最新整理第七章假设检验.ppt
合集下载
假设检验PPT课件

60 62.5 65 67.5 70 72.5 75
b
H0 不真
67.5 70 72.5 75 77.5 80 82.5
两类错误是互相关联的, 当样本容 量固定时,一类错误概率的减少导致另 一类错误概率的增加.
b a
要同时降低两类错误的概率a b,或 者要在 a 不变的条件下降低 b,需要增
加样本容量.
(二)备择假设(alternative hypothesis),与原假设相对立(相反)的假设。 一般为研究者想收集数据予以证实自己观点的假设。 用H1表示。 表示形式:H1:总体参数≠某值 (<) (>)
例:H1: 0
(三)两类假设建立原则 1、H0与H1必须成对出现 2、通常先确定备择假设,再确定原假设 3、假设中的等号“=”总是放在原假设中
•
P>α时,H0成立
多重检验及校正
在同一研究中,有时我们会用到二次或多次显著 性检验,从上表可以看出,如果我们将显著性水平确 定为α=0.05水平,做一次显著性检验后我们只能保证 有95%的研究结果与真值是一致的;如果做两次显著 性检验后,研究结果与真值的符合程度就会降至 95%*95%=90.25,当我们进行5次显著性检验后,就 会降至77.4%,即在5次显著性检验后,由α水平所得 到的显著性检验结果的可靠性只有3/4的可靠性。
用于处理生物学研究中比较不同处理效应 的差异显著性。
数据资料中,两个样本的各个变量从各自 总体中抽取,两个样本之间变量没有任何关 联,即两个抽样样本彼此独立,不论两个样 本容量是否相同。
方法1:两个总体方差都已知(或方差未知大样本)
• 假定条件
– 两个样本是独立的随机样本
– 两个总体都是正态分布 – 若不是正态分布, 可以用正态分布来近似(n130和
第7章 假设检验基础PPT课件

S d 2 (d)2 / n 84.2747
d
n 1
t | d | 475.66 19.532, n 1 12 1 11
S / n 84.2747 / 12 d 3.查相应界值表,确定 P 值。
查表 t0.05/ 2,11
2.201,tt ,P 0.05/ 2,11
<0.05,拒绝 H0,差别有统计学意
第一节 假设检验的概念与原理
一、假设检验的思维逻辑 二、假设检验的基本步骤
2020/11/15
青岛大学医学院公共卫生系流行病与 卫生统计学教研室 周晓彬制作
一、假设检验的思维逻辑
样本统计量与总体参数间(或统计量与统计 量间的)的差异产生的原因:
1. 个体变异所导致的抽样误差所引起; 2. 总体间确实有差异
1728.03
622.51
12
757.43
1398.86
641.44
2020/11/15
青岛大学医学院公共卫生系流行病与 卫生统计学教研室 周晓彬制作
1.建立假设、确定检验水准α
H0: d 0 H1: d 0 (双侧检验)α=0.05
2.计算检验统计量
d 5707.95 12 475.66 , d 5707.95, d 2 2793182.166,
2020/11/15
青岛大学医学院公共卫生系流行病与 卫生统计学教研室 周晓彬制作
实例
用药前后患儿血清中免疫球蛋白IgG(mg/dl)含量
序号
用药前
用药后 差值(后-前)
1
1206.44
1678.44
472.00
2
921.69
1293.36
371.67
3
1294.08
《假设检验检验》课件

《假设检验检验》PPT课 件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
5讲 假设检验基础ppt课件

3
假设检验的基本原理
• 已知健康成年男子的脉搏均数为72次/分。某医生在某山区随机调查25 名健康男子,求得脉搏均数为74.2次/分,标准差6.5次/分。能否认为该 山区的成年男子的脉搏均数高于一般成年男子的脉搏均数?
• 样本均数和总体均数的差异有两种可能: • 抽样误差所致, • 有本质差异
0 72
2
假设检验的原因
由于个体差异的存在,即使从同一总体中严格的随机抽样,X1、X2、X3、 X4、、、,不同。 因此,X1、X2 不同有两种(而且只有两种)可能: (1)分别所代表的总体均数相同,由于抽样误差造成了样本均数的差别。差别 无统计学意义 。 (2)分别所代表的总体均数不同。差别有统计学意义。
• (2)备择假设:拒绝双H侧0时检而验被H接0:受的假设0 ,与H0对立。有三种情况:
单侧检验 单侧检验
2.单、双侧的H选1 :择:由0专业知。通常取0.05。
H1:0
6
▲选定检验方法,计算检验统计量
• 根据资料类型和推断目的选用不同的检验方法。不同的检验方法有相应 不同的检验统计量及计算公式。
2.两大样本的u检验
u X 0 sn
u X 0 n
u x1 x2 s12 s2 2 n1 n2
11
例题7-1 • 根据1983年大量调查结果,已知某地成年男子的脉搏均数为72次/分,某医
生2003年在该地随机调查了75名成年男子,求其脉搏均数为74.2次/分,标 准差为6.5次/分,能否据此认为该地成年男子的脉搏不同于1983年?
• 所大有小检,验并统且计服量从都已是知在的分H0布成。立的条件下计算出来的,反映了抽样误差的
• 例:
成立条件下 ,
则
用s代替σ,检验统计量为
假设检验的基本原理
• 已知健康成年男子的脉搏均数为72次/分。某医生在某山区随机调查25 名健康男子,求得脉搏均数为74.2次/分,标准差6.5次/分。能否认为该 山区的成年男子的脉搏均数高于一般成年男子的脉搏均数?
• 样本均数和总体均数的差异有两种可能: • 抽样误差所致, • 有本质差异
0 72
2
假设检验的原因
由于个体差异的存在,即使从同一总体中严格的随机抽样,X1、X2、X3、 X4、、、,不同。 因此,X1、X2 不同有两种(而且只有两种)可能: (1)分别所代表的总体均数相同,由于抽样误差造成了样本均数的差别。差别 无统计学意义 。 (2)分别所代表的总体均数不同。差别有统计学意义。
• (2)备择假设:拒绝双H侧0时检而验被H接0:受的假设0 ,与H0对立。有三种情况:
单侧检验 单侧检验
2.单、双侧的H选1 :择:由0专业知。通常取0.05。
H1:0
6
▲选定检验方法,计算检验统计量
• 根据资料类型和推断目的选用不同的检验方法。不同的检验方法有相应 不同的检验统计量及计算公式。
2.两大样本的u检验
u X 0 sn
u X 0 n
u x1 x2 s12 s2 2 n1 n2
11
例题7-1 • 根据1983年大量调查结果,已知某地成年男子的脉搏均数为72次/分,某医
生2003年在该地随机调查了75名成年男子,求其脉搏均数为74.2次/分,标 准差为6.5次/分,能否据此认为该地成年男子的脉搏不同于1983年?
• 所大有小检,验并统且计服量从都已是知在的分H0布成。立的条件下计算出来的,反映了抽样误差的
• 例:
成立条件下 ,
则
用s代替σ,检验统计量为
第七章假设检验

k
,
n
也就是说,事件“|
U
|
z
”2
2
2
是一个小概率事件.
由标准正态分布的上分位点的定义知:
k z 2 ,
17
故可以取拒绝域为 W: | U | z 2
如果由样本值算得该统计量的实测值落
入区域W,则拒绝H0 ;否则,不能拒绝H0 .
这是因为,如果H0 是对的,那么衡量差 异大小的某个统计量落入区域 W(拒绝域) 是 个小概率事件. 如果该统计量的实测值落入 W,也就是说, H0 成立下的小概率事件发生 了, 那么就认为H0不可信而否定它. 否则就不 能否定H0 (只好接受它).
n
体N (, 2 )的样本. 且设是已知常数.
12
现在要检验的假设是:
H0 : 0 (0 355),
它的对立假设是:
H1 : 0,
在实际工作中, 往往把不轻易 否定的命题作 为原假设.
称H0为原假设(或零假设); 称H1为备选假设(或对立假设). 那么,如何判断原假设H0 是否成立呢?
13
H0 : 新技术未提高效益,H1 : 新技术提高效益.
30
•假设检验 —基本概念
原 把需要检验的
假 假设称为原假
关于总体
假 设
分布的某 个命题
设 设,记为H0.
备 在拒绝原假设后,可供 择 选择的一个命题称为
假 备择假设,它是原假设
设 的对立假设,记为H1.
31
•假设检验 —基本概念
检验统计量 用于判断原假设成立与否的统计量
P{第二类错误}= P{接受H0|H0不真}= .
26
•假设检验的两类错误
显著性水平 为犯第一类错误的概率.
统计学 第7章 假设检验ppt课件

在对客观事物及其现象进行观测和实验中,随着观测或实验的次数增 多,事件发生的频率和均值逐渐地趋于某个常数。
(1)贝努利定理(Bernoulli Theorem)
ln i mPnnA
PA
1
(6.1)
贝努利定理表明事件发生的频率依概率收敛于事件发生的概率。从而 以严格的数学形式表述了频率的稳定性特征,即n当很大时,事件发生 的频率与概率之间出现较大的偏差的可能性很小。由此,在n充分大的 场合,可以用事件发生的频率来替代事件的概率。
抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
完整版PPT课件
《统计学教程》
第6章 抽样分布与参数估计
6.1 抽样分布
3.抽样分布
抽样分布(Sampling Distribution)是指从同分布总体中,独立抽 取的相同样本容量的样本统计量的概率分布。所以,抽样分布是样本分 布的概率分布,抽样分布是抽样理论的研究对象。
抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
★ 讨论题 为什么说抽样分布是抽样理论研究的对象,解释三种分布之 间的联系。
完整版PPT课件
《统计学教程》
独立同分布的中心极限定理是应用最多的一种中心极限定理。设随机
变量相互独立,服从同一分布,且具有相同的有限的数学期望和方差,
则
ln i m Fn
x
n lim k1Xk
nx
x
n n
1
t2
e 2dt
(6.3)
2பைடு நூலகம்
(1)贝努利定理(Bernoulli Theorem)
ln i mPnnA
PA
1
(6.1)
贝努利定理表明事件发生的频率依概率收敛于事件发生的概率。从而 以严格的数学形式表述了频率的稳定性特征,即n当很大时,事件发生 的频率与概率之间出现较大的偏差的可能性很小。由此,在n充分大的 场合,可以用事件发生的频率来替代事件的概率。
抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
完整版PPT课件
《统计学教程》
第6章 抽样分布与参数估计
6.1 抽样分布
3.抽样分布
抽样分布(Sampling Distribution)是指从同分布总体中,独立抽 取的相同样本容量的样本统计量的概率分布。所以,抽样分布是样本分 布的概率分布,抽样分布是抽样理论的研究对象。
抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
★ 讨论题 为什么说抽样分布是抽样理论研究的对象,解释三种分布之 间的联系。
完整版PPT课件
《统计学教程》
独立同分布的中心极限定理是应用最多的一种中心极限定理。设随机
变量相互独立,服从同一分布,且具有相同的有限的数学期望和方差,
则
ln i m Fn
x
n lim k1Xk
nx
x
n n
1
t2
e 2dt
(6.3)
2பைடு நூலகம்
第七章-假设检验PPT

(Xi X )2
i 1
)
n
[例7-5]某制药厂试制某种安定神经的新药,给10个病人 试服,结果各病人增加睡眠量如表7-2所示。
表7-1 病人服用新药增加睡眠量表
病人号码
1
2
34
5 6 7 8 9 10
增加睡眠(小时) 0.7 -1.1 -0.2 1.2 0.1 3.4 3.7 0.8 1.8 2.0
n N 1
其中, 是假设的总体比例,p 是样本比例
7.3.1 单个总体比例检验
❖ 这个检验统计量近似服从标准正态分布。如果抽样比例n/N 很小时,也可以使用下列形式:
Z p (1 )
n
[例7-7]某企业的产品畅销国内市场。据以往调查,购买该 产品的顾客有50%是30岁以上的男子。该企业负责人关心这 个比例是否发生了变化,而无论是增加还是减少。于是,该企 业委托了一家咨询机构进行调查,这家咨询机构从众多的购买 者中随机抽选了400名进行调查,结果有210名为30岁以上的 男子。该厂负责人希望在显著性水平0.05下检验“50%的顾客 是30岁以上的男子”这个假设。
解:从题意可知,X =1.36米,0=1. 32米, =0.12米。 (1)建立假设:H0: =1.32,H1: 1.32
(2)确定统计量:
Z X 1.36 1.32 1.67 / n 0.12 / 25
(3)Z的分布:Z~N(0,1)
(4)对给定的 =0.05确定临界值。因为是双侧备择假设所以
动生产率的标准差相等.问:在显著性水平0.05下,改革前、 后平均劳动生产率有无显著差异? 解:(1)建立假设H0:1 2 (没有差别)。
H1:1 2 (有差别)(左单侧备择假设) (2)计算统计量:
假设检验 PPT课件

一、假设检验的概念 (Hypothesis test)
概念:假设检验是先对总体做出某种假定 (检验假设),然后根据样本信息来推 断其是否成立的一类统计方法的总称。 即我们要通过假设检验来判断样本与总 体、样本与样本之间的差异是由抽样误 差引起的,还是有本质的区别。
二、假设检验的基本思想
小概率思想
假设检验
Hypothesis Test
内
容
假设检验的概念与原理 假设检验的基本步骤 t检验 u检验或称Z检验 应用假设检验的注意事项
根据大量调查,一般健康成年男子的平均血红蛋 白含量为140.00g/L,现某医生在山区随机测定 了25名健康成年男子,其血红蛋白均数为 153.64g/L,标准差为24.82g/L,故认为该山区 成年男子的血红蛋白均数高于一般健康成年男子 血红蛋白均数。
0.005 0.01 63.657 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250 3.169 2.831 2.819 2.807 2.797 2.787
0.0025 0.001 0.005 0.002 127.321 318.309 14.089 22.327 7.453 10.215 5.598 7.173 4.773 5.893 4.317 4.029 3.833 3.690 3.581 3.135 3.119 3.104 3.091 3.078 5.208 4.785 4.501 4.297 4.144 3.527 3.505 3.485 3.467 3.450
H0时的最大允许误差。医学研究中一般 取=0.05 。 检验水准实际上确定了小概率事件的判 断标准。
单双侧的选择
已知条件 A和B 不知谁好谁坏 A不会比B差 A不会比B好 H0 A=B A=B A=B H1 A≠B A>B A<B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5- 17
2020年6月24日
>统计推断结论:拒绝原假设
P=[ ] ≤ 基于H0假设的总体情况出现了小概率事 件 则拒绝H0,接受H1,可以认为样本与总 体的差别不仅仅是抽样误差造成的,可 能存在本质上的差别,属“非偶然的 (significant)”,因此,可以认为两者的 差别有统计学意义
总体:湖南大学【建环】专业2016 级男生全体男生
样本:点名报身高(10人) 描述统计 样本均值 为:【 173.7 】 标准差为 【5.314】
5- 13
2020年6月24日
>推断统计【单样本T检验】
【步பைடு நூலகம்一】建立假设
原假设H0:本专业男生身高与标准身 高无明显差异。
对立的备择假设H1:本专业男生身高 与标准身高有明显差异。
5- 3
>描述统计
1. 内容
¥
搜集数据
50
整理数据
展示数据
25
2. 目的
描述数据特征
0 Q1 Q2 Q3 Q4
找出数据的基本规律 x = 30 s2 = 105
5- 4
>推断统计
1. 内容
总体
▪ 参数估计
▪ 假设检验
2. 目的
▪ 对总体特征作出
推断
样
本
5- 5
>定义
统计推断(statistical inference) 是 根据随机性的观测数据(样本)以及 问题的条件和假定(模型),而对未知 事物作出的,以概率形式表述的推断。
5- 19
2020年6月24日
>假设检验基本原理
为了确定从样本 统计结果推论至总 体时所犯错的概率,利用一些统计方法 ,进行统计假定。
通过把所得到的统计检定值,与统 计学家建立了一些随机变量的概率分布 进行比较,我们可以知道在%多少 的机 会下会得到目前的结果。
5- 20
>假设检验基本原理
若经比较后发现,出现这结果的机 率很少,亦即是说,是在机会很 少、很 罕有的情况下才出现;那我们便可以有 信心的说,这不是巧合,是具有统计学 上的意义的 。
即本专业男生身高与标准身高有明显差异
5- 18
>统计推断结论:不能拒绝原假设
若P=【 0.067 】>
基于H0出现了很常见的事件
则样本与总体间的差别尚不能排除纯粹由抽 样误差造成,可能的确属“偶然的(nonsignificant)”,故尚不能拒绝H0
因此,认为两者的差别无统计学意义
即本专业男生身高与标准身高没有明显差异
相反,若比较后发现,出现的机率 很高,并不罕见;那我们便不能很有信 心的指出这不是巧合,因此不具备统计学 意义。
5- 21
>均值差异性检验
均值差异性是假设检验的一部分,包括T 检验和方差分析
根据被试总体所获得的几组数据,如果存在统计 学意义上的明显差别,代表组与组间存在着显著 的差异性。
显著性差异,一般借助于均值差异性来衡量。 对于总体的差异性,借助样本的差异性检验来推
P值:从H0假设的总体中抽出现有样本的概率, 以及置信区间。
P=[ 0.067
]
95%置信区间 为: 【 169.9,177.5 】
5- 16
2020年6月24日
>推断统计【单样本T检验】
【步骤四】得出统计推断结论
按照事先确定的检验水准界定上面得到的 P值,并按小概率原理认定对H0的取舍, 作出推断结论
5- 10
>抽样调查
1. 从总体中随机抽取一部分单位(样本)进 行调查
2. 目的是推断总体的未知数字特征
3. 最常用的调查方式
4. 具有经济性、时 效性强、适应面 广、准确性高等 特点
☺ ☺
☺ ☺☺
☺☺
总体
随机样本
☺☺
5- 11
5- 12
2020年6月24日
>引例:确定总体和样本
【引例】分析本专业2015级男生身 高与标准身高值有无明显差异。
5- 7
统计学探索现象数量规律性的过程
>为什么需要推断?
多数情况下得到的是样本信息 真正关心的是总体情况 样本信息总体特征(总体均数、标准误
等) 年轻女性月化妆费的估计
判断某些因素对另一些指标有无影响,及 影响大小 促销活动对销售额有无影响
5- 8
自阅读共享资料
SPSS
8
>统计推断的必要性
H0: =0, H0: =170.2,
H1:≠0; H1:≠170.2。
5- 14
2020年6月24日
>推断统计【单样本T检验】
【步骤二】确定检验水准
显著性水平(检验水准) = 0.05 置信水平=(1 - )*100%=95%
5- 15
2020年6月24日
>推断统计【单样本T检验】
【步骤三】计算检验统计量和P值
断
5- 22
>课堂提问
结合你的大作业题目,你在研究 中哪些地方要用到假设检验?那些 是均值差异性检验?
5- 23
>课堂提问
1、在假设检验中,当我们作出拒绝原假 设而接受备择假设的结论时,表示:
A、原假设必定是错误的 B、备择假设必定是正确的 C、在原假设为真的假设下发生了小概率 事件 D、在备择假设为真的假设下发生了小概 率事件
破坏性检验和试验,如灯泡的寿命 测试,不能对总体进行。
一些研究对象,组成其整体的个体 是无限多的。
如研究海水中微生物。 有些情况对全部个体逐一研究、检 测是可以的,但需要付出非常多的财力 、物力和时间
5- 9
>引例
根据国家统计局数据,中国18-25岁 青年男子平均身高为170.2cm.
试分析本专业2016级男生身高与这 个身高标准值有无明显差异。
>第五讲 统计推断概述
本讲内容为教材3-4章的前导知识
5- 1
>统计方法
统计方法
描述统计
推断统计
参数估计
假设检验
5- 2
>总体、个体和样本
(概念要点)
总体(Population):调查研究的事物或现 象的全体
个体(Item unit):组成总体的每个元素 样本(Sample):从总体中所抽取的部分个 体 样本容量(Sample size):样本中所含个体 的数量
5- 24
答案:C
>课堂提问
2、在假设检验中,当我们作出接受(不 能拒绝)原假设的结论时,表示
A、原假设必定是正确的 B、没有充足的理由否定原假设 C、备择假设必定是正确的 D、备择假设必定是错误的
我认为该企业生产的零件 的有95%可能为4克重!
5- 6
>描述统计与推断统计的关系
概率论
(包括分布理论、大数定律 和中心极限定理等)
样本数据
反映客观现 象的数据
描述统计
(统计数据的搜集、整
总体数据 理、显示和分析等)
推断统计
(利用样本信息和概率 论对总体的数量特征进 行估计和检验等)
总体内在的 数量规律性