医学统计学第七章两样本均数比较的假设检验

合集下载

07《卫生统计学》第七章_假设检验基础(6版) (1)

07《卫生统计学》第七章_假设检验基础(6版) (1)
2 2 d
sd t
n 1
n

2 7950 8832500
10 1
10
528.336IU / g
d d d 795.0 4.785 sd s d n 528.336 10
确定概率P:按ν =9查t 界值表,得P<0.01 判断结果:在α=0.05的水准上,拒绝H0,接受H1,可以认为 维生素E缺乏组大鼠肝脏维生素A含量低于正常饲料组。
二、 假设检验的基本步骤
• 确定检验水准: 检验水准(size of a test),亦称为 显著性水准(significance level),符号 为α,即拒绝或不拒绝H0所要冒出错的风 险大小。一般取α=0.05或α= 0.01。
二、 假设检验的基本步骤
• 确定单侧检验(one sided test)还是双侧检验(two sided test): 如果根据现有的专业知识无法预先判断该病 病人的脉搏是高于还是低于一般健康成年男,两 种可能性都存在,研究者对这两种可能性同等关 心,那么,就是要推断两总体均数有无差别,应 当采用双侧检验;如果根据专业知识,已知病人 的脉搏不会低于一般人,或是研究者只关心病人 的脉搏是否高于一般,而不关心是否低于一般, 则应当采用单侧检验(one sided test)。
二、 假设检验的基本步骤
本例的资料符合t 检验的应用条件,已知 μ=72次/min , x =75.572次/min ,s=5.0次/min , n=25,代入公式计算t 值,结果:
x x 75.5 72.0 t 3.50 sx s n 5.0 25
3. 确定P值
第二节 t 检验
1. 一组样本资料的 t 检验

双样本均值比较分析假设检验

双样本均值比较分析假设检验

双样本均值比较分析假设检验在进行双样本均值比较分析假设检验之前,需要建立以下的假设:-零假设(H0):两个样本的均值相等,即差异为零。

-备择假设(H1):两个样本的均值不相等,即差异不为零。

接下来的步骤是计算样本的均值、标准差和样本容量,并且通过标准误差来计算检验统计量。

常用的检验统计量有t统计量和z统计量,选择哪种统计量取决于样本容量是否足够大。

如果样本容量足够大,通常使用z统计量进行假设检验。

计算z统计量的公式如下:z = (x1 - x2) / sqrt(s1^2 / n1 + s2^2 / n2)其中,x1和x2分别是两个样本的均值,s1和s2分别是两个样本的标准差,n1和n2分别是两个样本的容量。

如果样本容量较小,那么应该使用t统计量进行假设检验。

计算t统计量的公式如下:t = (x1 - x2) / sqrt(s1^2 / n1 + s2^2 / n2)在计算了检验统计量之后,需要根据显著性水平(通常为0.05)来确定拒绝域的边界。

拒绝域是指当检验统计量的取值落在这个区域之内时,拒绝零假设,即认为两个样本的均值存在显著差异。

最后,根据计算的检验统计量与拒绝域的比较结果,得出是否拒绝零假设的结论。

如果检验统计量的取值落在拒绝域之内,那么可以拒绝零假设,认为两个样本的均值存在显著差异。

需要注意的是,这种假设检验只能提供统计显著性的结论,而不是实际意义的差异。

所以在进行假设检验之前,需要对样本差异的实际意义进行考量。

总之,双样本均值比较分析假设检验是一种常用的统计方法,可以用于比较两个独立样本的均值是否存在显著差异。

通过计算检验统计量和拒绝域的比较,可以得出是否拒绝零假设的结论。

《医学统计学》-第七章T检验和Ttest

《医学统计学》-第七章T检验和Ttest
第七章
T 检验/T test
任课教师 :
教研室 :
重点难点
学习 要求
掌握 1.均数比较的 t 检验方法: 单个样本 t 检验、配对样本 t 检验、两个独立样本 t 检验的计算和应用
熟悉 · t 检验中的注意事项: 主要包括其应用条件、单双侧检验的选择和对 P 值的理解。
了解 1.假设检验中的两类错误; 2.检验效能的概念及影响因素。
1 9
1 8
0.329
t | 2.656 5.150 | 7.581 0.329
(3)根据 P 值,作出推断结论:
两独立样本t检验自由度为 n1 n2 2 9 8 2 15 ;查 t 界值表,t0.05/2,15=2.131 。
由于t >t0.05/2,15,P<0.05,按 α=0.05 的水准拒绝 H0,接受 H1,两组差异有统计学意义,可以认为两种环 境中运动者的心肌血流量存在差异。

应用条件:两独立样本
t
检验要求两样本所代表的总体服从正态分布N
(
1
,
2 1
)

N
(2
,
22,) 且
两总体方差
2 1
2 2
,即方差齐性(homogeneity
of
variance)。若两者总体方差不齐,可采用
t’ 检验、变量变换或用秩和检验方法处理。
练习
测试题1 随机选择9窝中年大鼠,每窝中取两只雌性大鼠随机地分入甲、乙两组,甲组大鼠不接受任 何处理(即空白对照),乙组中的每只大鼠接受3mg/Kg的内毒素。分别测得两组大鼠的肌酐(mg/L)测 定结果如下。 试分析之。
本节介绍计量资料两组均数 比较的 t 检验方法,
根据研究设计和资料的性质有: ➢ 单个样本 t 检验 ➢ 配对样本 t 检验 ➢ 两个独立样本 t 检验

医学统计学第7版假设检验步骤

医学统计学第7版假设检验步骤

医学统计学第7版假设检验步骤
1. 提出原假设(0)和备择假设(1)
- 原假设通常是要被检验的陈述
- 备择假设是原假设被拒绝时要接受的陈述
2. 选择适当的检验统计量及其在原假设为真时的概率分布
3. 确定显著性水平α
- 通常取0.05或0.01,表示拒绝原假设的最大概率
4. 根据样本数据计算检验统计量的观测值
5. 确定拒绝域
- 拒绝域是原假设被拒绝的取值范围
- 通常利用显著性水平α从概率分布中确定拒绝域
6. 进行判断
- 若观测值落在拒绝域内,拒绝原假设
- 若观测值落在保留域内,无法拒绝原假设
7. 陈述结论
以上是我对医学统计学第7版假设检验步骤的总结,没有直接引用书中内容,希望对您有所帮助。

医学统计学易错题

医学统计学易错题

标准误与可信区间
1、关于泊松分布,错误的是( )。
A、当二项分布的n很大而 很小时,可
用泊松分布近似二项分布。
B、泊松分布由均数 唯一确定。
C、泊松分布的均数越大,越接近近正 态分布。 D、泊松分布的均数与标准差相等。
2、标准正态曲线下,中间95% 的面积所 对应的横轴范围是( )。
A、- 到+1.96 B、-1.96到+1.96 C、 - 到+2.58 D、-2.58到+2.58 E、-1.64到+1.64
1、服从二项分布的随机变量,其取值为0到n的 概率之和为1。( )
2、服从泊松分布的随机变量,其取值为0到n的 概率之和为1。( )
3、对称分布在“均数±1.96倍标准差”的范围内, 包括95%的观察值。( )
4、泊松分布的标准差和均数的关系是 ( )
5、若某人群某疾病发生阳性数X服从二项分布, 则从该人群随机抽出n个人,阳性数X不少于k 人的概率为P(k+1)+P(k+2)+…+P(n)。( )
B、 u值增加,P值增加
C、 u值减小,P值增加
D、 u值增加,P值减小
E、 u值,P值减小或增加
1、某医疗机构从当地50~60岁正常成年男 子中随机抽取200名进行血清甘油三酯调
查,测得其平均血清甘油三酯为 1.34mmol/L,标准差为0.33mmol/L,试 估计该地50~60岁正常成年男子血清甘 油三酯得平均水平。(a=0.05)
5、如果样本不是通过随机抽样得来的,作假 设检验就失去了意义。( )
6、方差分析中,如果处理因素无作用,则F值 一定等于1。( )
7、完全随机设计方差分析和随机区组设计方差分 析的检验效率是一样的。( )

医学统计学第二版高等教育出版社课后习题答案

医学统计学第二版高等教育出版社课后习题答案

第一章绪论1.举例说明总体和样本的概念。

研究人员通常需要了解和研究某一类个体,这个类就是总体。

总体是根据研究目的所确定的所有同质观察单位某种观察值(即变量值)的集合,通常有无限总体和有限总体之分,前者指总体中的个体是无限的,如研究药物疗效,某病患者就是无限总体,后者指总体中的个体是有限的,它是指特定时间、空间中有限个研究个体。

但是,研究整个总体一般并不实际,通常能研究的只是它的一部分,这个部分就是样本。

例如在一项关于2007年西藏自治区正常成年男子的红细胞平均水平的调查研究中,该地2007年全部正常成年男子的红细胞数就构成一个总体,从此总体中随即抽取2000人,分别测的其红细胞数,组成样本,其样本含量为2000人。

2.简述误差的概念。

误差泛指实测值与真实值之差,一般分为随机误差和非随机误差。

随机误差是使重复观测获得的实际观测值往往无方向性地围绕着某一个数值左右波动的误差;非随机误差中最常见的为系统误差,系统误差也叫偏倚,是使实际观测值系统的偏离真实值的误差。

3.举例说明参数和统计量的概念。

某项研究通常想知道关于总体的某些数值特征,这些数值特征称为参数,如整个城市的高血压患病率。

根据样本算得的某些数值特征称为统计量,如根据几百人的抽样调查数据所算得的样本人群高血压患病。

统计量是研究人员能够知道的,而参数是他们想知道的。

一般情况下,这些参数是难以测定的,仅能够根据样本估计。

显然,只有当样本代表了总体时,根据样本统计量估计的总体参数才是合理的。

4.简述小概率事件原理。

当某事件发生的概率小于或等于0.05时,统计学上习惯称该事件为小概率事件,其含义是该事件发生的可能性很小,进而认为它在一次抽样中不可能发生,这就是所谓的小概率事件原理,它是进行统计推断的重要基础。

第二章调查研究设计1.调查研究主要特点是什么?调查研究的主要特点是:①研究的对象及其相关因素(包括研究因素和非研究因素)是客观存在的,不能人为给予干预措施②不能用随机化分组来平衡混杂因素对调查结果的影响。

卫生统计学:第7-8章 假设检验与t检验

卫生统计学:第7-8章 假设检验与t检验
8
反证法
当一件事情的发生只有A、B两种可能的时候,为了肯 定其中的一种情况A,但又不能直接证实A,这时否定 了另一种情况B,则间接肯定了A。 证明A还是证明B? 抗氧化剂 • 在H0成立的条件下,均数之间的差异是由抽样误差
引起的,有规律可循; • 在H1成立的条件下,均数间的不同包含种种未知情
形,无规律可循。 • 故从H0成立的角度出发,寻求其成立的概率。
分布。
数理统计的中心极限定理表明:从正态总体N ( , ) 中抽取例数均为n 的样 本,样本均 数也服从正态分布N( , X )。
Gosset 将此时的 u 转换:
X
定义为t 转换: t sX
u X X
并将t 值的分布命名为t 分布。
t 分布的图形及特征
• 单峰分布,以0为中心,左右对称 • t分布是一簇曲线,其形状与自由度υ(υ=n-1)
基本原则——小概率事件在一次试验中是不可能发生的。
建立检验假设,确定检验水准
假 设 检 验 步 骤
P≤α
计算检验统计量
确定P值
作推断结论
P>α
拒绝H0,接受H1
不拒绝H0
为了解某地1岁婴儿的血红蛋白浓度,某医 生从该地随机抽取了1岁婴儿25名,测得其血红 蛋白浓度的平均数为123.5g/L,标准差为11.6 g/L, 而一般正常小儿的平均血红蛋白浓度为125 g/L, 故认为该地1岁婴儿的平均血红蛋白浓度低于一 般正常小儿的平均血红蛋白浓度。
│t│值越大,则 P 值越小;反之,│t│值 越小,P 值越大。根据上述的意义,在同 一自由度下,│t│≥ tα ,则P≤ α ; 反之, │t│<tα,则P>α。
t 检验的应用条件:
单样本t 检验中,σ未知且样本含量较小 (n<50)时,要求样本来自正态分布总体;

医学统计学方法试题及答案(二)

医学统计学方法试题及答案(二)

医学统计学方法试题及答案(二)1.在同一总体中进行抽样研究,随着样本含量增大,则()A.标准差增大B.标准误增大C.标准差趋向0D.标准差减小E.标准误减小2.抽样误差是指()A.总体参数与总体参数间的差异B.个体值与样本统计量间的差异C.总体参数间的差异D.样本统计量与总体参数间的差异E.个体值与总体参数间的差异3.X±2.58S 包括变量值的()A.68.3%B.80.0%C.90.0%D.95.0%E.99.0%4.正常参考值范围应()A.取双侧界限B.取单侧界限C.同时计算单侧和双侧界限D.根据实际情况取单侧或双侧界限E.应该是规定不变5.两个样本率差别的假设检验,其目的是()A.推断两个样本率有无差别B.推断两个总体率有无差别C.推断两个样本率和两个总体率有无差别D.推断两个样本率和两个总体率的差别有无统计意义E.推断两个总体分布是否相同6.有关参考值范围的说法,正确的是()A.参考值范围应根据正常人范围的95%来制定B.如果随机测量某人的某项指标,其值在正常人范围的95%之内,那么应认为此人的此项指标正常C.如果某项指标超出了参考值范围,那么其应为不正常D.求正态资料的参考值范围,精确度越高越好E.所谓的正常和健康都是相对的,在正常人或健康人身上都存在着某种程度的病理状态7.在标准正态分布的曲线下面积中,区间(1.96,+∞)所对应的面积是()A.95%B.99%C.5%D.2.5%E.1%8.甲率P1=48/168,乙率P2=63/200,则甲乙两率的平均率为()A.(48+63)÷2B.(48/168+63/200)÷2C.(48+63)/(168+200)D.48/468+63/200E.(48+168)/(63+200)9.为了由样本推断总体,样本应该是()A.总体中任意的一部分B.总体中的典型部分C.总体中有意义的一部分D.总体中有价值的一部分E.总体中有代表性的一部分10.统计推断的主要内容为()A.统计描述与统计图表B.参数估计和假设检验C.区间估计和点估计D.统计预测与统计控制E.参数估计与统计预测11.在假设检验中,P值和α值的关系为()A.P值越大,a值就越大B.P值越大,α值就越小C.P值和α值均可由研究者事先设定D.P值和α值都不可以由研究者事先设定E.P值的大小与α值的大小无关12.在两组正态分布资料比较的检验中,结论是P<0.05,差别有统计学意义,则P越小,说明()A.两样本均数差别越大B.两总体均数差别越大C.两样本均数有差别的可能性越大D.越有理由认为两样本均数不同E.越有理由认为两总体均数不同13.两样本均数比较,经检验得出差别有统计学意义的结论时,P越小,说明()A.两样本均数差别越大B.两总体均数差别越大C.越有理由认为两总体均数不同D.越有理由认为两样本均数不同E.越有理由认为两总体均数相同14.为研究缺氧对正常人心率的影响,有50名志愿者参加试验,分别测得试验前后的心率,为较好的分析此数据,应用的统计检验方法是()A.配对检验B.成组t检验C.成组秩和检验D.配对秩和检验E.两组方差齐性检验15.两组数据作均数差别t检验,要求数据分布近似正态而且()A.要求两组数据均相近,方差相近B.要求两组数据方差相近C.要求两组数据相近D.均数及方差相差多少都无所谓E.要求标准误相近16.两组数据作均数差别的t检验,其自由度为()A.n1+n2B.n1-n2C.n1+n2-1D.n1+n2-2E.n1+n2-317.在样本均数与总体均数比较时,若n=25,t=1.96,则()A.P>0.05B.P=0.05C.P<0.05D.P<0.01E.P>0.0118.计算某地儿童肺炎的发病率,现求得男、女童肺炎发病率分别为21.2%和19.1%,可认为()A.男童的肺炎发病率高于女童B.应进行标准化后再做比较C.资料不具可比性,不能直接作比较D.应进行假设检验后再下结论E 应增加气温数据才能做比较19.分析计数资料时,最常用的显著性检验方法是()A.t检验B.正态检验C.方差分析D.X检验法E.z检验,可认为()20.三个样本率作比较,χ2>χ20.01(3)A.各总体率不等或不全相等B.各样本率不等或不全相等C.各总体率均不相等D.各样本率均不相等E.各总体率全相等21.总体均数置信区间的宽度取决于()A.置信水平B.标准差C.标准误D.置信水平、标准差和样本含量E.样本含量22.四个百分率作比较,有1个理论数小于5、大于1,其他都大于5,则()A.只能作校正χ2检验B.不能作χ2检验C.作χ2检验不必校正D.必须先作合理的合并E.要用精确概率法23.某医生对一批计量、计数资料实验数据进行假设检验,结果判定如下:进行四格表χ2检验时,χ2=3.96则()A.P<0.05B.P=0.05C.P>0.05D. P<0.01E.P=0.0124.标准误的正确解释是()A.样本均数的标准差B.样本率的标准差C.标准差的平均数D.标准差的标准差E.统计量的标准差参考答案1.E2.D3.E4.D5.B6.E7.D8.C9.E 10.B 11.E 12.E 13.C 14.A 15.B 16.D 17.A 18.D 19.D 20.A 21.D 22.C 23.A 24.A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图一两组乳猪脑组织钙泵含量
该例为异源配对设计,首先对对照组和试验组数据差值进行正态检验。

Analyse-Descriptive Statics-Explore。

结果如下:
图二差值正态检验结果
因样本数量为7,需看Shapiro-Wilk,其值为0.771>0.05,服从正态分布。

可用配对样本均数的t检验。

(1)建立假设、确定检验水准α。

H0:µd=0,即两种处理的猪脑组织该泵的含量无差别。

H1:µd≠0, 即两种处理的猪脑组织该泵的含量有差别。

检验水准α=0.05
(2)进行t检验
Analyse-Compare Means-paired samples T test,结果如下:
图三配对t检验结果
95%的置信区间为(-0.009,0.097),包含0值,故接受H0,拒绝H1,两组间差别没有统计学意义,根据实验结果尚不能认为两种处理对猪组织钙泵含量有影响。

图四A、B鼠肝中铁的含量
该例为完全随机设计。

首先对A、B两组进行正态性检验。

Analyse-Descriptive Statics-Explore。

结果如下:
图五A、B两组鼠肝中铁含量的正态检验
因样本数量为10,需看Shapiro-Wilk,A组值为0.319>0.05,服从正态分布。

B组值为0.269>0.05,服从正态分布。

对两组进行两样本方差齐性检验,Analyse-Compare Means-Independent samples T test结果为:
图六A、B两组的方差齐性检验和t检验
由上图得该两组样本方差齐性检验不满足方差齐性(F=8.246,P<0.05)。

可用均数比较的t`
检验。

(1)建立假设、确定检验水准α。

H0:µ1=µ2,即不同饲料对鼠肝中铁的含量无影响。

H1:µ1≠µ2,即不同饲料对鼠肝中铁的含量有影响。

检验水准α=0.05
(2)进行t检验
如上述图六所示,两组样本方差齐性检验不满足方差齐性时,其95%的置信区间为(-0.1674,1.64674),包含0值。

故接受H0拒绝H1,两组间差别没有统计学意义,根据实验结果尚不能认为两种不同饲料对鼠肝中铁的含量有影响。

相关文档
最新文档