对数函数经典练习题

合集下载

(完整版)对数函数练习题(有答案)

(完整版)对数函数练习题(有答案)

对数函数练习题(有答案)1.函数y =log (2x -1)(3x -2)的定义域是( )A .⎝⎛⎭⎫12,+∞B .⎝⎛⎭⎫23,+∞C .⎝⎛⎭⎫23,1∪(1,+∞)D .⎝⎛⎭⎫12,1∪(1,+∞) 2.若集合A ={ x |log 2x =2-x },且 x ∈A ,则有( )A .1>x 2>xB .x 2>x >1C .x 2>1>xD .x >1>x 23.若log a 3>log b 3>0,则 a 、b 、1的大小关系为( )A .1<a <bB .1 <b <aC .0 <a <b <1D .0 <b <a <14.若log a 45<1,则实数a 的取值范围为( ) A .a >1 B .0<a <45 C .45<a D .0<a <45或a >1 5.已知函数f (x )=log a (x -1)(a >0且 a ≠1)在x ∈(1,2)时,f (x )<0,则f (x )是A .增函数B .减函数C .先减后增D .先增后减6.如图所示,已知0<a <1,则在同一直角坐标系中,函数y =a -x 和y =log a (-x )的图象只可能为( )7.函数y =f (2x )的定义域为[1,2],则函数y =f (log 2x )的定义域为 ( )A .[0,1]B .[1,2]C .[2,4]D .[4,16]8.若函数f (x )=log12()x 3-ax 上单调递减,则实数a 的取值范围是 ( )A .[9,12]B .[4,12]C .[4,27]D .[9,27]9.函数y =a x -3+3(a >0,且a ≠1)恒过定点__________.10.不等式⎝⎛⎭⎫1310-3x<3-2x 的解集是_________________________. 11.(1)将函数f (x )=2x 的图象向______平移________个单位,就可以得到函数g (x )=2x -x 的图象.(2)函数f (x )=⎝⎛⎭⎫12|x -1|,使f (x )是增区间是_________. 12.设 f (log 2x )=2x (x >0).则f (3)的值为 .13.已知集合A ={x |2≤x ≤π,x ∈R}.定义在集合A 上的函数f (x )=log a x (0<a <1)的最大值比最小值大1,则底数a 为__________.14.当0<x <1时,函数y =log (a 2-3)x 的图象在x 轴的上方,则a 的取值范围为________.15.已知 0<a <1,0<b <1,且a log b (x -3)<1,则 x 的取值范围为 . 16.已知 a >1,求函数 f (x )=log a (1-a x )的定义域和值域.17.已知 0<a <1,b >1,ab >1,比较log a 1b ,log a b ,log b 1b的大小.18.已知f (x )=log a x 在[2,+ ∞ )上恒有|f (x )|>1,求实数a 的取值范围.19.设在离海平面高度h m 处的大气压强是x mm 水银柱高,h 与x 之间的函数关系式为:h =k ln x c,其中c 、k 都是常量.已知某地某天在海平面及1000 m 高空的大气压强分别是760 mm 水银柱高和675 mm 水银柱高,求大气压强是720 mm 水银柱高处的高度.20.已知关于x 的方程log 2(x +3)-log 4x 2=a 的解在区间(3,4)内,求实数a 的取值范围.参考答案:1.C 2.B 3.A 4.D 5.A 6.B 7.D 8.A9.(3,4) 10.{x |_x <2} 11.右,2;(-∞,1), 12.25613.2π14.a ∈(-2,-3)∪(3,2) 15.(3,4)16.解 ∵ a >1,1-a x >0,∴ a x <1,∴ x <0,即函数的定义域为(-∞ ,0).∵ a x >0且a x <1,∴ 0<1-a x <1 ∴log a (1-a x )<0,即函数的值域是(-∞ ,0).17.解 ∵ 0<a <1,b >1,∴ log a b <0,log b 1b =-1,log a 1b >0,又ab >1,∴ b >1a >1,log a b <log a 1a=-1,∴ log a b <log b51b <log a 1b.18.解 由|f (x )|>1,得log a x >1或log a x <-1.由log a x >1,x ∈[2,+∞ )得 a >1,(log a x )最小=log a 2,∴ log a 2>1,∴ a <2,∴ 1<a <2;由log a x <-1,x ∈[2,+ ∞ )得 0<a <1,(log a x )最大=log a 2,∴ log a 2<-1,∴ a >12, ∴12<a <1. 综上所述,a 的取值范围为(12,1 )∪(1,2).19.解 ∵ h =k ln x c,当 x =760,h =0,∴ c =760. 当x =675时,h =1 000,∴ 1 000=k ln 675760=k ln0.8907 ∴ k =1000ln0.8907=1000lg e lg0.8907当x =720时,h =1000lg e lg0.8907ln 720760=1000lg e lg0.8907·ln0.9473=1000lg e lg0.8907·lg0.9473lg e≈456 m . ∴ 大气压强为720 mm 水银柱高处的高度为456 m .20.本质上是求函数g (x )=log 2(x +3)-log 4x 2 x ∈(3,4)的值域.∵ g (x )=log 2(x +3)-log 4x 2=log 2(x +3)-log 2x =log 2x +3x =log 2⎝⎛⎭⎫1+1x ∈⎝⎛⎭⎫log 254,log 243 ∴ a ∈⎝⎛⎭⎫log 254,log 243.。

对数函数练习题及其答案

对数函数练习题及其答案

对数函数练习题及其答案• 1.已知log a8=,则a等于( )A B C 2 D 4• 2.对数的值为( )A.1 B.1/2 C.-1 D.-1/2• 3.下列各式中,能成立的是( )A log3(6-4)=log36-log34B log3(6-4)=C log35-log36=D log23+log210=log25+log26• 4.以下四个命题:(1)若log x3=3,则x=9;(2)若log4x=,则x=2; (3)若log x=0,则x=;(4)若log x=-3,则x=125,其中真命题的个数是 ( )A 1个B 2个C 3个D 4个• 5.如果,那么的取值范围是 ( ) A. B. C.D.且• 6.函数的反函数是 ( )(A) (B)(C) (D)•7.函数的递增区间是( )A. B. C. D.•8.已知,则的值为 ( )A. 3B. 8C. 4D.•9.若函数的定义域为,则它的值域为( )A. B. C.D.•10.当时,函数和的图象只可能是( )•11.计算:_____________.•12.已知等式, 则x=________.•13.如果对数lga与lgb互为相反数,那么a与b之间应满足_________.•14.函数在区间上的最大值比最小值大1,则__________.•15.已知函数f(x)=a x+k的图象过点(1, 3),其反函数f-1(x)的图象过点(2, 0),则f (x)= .•16.函数y=f (x), x∈(, 3],则f ()的定义域是 .•17.求值 (本题共12分)(1)lg14-2lg+lg7-lg18(2)(3)•18.(12分)已知函数f(x)=log2(-x2+3x-2)的定义域为P,g(x)= +log的定义域为Q,求P Q•19.(14分)函数, (>0, ≠1),若,求的取值范围•20.(16分) 已知函数f (x)=lg(2x2-5x-3),试求:(I)函数y=f (x)的定义域;(II)函数y=f (x)的单调区间•21、(16分)设其中并且仅当在的图象上时,在的图象上。

对数和对数函数练习题(答案)

对数和对数函数练习题(答案)

对数与对数函数同步测试 一、选择题: 1.3log 9log 28的值是( ) A .32 B .1 C .23 D .22.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是( )A .z <x <yB .x <y <zC .y <z <xD .z <y <x3.已知x =2+1,则lo g 4(x 3-x -6)等于( )A.23 B.45 D.21 4.已知lg2=a ,lg3=b ,则15lg 12lg 等于( )A .b a b a +++12 B .b a b a +++12 C.ba ba +-+12D .ba ba +-+125.已知2 lg(x -2y )=lg x +lg y ,则yx 的值为 ( )A .1 B .4 C .1或4 D .4 或y =)12(log 21-x 的定义域为( )A .(21,+∞) B .[1,+∞) C .(21,1] D .(-∞,1)7.已知函数y =log 21 (ax 2+2x +1)的值域为R ,则实数a 的取值范围是( ) A .a > 1 B .0≤a < 1 C .0<a <1 D .0≤a ≤1 f (e x )=x ,则f (5)等于( )A .e 5 B .5e C .ln5 D .log 5e 9.若1()log (01),(2)1,()a f x x a a f f x -=>≠<且且则的图像是( )A B C D10.若22log ()y x ax a =---在区间(,13)-∞-上是增函数,则a 的取值范围是( )A .[223,2]- B .)223,2⎡-⎣ C .(223,2⎤-⎦D .()223,2- O yOy O yO y11.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于( ) A .}1|{>x x B .}0|{>x x C .}1|{-<x x D .}11|{>-<x x x 或12.函数),1(,11ln+∞∈-+=x x x y 的反函数为 () A ),0(,11+∞∈+-=x e e y x xB .),0(,11+∞∈-+=x e e y x xC .)0,(,11-∞∈+-=x e e y x xD .)0,(,11-∞∈-+=x e e y x x 二、填空题: 13.计算:log 2.56.25+lg1001+ln e +3log 122+= . 14.函数y =log 4(x -1)2(x <1=的反函数为 . 15.已知m >1,试比较(lg m )0.9与(lg m )0.8的大小 . 16.函数y =(log 41x )2-log 41x 2+5 在 2≤x ≤4时的值域为 .三、解答题:17.已知y =log a (2-ax )在区间{0,1}上是x 的减函数,求a 的取值范围.18.已知函数f (x )=lg[(a 2-1)x 2+(a +1)x +1],若f (x )的定义域为R ,求实数a 的取值范围.19.已知f (x )=x 2+(lg a +2)x +lg b ,f (-1)=-2,当x ∈R 时f (x )≥2x 恒成立,求实数a 的值,并求此时f (x )的最小值?20.设0<x<1,a>0且a≠1,试比较|log a(1-x)|与|log a(1+x)|的大小。

对数函数精选练习题(带答案)

对数函数精选练习题(带答案)

对数函数精选练习题(带答案)1.函数y =log 23(2x -1)的定义域是( )A .[1,2]B .[1,2) C.⎣⎡⎦⎤12,1 D.⎝⎛⎦⎤12,1答案 D解析 要使函数解析式有意义,须有log 23(2x -1)≥0,所以0<2x -1≤1,所以12<x ≤1,所以函数y =log 23(2x -1)的定义域是⎝⎛⎦⎤12,1.2.函数f (x )=log a (x +b )的大致图象如图,则函数g (x )=a x -b 的图象可能是( ) 答案 D解析 由图象可知0<a <1且0<f (0)<1,即⎩⎪⎨⎪⎧0<a <1, ①0<log a b <1, ②解②得log a 1<log a b <log a a ,∵0<a <1,∴由对数函数的单调性可知a <b <1, 结合①可得a ,b 满足的关系为0<a <b <1,由指数函数的图象和性质可知,g (x )=a x -b 的图象是单调递减的,且一定在y =-1上方.故选D.3.(2017·北京高考)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是( ) (参考数据:lg 3≈0.48)A .1033B .1053C .1073D .1093 答案 D解析 由题意,lg M N =lg 33611080=lg 3361-lg 1080=361lg 3-80lg 10≈361×0.48-80×1=93.28. 又lg 1033=33,lg 1053=53,lg 1073=73,lg 1093=93,故与MN 最接近的是1093.故选D.4.已知函数f (x )是偶函数,定义域为R ,g (x )=f (x )+2x ,若g (log 27)=3,则g ⎝⎛⎭⎫log 217=( )A .-4B .4C .-277 D.277 答案 C解析 由g (log 27)=3可得,g (log 27)=f (log 27)+7=3,即f (log 27)=-4,则g ⎝⎛⎭⎫log 217=f (-log 27)+17=-4+17=-277.5.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=( ) A .-13 B .-12 C.12 D.32 答案 A解析 因为log 49=log 29log 24=log 23>0,f (x )为奇函数,且当x <0时,f (x )=2x ,所以f (log 49)=f (log 23)=-f (-log 23)=-2-log 23=-2log2 13=-13.6.设a =log 54-log 52,b =ln 23+ln 3,c =1012 lg 5,则a ,b ,c 的大小关系为( )A .a <b <cB .b <c <aC .c <a <bD .b <a <c答案 A解析 由题意得,a =log 54-log 52=log 52,b =ln 23+ln 3=ln 2,c =10 12 lg 5=5,得a =1log 25,b =1log 2e ,而log 25>log 2e>1,所以0<1log 25<1log 2e <1,即0<a <b <1.又c =5>1.故a <b <c .故选A.7.(2017·全国卷Ⅰ)已知函数f (x )=ln x +ln (2-x ),则( ) A .f (x )在(0,2)单调递增 B .f (x )在(0,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称 答案 C解析 f (x )的定义域为(0,2).f (x )=ln x +ln (2-x )=ln [x (2-x )]=ln (-x 2+2x ).设u =-x 2+2x ,x ∈(0,2),则u =-x 2+2x 在(0,1)上单调递增,在(1,2)上单调递减.又y =ln u 在其定义域上单调递增,∴f (x )=ln (-x 2+2x )在(0,1)上单调递增,在(1,2)上单调递减. ∴选项A ,B 错误.∵f (x )=ln x +ln (2-x )=f (2-x ),∴f (x )的图象关于直线x =1对称,∴选项C 正确.∵f (2-x )+f (x )=[ln (2-x )+ln x ]+[ln x +ln (2-x )]=2[ln x +ln (2-x )],不恒为0, ∴f (x )的图象不关于点(1,0)对称,∴选项D 错误.故选C. 8.已知a ,b >0且a ≠1,b ≠1,若log a b >1,则( )A .(a -1)(b -1)<0B .(a -1)(a -b )>0C .(b -1)(b -a )<0D .(b -1)(b -a )>0 答案 D解析 因为log a b >1,所以a >1,b >1或0<a <1,0<b <1,所以(a -1)(b -1)>0,故A 错误; 当a >1时,由log a b >1,得b >a >1,故B ,C 错误.故选D.9.(2019·北京模拟)如图,点A ,B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,若△ABC 为等边三角形,且直线BC ∥y 轴,设点A 的坐标为(m ,n ),则m =( ) A .2 B .3 C. 2 D.3 答案 D解析 因为直线BC ∥y 轴,所以B ,C 的横坐标相同;又B 在函数y =log 2x +2的图象上,点C 在函数y =log 2x 的图象上,所以|BC |=2.即正三角形ABC 的边长为2.由点A 的坐标为(m ,n ),得B (m +3,n +1),C (m +3,n -1),所以⎩⎪⎨⎪⎧n =log 2m +2,n +1=log 2(m +3)+2,所以log 2m +2+1=log 2(m +3)+2,所以m = 3.10.(2018·湖北宜昌一中模拟)若函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,且b =lg 0.9,c =20.9,则( )A .c <b <aB .b <c <aC .a <b <cD .b <a <c 答案 B解析 由5+4x -x 2>0,得-1<x <5, 又函数t =5+4x -x 2的对称轴方程为x =2, ∴复合函数f (x )=log 0.9(5+4x -x 2)的增区间为(2,5),∵函数f (x )=log 0.9(5+4x -x 2)在区间(a -1,a +1)上递增,∴⎩⎪⎨⎪⎧a -1≥2,a +1≤5,则3≤a ≤4,而b =lg 0.9<0,1<c =20.9<2,所以b <c <a .11.(2019·石家庄模拟)设方程10x =|lg (-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1 D .0<x 1x 2<1答案 D解析 作出y =10x 与y =|lg (-x )|的大致图象,如图.显然x 1<0,x 2<0.不妨设x 1<x 2,则x 1<-1,-1<x 2<0, 所以10 x 1=lg (-x 1),10 x 2=-lg (-x 2), 此时10 x 1<10 x 2, 即lg (-x 1)<-lg (-x 2), 由此得lg (x 1x 2)<0,所以0<x 1x 2<1.12.函数y =log a (x -1)+2(a >0,且a ≠1)的图象恒过的定点是________. 答案 (2,2)解析 令x =2得y =log a 1+2=2,所以函数y =log a (x -1)+2的图象恒过定点(2,2).13.(2019·成都外国语学校模拟)已知2x =3,log 483=y ,则x +2y 的值为________.答案 3解析 因为2x =3,所以x =log 23.又因为y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3. 14.(2018·兰州模拟)已知函数y =log a x (2≤x ≤4)的最大值比最小值大1,则a 的值为________. 答案 2或12解析 ①当a >1时,y =log a x 在[2,4]上为增函数. 由已知得log a 4-log a 2=1,所以log a 2=1,所以a =2. ②当0<a <1时,y =log a x 在[2,4]上为减函数. 由已知得log a 2-log a 4=1,所以log a 12=1,a =12.综上知,a 的值为2或12.15.若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,且a ≠1)在区间⎝⎛⎭⎫12,+∞内恒有f (x )>0,则f (x )的单调递增区间为________.答案 (0,+∞)解析 令M =x 2+32x ,当x ∈⎝⎛⎭⎫12,+∞时,M ∈(1,+∞),f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =⎝⎛⎭⎫x +342-916,因此M 的单调递增区间为⎝⎛⎭⎫-34,+∞.又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).16.(2019·江苏南京模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 12 x ,x ≥2,2a x -3a ,x <2(其中a >0,且a ≠1)的值域为R ,则实数a 的取值范围为________. 答案 ⎣⎡⎭⎫12,1解析 由题意,分段函数的值域为R ,故其在(-∞,2)上应是单调递减函数,所以0<a <1,根据图象可知,log 122≥2a 2-3a ,解得12≤a ≤1.综上,可得12≤a <1.。

对数练习题

对数练习题

对数练习题一、选择题1. 已知log₂3 = a,则2^(2a) 等于()A. 3^2B. 3^4C. 9D. 62. 若log₃x = 5,则x等于()A. 3^5B. 3^4C. 5^3D. 5^43. 已知log₅(x1) = 2,则x等于()A. 25B. 26C. 30D. 314. 若log₂(x+3) log₂(x2) = 3,则x等于()A. 5B. 6C. 7D. 8二、填空题1. 已知log₄x = 3,则x = _______。

2. 若log₃(x1) = log₃(2x+1),则x = _______。

3. 已知log₂3 = a,log₂5 = b,则log₂15 = _______。

4. 若log₅(x+1) log₅(x1) = 2,则x = _______。

三、解答题1. 已知log₂x = 3,求log₄x的值。

2. 已知log₃(x1) = 2,求log₃(x²2x+1)的值。

3. 已知log₂3 = a,求log₂9的值。

4. 已知log₅(x+2) log₅(x2) = 2,求x的值。

5. 已知log₂x + log₂(x+2) = 3,求x的值。

四、应用题1. 某种细菌在繁殖过程中,每20分钟分裂一次。

假设初始时刻细菌数量为10个,求经过2小时后,细菌的数量。

2. 一块试验田的pH值为5.6,现将pH值调整为7.2,需要加入多少倍的碱性物质(假设加入的碱性物质完全反应)。

3. 一座山的高度为1000米,登山者从山脚出发,每上升100米,气温下降0.6℃。

求山顶的气温比山脚低多少℃。

五、综合题1. 已知log₂(x 1) + log₂(x + 1) = 3,求x的值。

2. 已知log₃x + log₃(y 2) = 4,且log₂y log₂x = 1,求x和y的值。

3. 已知log₅(x² 4) = 2,求log₂(x + 2)的值。

对数函数练习题

对数函数练习题

对数函数练习题一、选择题1. 函数y=log_{2}x的值域是:A. (-∞,0)B. (0,+∞)C. (-∞,+∞)D. [0,+∞)2. 对数函数y=log_{a}x(a>0且a≠1)的图象恒过定点:A. (0,1)B. (1,0)C. (1,1)D. (0,0)3. 若log_{a}b>log_{a}c,则a,b,c的大小关系是:A. a>b>cB. 0<a<b<cC. a<b<cD. 无法确定4. 对于函数f(x)=log_{3}(1-2x),其定义域是:A. (-∞,1/2)B. (1/2,+∞)C. (-∞,1]D. (-∞,0]5. 函数y=log_{4}x在其定义域内是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增二、填空题1. 已知log_{5}25=2,则log_{5}5的值为______。

2. 如果log_{2}8=3,则2^{3}的值为______。

3. 对数函数f(x)=log_{2}x的反函数是______。

4. 函数y=log_{a}x(a>1)的图象在x轴的截距为______。

5. 已知log_{3}27=3,则log_{3}(1/27)的值为______。

三、解答题1. 求函数y=log_{2}(3x-2)的单调区间。

2. 已知函数f(x)=log_{3}x,求f(9)的值。

3. 已知对数函数y=log_{a}x(a>0且a≠1)的图象过点(2,-1),求a的值。

4. 已知函数y=log_{4}x的图象与直线y=x相切,求切点坐标。

5. 已知函数y=log_{a}x(a>1)的图象过点(1/9,-2),求a的值并判断函数的单调性。

四、证明题1. 证明:对数函数y=log_{a}x(a>0且a≠1)在其定义域内是连续的。

2. 证明:若a>1,则函数y=log_{a}x在(0,+∞)上是增函数;若0<a<1,则函数y=log_{a}x在(0,+∞)上是减函数。

高一数学对数函数经典题及详细答案

高一数学对数函数经典题及详细答案

⾼⼀数学对数函数经典题及详细答案⾼⼀数学对数函数经典练习题⼀、选择题:(本题共12⼩题,每⼩题4分,共48分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的)1、已知32a =,那么33log 82log 6-⽤a 表⽰是( )A 、2a -B 、52a -C 、23(1)a a -+ D、 23a a -答案A。

∵3a =2→∴a=log 32则: log 38-2log 36=log 323-2log 3(2*3) =3log 32-2[log 32+lo g33] =3a-2(a+1) =a-22、2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4 C、1 D、4或1答案B 。

∵2log a (M-2N)=log a M +log a N ,∴l oga (M-2N)2=log a (MN ),∴(M -2N)2=MN ,∴M 2-4MN+4N 2=MN ,→m 2-5m n+4n 2=0(两边同除n 2)→(n m )2-5n m +4=0,设x=n m→x 2-5x+4=0→(x 22==1x x ⼜∵2log (2)log log a a a M N M N -=+,看出M-2N >0 M>0 N>0∴n m =1答案为:43、已知221,0,0x y x y +=>>,且1log (1),log ,log 1y a a a x m n x+==-则等于( )A 、m n +B 、m n -C 、()12m n +D 、()12m n - 答案D 。

∵loga(1+x)=m l oga [1/(1-x)]=n,loga (1-x)=-n 两式相加得:→ loga [(1+x)(1-x )]=m-n →loga (1-x2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m -n ∴2loga (y)=m-n→log a(y)=21(m-n)4. 若x 1,x 2是⽅程lg 2x +(lg 3+lg2)lgx+lg3·lg2 = 0的两根,则x 1x 2的值是( ).(A).lg 3·lg2 (B).lg 6 (C).6 (D).61答案D∵⽅程l g2x+(lg2+lg3)lgx+lg 2l g3=0的两根为1x 、2x ,[注:lg 2x即(lgx)2,这⾥可把lg x看成能⽤X ,这是⼆次⽅程。

高一数学对数函数经典题及详细答案

高一数学对数函数经典题及详细答案

高一数学对数函数经典题及详细答案1、已知3a=2,那么log3 8-2log3 6用a表示是()A、a-2.B、5a-2.C、3a-(1+a)。

D、3a-a2/2答案:A。

解析:由3a=2,可得a=log3 2,代入log3 8-2log3 6中得:log3 8-2log3 6=log3 2-2log3 (2×3)=3log3 2-2(log3 2+log33)=3a-2(a+1)=a-2.2、2loga(M-2N)=logaM+logaN,则M的值为()A、N/4.B、M/4.C、(M+N)2.D、(M-N)2答案:B。

解析:2loga(M-2N)=logaM+logaNloga(M-2N)2=logaMNM-2N=MNM=4N3、已知x+y=1,x>0,y>0,且loga(1+x)=m,loga(1-y)=n,则loga y等于()A、m+n-2.B、m-n-2.C、(m+n)/2.D、(m-n)/2答案:D。

解析:由已知可得1-x=y,代入loga(1+x)=m中得loga(2-x)=m,两式相减得loga[(2-x)/(1+x)]=m-n,化简得loga[(1-x)/x]=m-n,即loga y=m-n,所以答案为D。

4、若x1,x2是方程lg2x+(lg3+lg2)lgx+lg3·lg2=0的两根,则x1x2=()A、1/3.B、1/6.C、1/9.D、1/36答案:B。

解析:将lg2x+(lg3+lg2)lgx+lg3·lg2=0化为对数形式,得:log2x+(log23+log22)logx+log32=0log2x+(log2×3+log22)logx+log3+log2=0XXXlog2x+log2xlog23+log32+log2=0log2x(1+log23)+log32+log2=0log2x=log32+log2/(1+log23)x=2log32+log2/(1+log23)x1x2=2log32+log2/(1+log23)×2log32+log2/(1+log23)2log32+log2/(1+log23)22log32+2log2/(1+log23)2log2(3/2)2/(1+log23)2log2(9/4)/(1+log23)2log29/(1+log23)2log29/(1+log2+log23)2log29/(3+log23)2log29/(3+log2+log3)2log29/(3+1+log3)2log29/(4+log3)2log29/(4+log3/log10)2log29/(4+0.4771)1/61.答案D,已知lg2x+(lg2+lg3)lgx+lg2lg3=0的两根为x1、x2,则x1•x2的值为16.2.答案C,已知log7[log3(log2x)]=0,则x等于2^3=8,x-1/2=2^3-1/2=15/2,x1•x2=2^3•15/2=60.3.答案C,lg12=2a+b,lg15=b-a+1,比值为(2a+b)/(1-a+b),化简得到2a+b/(1-a+b)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中45分钟过关检测
§2.8 对数函数
一、选择题(每小题3分,共15分)
1.图中曲线是对数函数y =log a x 的图象,已知a 取10
1,
53,54,3四个值,则相应于C 1,C 2,C 3,C 4的a 值依次为
A.10
1,
53,34,3 B.53,101,34,3 C.10
1,53,3,34 D.53,101,3,34 2.函数y =)12(log 21-x 的定义域为 A.(
2
1,+∞) B.[1,+∞) C.( 21,1] D.(-∞,1] 3.函数y =lg(x
+12-1)的图象关于 A.x 轴对称
B.y 轴对称
C.原点对称
D.直线y =x 对称 4.已知03
1log 31log >>b a ,则a 、b 的关系是 A.1<b <a B.1<a <b
C.0<a <b <1
D.0<b <a <1
5.已知A ={x |2≤x ≤π},定义在A 上的函数y =log a x (a >0且a ≠1)的最大值比最小值大1,则底数a 的值为 A.π2
B.
2π C.π-2 D. 2π或π2 二、填空题(每小题3分,共15分)
6.设函数f (x )=)12(log 12+-x a 在区间(-
21,0)上恒有f (x )>0,则a 的取值范围是__________. 7.函数y =(0.2)x -1的反函数是__________.
8.已知log a 3
2<1,则a 的取值范围是__________.
9.函数f (x )=|lg x |,则f (
41),f (31),f (2)的大小关系是__________. 10.函数f (x )=x 2-2ax +a +2,若f (x )在[1,+∞)上为增函数,则a 的取值范围是__________,若
f (x )在[0,a ]上取得最大值3,最小值2,则a =__________.
三、解答题(共20分)
11.(6分)已知m >1,试比较(lg m )0.9与(lg m )0.8的大小.
12.(7分)已知f (x )=(3-2x -x 2)21,求y =f (lg x )的定义域、值域、单调区间.
13.(7分)已知函数f (x )=log a (a -a x )且a >1,
(1)求函数的定义域和值域;
(2)讨论f (x )在其定义域上的单调性;
(3)证明函数图象关于y =x 对称.
参考答案
一、1.A 2.C 3.C 4.D 5.D
二、6.-2<a <-1或1<a <2
7.y =log 0.2(x +1)(x >-1)
8.a >1或0<a <
32 9.f (41)>f (3
1)>f (2) 10.(-∞,1] 1
三、11.解:当lg m >1即m >10时,(lg m )0.9>(lg m )0.8;
当lg m =1即m =10时,(lg m )0.9=(lg m )0.8;
当0<lg m <1即1<m <10时,(lg m )0.9<(lg m )0.8.
12.定义域[3101,10],值域[0,2],增区间[310
1,101],减区间[101,10] 13.(1)定义域为(-∞,1),值域为(-∞,1)
(2)解:设1>x 2>x 1
∵a >1,∴12x x a a
,于是a -2x a <a -1x a
则log a (a -a 2x a )<log a (a -1x a ) 即f (x 2)<f (x 1)
∴f (x )在定义域(-∞,1)上是减函数
(3)证明:令y =log a (a -a x )(x <1)
则a -a x =a y ,x =log a (a -a y )
∴f -1(x )=log a (a -a x )(x <1)
故f (x )的反函数是其自身,得函数f (x )=log a (a -a x )(x <1)
图象关于y =x 对称.。

相关文档
最新文档