为=,≥,此函数是一个增函数,其最小值为=,故()的值域为[,+∞).答案:[,+∞).计算+()=.解析:+()=)·)+=+=+=.答案:.(·长沙调研)已知函数=(+)-(>,≠)的图象恒过定点,若点也在函数()=+的图象上,则()=.解析:∵函数=(+)-(>,≠)的图象恒过定点(-,-),将=-,=-代入()=+,得-+=-,∴=-,∴()=-,则()=-=-=.答案:.若函数()=(\\(-+,≤,+,>))(>,且≠)的值域是[,+∞),则实数的取值范围是.解析:当≤时,=-+≥.因为()的值域为[,+∞),所以当>时,+>+≥,所以≥,所以<≤;当<<时,+<+,不合题意.故∈(].答案:(].(·镇江期末)已知函数()是定义在上的奇函数,当>时,()=-,则不等式()<的解集是.解析:当<时,()=-(-)=(-)-,()<,即(-)-<,解得-<<;当>时,()=-,()<,即-<,解得>,综上,不等式()<的解集是(-)∪(,+∞).答案:(-)∪(,+∞)二保高考,全练题型做到高考达标.(·镇江中学调研)函数=+(-)的值域为.解析:由题意知,>且->,∴()的定义域是().∵函数()=+(-)=[(-)],∴<(-)≤=,当且仅当=时等号成立.∴[(-)]≤,∴函数=+(-)的值域为(-∞,].答案:(-∞,].(·镇江中学学情调研)已知函数()=的定义域是,则实数的值为.解析:因为函数()=的定义域是,所以当>时,->,即<,所以<,所以>.令=,得==,所以实数的值为.答案:.若函数()=(-++)在区间(-∞,]上递减,则的取值范围为.解析:令函数()=-++=(-)++-,对称轴为=,要使函数在(-∞,]上递减,则有(\\(>,≥,))即(\\(->,≥,))解得≤<,即∈[).答案:[).(·连云港模拟)已知函数()=,若()=,则(-)=.解析:因为()=的定义域为-<<,所以(-)==-=-(),所以()为奇函数,所以(-)=-()=-.答案:-.函数()=+的定义域为.解析:由(\\(-≥,,(-+-)>,))得(\\(-≤≤,>且≠,))故函数定义域为()∪(].答案:()∪(].(·苏州调研)若函数()=(\\(-+,≤,+,>))(>,且≠)的值域为[,+∞),则实数的取值范围是.解析:当≤时,()∈[,+∞),所以当>时,()的取值集合⊆[,+∞).当<<时,=,不符合题意;当>时,=(+,+∞),若⊆[,+∞),则有+≥,解得<≤.答案:(].函数()=·()的最小值为.解析:依题意得()=·(+)=()+=-≥-,当且仅当=-,即=时等号成立,因此函数()的最小值为-.答案:-.设函数()=(\\(,>,-,<,))若()>(-),则实数的取值范围是.解析:由()>(-)得(\\(>,>))或(\\(<,->-,))即(\\(>,>-))或(\\(<,,-->-))解得>或-<<.答案:(-)∪(,+∞).已知函数()是定义在上的偶函数,()=,当>时,()=.()求函数()的解析式;()解不等式(-)>-.解:()当<时,->,则(-)=(-).因为函数()是偶函数,所以(-)=().所以函数()的解析式为()=(\\(,>,,=,-,<.))()因为()==-,()是偶函数,所以不等式(-)>-可化为(-)>().又因为函数()在(,+∞)上是减函数,所以-<,解得-<<,即不等式的解集为(-,)..(·如东上学期第一次阶段检测)已知函数()=(+)+(-)(>且≠),且()=. ()求的值及()的定义域;()若不等式()≤恒成立,求实数的取值范围.解:()因为()=,所以=,故=,所以()=(+)+(-),要使函数()有意义,需有(\\(+>,->,))解得-<<,所以()的定义域为(-).()由()知,()=(+)+(-)=[(+)(-)]=(-++)=[-(-)+],故当=时,()有最大值,所以的取值范围是[,+∞).三上台阶,自主选做志在冲刺名校.(·南京五校联考)已知函数()=+-(<)与()=+(+),若函数()图象上存在点与函数()图象上的点关于轴对称,则的取值范围是.解析:设点(,)(<),则点关于轴的对称点(-,)在函数()的图象上,所以(\\(=\()+-(),=-+-+,))消去,可得+-=(-)+(-+),所以-=(-+)(<).令()=-(<),()=(-)(<),问题转化为函数()与函数()的图象在<时有交点.在平面直角坐标系中分别作出函数()与函数()的图象如图所示.当()=(-)的图象过点时,=.由图可知,当<时,函数()与函数()的图象在<时有交点.故的取值范围为(-∞,).答案:(-∞,).(·昆山测试)已知函数()=(∈).()当=时,求函数()的值域;()当>时,求函数()的定义域;()若函数()在区间[,+∞)上是单调增函数,求实数的取值范围.解:()当=时,()=,定义域为(-∞,).因为函数=(<)的值域为(,+∞),所以()=的值域为.()因为>,所以关于的不等式>⇔(-)(-)>⇔(-)>.(*)①若<<,则>,不等式(*)的解为<或>;②若=,则不等式(*)即(-)>,其解为≠;③若>,则<,不等式(*)的解为<或>.综上,当<≤时,函数()的定义域为(-∞,)∪;当>时,函数()的定义域为∪(,+∞).()令()=,则()= ().因为函数()在[,+∞)上是单调增函数,且对数的底数>,所以当∈[,+∞)时,()>,且函数()在[,+∞)上是单调增函数.而()===+,若-≥,则函数()在[,+∞)上不是单调增函数;若-<,则函数()在[,+∞)上是单调增函数.所以<.①因为函数()在[,+∞)上是单调增函数,所以要使当∈[,+∞)时,()>,必须()>,即>,解得>.②综合①②知,实数的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时11 对数和对数函数
模拟训练(分值:60分 建议用时:30分钟) 1.已知log 7[log 3(log 2x )]=0,那么x 12
- 等于( )
A.1
3 B.
36 C.24
D.
33
【答案】C
【解析】由条件知,log 3(log 2x )=1,∴log 2x =3,∴x =8, ∴x
12
-=
2
4
. 2.设a =log 32,b =ln2,c =512
-,则( )
A .a <b <c
B .b <c <a
C .c <a <b
D .c <b <a
【答案】C
【解析】a =log 32=ln2ln3<ln2=b ,又c =51
2-=15<12
,a =log 32>log 33=1
2,因此c <a <b .
[知识拓展]比较对数式的大小,或证明等式问题是对数中常见题型,解决此类问题的方法很多,①当底数相同时可直接利用对数函数的单调性比较;②若底数不同,真数相同,可转化为同底(利用换底公式)或利用对数函数图象,数形结合解得;③若不同底,不同真数,则可利用中间量进行比较.
3.函数的递减区间为( )
A.()+∞,1
B. ⎥⎦⎤ ⎝
⎛∞-43, C. ⎪⎭⎫ ⎝⎛+∞,21 D.⎥⎦
⎤ ⎝
⎛∞-2
1,
【答案】A
4.已知函数(b 为常数),若[)+∞∈,1x 时,0)(≥x f 恒成立,则
( )
A.1≤b
B.1<b
C.1≥b
D.1=b 【答案】A
【解析】因为1≥x ,所以,又1≥x ,0)(≥x f 恒成立,即12≥-b 恒成立,
所以1≤b .故选A.
5已知函数f (x )满足:当x ≥4时,f (x )=(12)x
;当x <4时,f (x )=f (x +1),则f (2+log 23)=( )
A.1
24
B.112
C.1
8
D.38
【答案】A
【解析】∵2<3<4=22
,∴1<log 23<2. ∴3<2+log 23<4,
∴f (2+log 23)=f (3+log 23)=f (log 224)=(12)2log 24=22log 24
-=221
log 24=124
.
6.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2010x
+log 2010x ,则方程f (x )=0的实根个数为( )
A .1
B .2
C .3
D .4
【答案】C
7.定义:区间[]21,x x (21x x <)的长度为12x x -.已知函数
的定义域为[]b a ,,值域为
[]2,0,则区间[]b a ,的长度的最大值为 .
【答案】
4
15
【解析】由≤0x 5.0log 2≤解得
441≤≤x ,所以区间[]b a ,的长度的最大值为4
15414=-. 8.已知函数f (x )=⎩
⎪⎨
⎪⎧
3x +1
x ≤0,
log 2x x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是
________.
【答案】{x |-1<x ≤0或x >2} 【解析】当x ≤0时,由3x +1
>1,得x +1>0,即x >-1.
∴-1<x ≤0.
当x >0时,由log 2x >1,得x >2.
∴x 的取值范围是{x |-1<x ≤0或x >2}.
9.已知f (x )=log a 1+x
1-x (a >0,且a ≠1).
(1)求f (x )的定义域;
(2)判断f (x )的奇偶性并予以证明; (3)求使f (x )>0的x 的取值范围.
10.已知函数f (x )=log a (2-ax ),是否存在实数a ,使函数f (x )在[0,1]上是关于x 的减函数,若存在,求a 的取值范围.
【解析】∵a >0,且a ≠1,
∴u =2-ax 在[0,1]上是关于x 的减函数.
又f (x )=log a (2-ax )在[0,1]上是关于x 的减函数, ∴函数y =log a u 是关于u 的增函数,且对x ∈[0,1]时,
u =2-ax 恒为正数.
其充要条件是⎩
⎪⎨
⎪⎧
a >1
2-a >0,即1<a <2.
∴a 的取值范围是(1,2).
[新题训练] (分值:20分 建议用时:10分钟) 11.(10分)求函数
的值域和单调区间.
【解析】(1)由2x x ->0得01x <<,所以函数的定义域是(0,1)
因为0<2x x -=
,所以,当01a <<时,
,函数。

相关文档
最新文档