材料制备新技术

合集下载

材料合成与制备新技术PPT课件

材料合成与制备新技术PPT课件
ε净 =6n40nβT02ernx1π2AH 2
11
2.溶胶-凝胶合成方法基本原理
1、醇盐的水解-缩聚反应
• 水解反应:M(OR)n + xH2O → M(OH)x(OR)n-x + xR-OH • 缩聚反应:(OR)n-1M-OH + HO-M(OR)n-1 → (OR)n-1M-O-M(OR)n-1 + H2O
金属无机盐
价格低廉、易产业化 受金属离子大小、电位性及配位数等多种因素影响
31
4. 溶胶-凝胶工艺参数
水解度的影响
物质量比
水 解 度 R≥2 , TEOS 水 解 反 应 使大部分的-OR基团脱离,产 生-OH基团,形成了部分水解 的带有-OH的硅烷,在这些部 分水解的硅烷之间容易反应 形成二聚体,这些二聚体不 再进行水解,而是发生交联 反应形成三维网络结构,从 而缩短了凝胶化时间.
9
胶体稳定原理-DLVO理论 颗粒间的范德华力 双电层静电排斥能
粒子间总作用能
VT VAVR
➢ 溶胶是固体或大分子颗粒分散于液相的胶体体系,具有很大的界面 存在,界面原子的吉布斯自由能比内部原子高,粒子间便有相互聚结 从而降低表面能的趋势。
➢ 增加体系中粒子间结合所须克服的能垒可使之在动力学上稳定。增 加粒子间能垒通常有三个基本途径:(1)使胶粒带表面电荷;(2) 利用空 间位阻效应;(3)利用溶剂化效应。
匀性好、材料形状多样化、且可在较低的温度下进性合成并致密化等优点 。
可以用于制备各种光学透镜、功能陶瓷块、梯度折射率玻璃等 。
成本较高,生产周期长,故不适宜材料大规模的生产 。
17
2.多孔材料
多孔材料是由形成材料本身基本构架的连续固相和形成孔隙的流体所组成。

材料科学和工程学的新技术

材料科学和工程学的新技术

材料科学和工程学的新技术随着科技的不断发展和进步,材料科学和工程学的新技术越来越被广泛应用。

这些新技术不仅提高了材料的性能和质量,也使得材料在各个领域的应用更加广泛和深入。

本文将介绍一些当前材料科学和工程学中较为前沿和热门的新技术和应用。

一、纳米技术纳米技术是一种可以精确控制物质结构、形态和性能的技术。

在材料科学和工程学中,纳米技术被广泛应用于制备新型材料和改善传统材料的性能。

例如,利用纳米材料可以提高材料的强度、硬度、导电性、热稳定性等性能,同时保持较低的密度和成本。

纳米技术在电子、光电子、生物医学、环境保护等领域也有广泛的应用。

二、二维材料二维材料是一种厚度只有几个原子的材料。

单层二维材料具有独特的电子结构和表面反应性质,能够在电子学、光电子学、电化学、催化等领域得到广泛应用。

例如,二维石墨烯在电子学和薄膜技术中具有潜在的应用价值,在催化领域,二维过渡金属硫化物可以用于氢能源生产等。

三、新型陶瓷材料传统的陶瓷材料具有高强度、高硬度、耐高温等特点,但其韧性和冲击强度较低,易发生断裂。

新型陶瓷材料的研究和开发旨在解决传统陶瓷的一些缺点,提高材料的韧性和冲击强度,同时保持其高强度和高硬度等特点。

例如,氧化锆陶瓷材料是一种新型高强度、高韧性的陶瓷材料,用于制作人工关节、牙科植入物等医学器械。

四、3D打印技术3D打印技术是一种快速成型技术,在制备材料、零部件和构件方面已经得到广泛应用。

通过3D打印技术,可以制备复杂的立体结构材料,实现量产和个性化定制化生产,快速响应市场需求。

例如,在航空航天、医疗、能源、汽车、机器人等领域,3D打印技术已经得到广泛应用。

总之,这些新技术对于材料科学和工程学的发展和应用产生了重要影响,为我们探索更复杂、精细和高性能材料的制备提供了新的途径和平台。

未来,在材料科学和工程学的研究中,这些新技术还将继续发挥重要作用。

先进材料制备技术

先进材料制备技术

3
智能化生产
随着工业4.0的推进,先进材料制备技术将与智 能制造技术深度融合,实现智能化生产。
THANKS
感谢观看
生物制备技术
微生物合成
利用微生物细胞内的代谢途径来合成有用物质,如氨基酸、抗生素和聚合物等。该技术具有高效率、低成本和环境友 好等优点,广泛应用于化工、医药和农业等领域。
基因工程
通过改变生物体的基因来改变其性状或合成有用物质的技术。该技术具有高精度和高效率等优点,广泛应用于农业、 医药和工业等领域。
溶胶-凝胶法
通过将原料溶液与凝胶剂混合,形成溶胶,然后经过凝结、干燥和烧结等过程制备材料。 该技术具有高纯度、高一致性和低成本等优点,适用于制备陶瓷、玻璃和复合材料等。
电化学沉积技术
利用电化学反应在电极上沉积金属或化合物的方法。该技术具有高纯度、高沉积速率和低 成本等优点,适用于制备金属、合金和化合物等,广泛应用于电池、电子和电镀等领域。
等离子体喷涂技术
利用等离子体的高温高速气流将材料加热至熔融或半熔融状态,然后喷 涂到基材上形成涂层。该技术可用于制备耐磨、耐腐蚀和隔热等高性能 涂层,广泛应用于航空航天、能源和化工等领域。
化学制备技术
化学气相沉积技术
利用气态化学反应在基材上沉积固态产物形成涂层或块状材料。该技术可用于制备各种陶 瓷、金属化合物和复合材料等,广泛应用于航空航天、能源和光学等领域。
改善生活质量
先进材料在环保、能源、 交通等领域的应用有助于 提高生活质量,改善人类 生存环境。
制备技术的发展历程
传统制备方法
如冶炼、铸造、轧制等,这些方 法在材料制备初期发挥了重要作
用。
精密加工技术
随着科技的发展,精密加工技术如 光刻、离子注入、化学气相沉积等 逐渐应用于材料制备。

材料制备新技术PPT课件

材料制备新技术PPT课件
材料制备新技术
(4)机械合金化(Mechanical Alloying, MA) 高能球磨,颗粒与颗粒之间、颗粒与球之间强烈、频
繁的碰撞,产生颗粒间反复的冷焊和断裂。
(5)高温自蔓延合成技术(Self-Propagation HighTemperature Synthesis, SHS)
利用原料间的化学反应热来进行化合物粉的合成,也 可以用于烧结、焊接、涂层。
激光束一层一层烧结粉末。 快速原型制作技术。
材料制备新技术
(3)热振荡活化烧结(Heat Shock Activated Sintering) (4)微波烧结(Micro Wave Sintering)
材料制备新技术
(5)等离子体烧结(Plasma Sintering) 放电等离子体烧结、等离子体活化烧结、脉冲电流
制得粉末:球形,粒 度分布窄,粒度小(小于 50微米)
材料制备新技术
( 3 ) 真 空 雾 化 ( Vacuum Atomization) 一定气压下,含有过饱和气 体的金属熔体突然暴露于真空 中由于气体的迅速膨胀使液体 金属雾化成粉。 也称为熔体气体雾化 (Soluble Gas Atomization); 熔体爆炸雾化(Melt Explosion Technique)
材料制备新技术
2.1.3 烧结新技术 (1)电场活化烧结(Field Activated Sintering Technique)
电场活化烧结技术(FAST)是指在烧结时施加电场。 施加电场可以固结难以烧结的粉末,比传统烧结温度 低、时间短、制品密度高、质量好。 (2)选择激光烧结(Selective Laser Sintering)
材料制备新技术
(8)树脂传递模塑
材料制备新技术

材料制备与表征的新方法和新技术

材料制备与表征的新方法和新技术

材料制备与表征的新方法和新技术材料科学是现代科学与技术中的一个重要领域,涉及材料的合成、组成、结构、性质与应用。

随着科学技术的发展,材料制备与表征的新方法和新技术不断涌现,从而推动了材料科学的发展。

一、核磁共振技术核磁共振(NMR)是一种重要的材料表征技术,利用核磁共振现象研究物质的结构、动力学和相互作用,可以得到物质的分子结构、化学键、晶体结构等信息。

现在,核磁共振已被广泛应用于化学、物理、材料科学等领域,特别是在材料制备的过程中起到了重要作用。

二、自组装技术自组装技术是一种自然界中具有普遍性的现象,即物质在合适的条件下自动组装成有序的结构。

利用自组装技术,可以制备出复杂的材料结构,具有重要的理论意义和实际应用价值。

自组装技术包括自组装单分子膜、自组装多分子膜、自组装微结构和自组装纳米结构等。

三、场发射扫描显微镜技术场发射扫描显微镜(FE-SEM)是一种高分辨率的电子显微镜技术,广泛用于表面形貌、微观结构和成分分析等领域。

FE-SEM具有分辨率高、成像清晰、分析速度快等优点,可以直接观察材料的形貌和结构,为材料制备和表征提供了重要技术支持。

四、能谱技术能谱技术是一种材料分析方法,通过测量样品对不同能量的粒子的反应,得到不同成分的能谱,从而分析材料的成分、结构和性质。

常见的能谱技术包括X射线能谱、能谱探针和电子能谱等。

五、原位反射光谱技术原位反射光谱技术是一种非常重要的表面分析技术,能够研究材料的表面组成、反应性、吸附能力和动力学等,为材料表面的改性和功能化提供了重要的技术支持。

总之,材料制备与表征是材料科学的重要组成部分,新的材料制备和表征技术不断涌现,为材料科学的发展和应用提供了有力支持。

各种新技术的应用将促进材料科学的发展,并推动新材料的发明、制备与应用。

1材料制备新技术-快速凝固技术20180904

1材料制备新技术-快速凝固技术20180904

注:雾化法、单辊法、双辊法、旋转圆盘法及纺线 法等非晶、微晶材料制备过程中,试件尺寸很小, 故凝固层内部热阻可以忽略(即温度均匀),界面 散热称为主要控制环节。
通过增大散热强度,使液态金属以极快的速率降温,可实现 快速凝固。
最常见的急冷法是极冷模法
1 2 3 4
5 6 7 8 9
10
此法是用真空吸注、真空 压力浇注、压力浇注等方 法将熔融金属压入急冷模 穴,达到快凝。 难点:熔体有可能在急冷 模入口处凝固 优点:可得到给定直径或 厚度的线材。 急冷法只能在薄膜、细线 及小尺寸颗粒中实现。
4)快速凝固可导致非平衡的相结构产生;(包括新相和扩大已
有的亚稳相范围。)
5)形成非晶态;(适当选择合金成分,以降低熔点和提高玻璃化温度Tg,
而成为玻璃态或称非晶态)
6)高的点缺陷密度;(快速凝固中,由于温度的聚然下降而使点缺
陷密度无法恢复到正常的平衡状态,则会较多地保留在固体金属中,造成~)
1.1 快速凝固概述
q2 S GTS
(1-2) (1-3)
而 q3 hsvs
(1-4)
式中,λ L,λ S分别为液相和固相的热导率﹔ GTL,GTS分别为凝固界面附近液相和固相中的温度梯度; △h为结晶潜热,也称为凝固潜热;
VS为凝固速率; ρ S为固相密度。
将式(1-2)至式(1-4)带入式(1-1)
则可求得凝固速率为:
表1-1 不同雾化工艺的凝固速率和粉末质量比较;
工艺
粉末粒度 /μm
亚音速雾化
1~500
超音速雾化
1~250
旋转电机雾化 100~600
离心雾化
1~500
气体溶解雾化 1~500
平均粒 度 /μm

金属材料的先进制备技术及其应用

金属材料的先进制备技术及其应用

金属材料的先进制备技术及其应用金属材料一直是重要的工业原料,也是制造行业中不可缺少的主要组成部分。

随着科技的不断发展,金属材料也得到了不断的改善和提升,先进制备技术的应用也给金属材料带来了无限的发展空间。

本文将介绍金属材料的先进制备技术及其应用,希望对读者有所启发。

一、先进制备技术的概述先进制备技术是通过新材料、新工艺、新设备和新方法等手段,对材料的制备、加工和应用进行创新和改进的一种技术。

在金属材料的领域中,先进制备技术主要是指通过常规及非常规工艺,制备出质量更高、性能更优的金属材料。

二、先进制备技术的应用1. 3D打印3D打印技术的出现为金属材料的制备和加工带来了彻底的变革。

通过3D打印技术可以将金属材料制备成任何复杂的形状,从而满足不同的应用需求。

同时,3D打印技术还可以通过精密控制加工过程,将材料的性能进行调整和优化。

2. 热镀金热镀金是指将一层金属材料镀在其他金属材料上,以达到保护、美化、机能或增加厚度等目的的技术。

通过热镀金技术可以在金属材料表面形成一层坚硬、耐磨、耐氧化、不易腐蚀的防护层,从而提高了金属材料的使用寿命。

3. 金属材料的纳米技术应用纳米技术是一种基于纳米尺寸的材料组成、结构、性质和应用的技术,可以在金属材料的领域中得到广泛应用。

通过纳米技术可以制备出纳米粉末、纳米线、纳米薄膜等多种纳米材料,这些材料具有独特的物理、化学和生物性质。

在金属材料的制备和应用中,纳米技术可以提高金属材料的强度、硬度、韧性、热稳定性等性能,同时还可以延长金属材料的使用寿命。

4. 金属材料的电化学技术应用电化学技术是一种通过电化学反应来改善材料性能的技术。

通过电化学技术可以将金属材料表面上的薄膜去掉或在其表面镀上其他金属,改变材料表面的性质,从而提高金属材料在各种环境下的性能。

三、先进制备技术的发展趋势随着科技的不断发展,先进制备技术也在不断地改善和提升。

未来先进制备技术的发展趋势主要有以下几个方面:1. 进一步提高材料的性能:先进制备技术将在材料的性能优化方面发挥重要作用。

发现新型材料的制备方法

发现新型材料的制备方法

发现新型材料的制备方法材料科学是现代科学技术发展的重要支撑,而制备新型材料是材料领域的重要课题。

随着国家对新能源、环保、能源存储等领域的重视,对制备新型材料的需求也越来越大。

本文将介绍一些目前较流行的新型材料制备方法。

1. 溶胶-凝胶法溶胶-凝胶法是一种低温制备技术,由于在制备过程中需要使用水和有机溶剂,因此制备时温度并不高。

该方法的优点在于可以合成具有高度孔隙度、特殊结构和大比表面积的材料,例如氧化铝、硅酸盐、钨硅酸盐等。

溶胶-凝胶法主要应用于催化剂、分离材料、传感器和吸附剂等领域。

2. 水热法水热法是利用高压水热条件下,有机无机反应在水热反应器中进行的一种制备方法。

该方法制备材料的过程中不需要使用活性气体、剧毒物质或者粉尘等材料,避免了传统制备方法中的环境污染。

该方法适用于稳定的化学反应,由于反应容器与外部环境隔绝开来,所以有利于安全操作。

水热法主要应用于合成氧化物、无机盐、金属有机框架材料等领域。

3. 气相沉积法气相沉积法常用于制备薄膜材料,是一种高温制备方法,通过调节反应体系的气氛、压力来控制制得材料的成分和结构。

气相沉积法主要分为物理气相沉积和化学气相沉积两种,物理气相沉积可制备的材料种类较少,而化学气相沉积可以制备非常多的材料种类,例如硅薄膜、铜薄膜等。

气相沉积法具有制备薄膜材料的优点,可以制备高质量、大面积、均匀性好的薄膜材料。

4. 电化学法电化学法是利用电解质中的电解诱导实现电化学反应的过程,常被应用于电化学传感器的制备中。

例如,针对空气污染中的二氧化氮,可以制备出纳米铜薄膜电化学传感器,该传感器非常灵敏,能够检测出很低浓度的二氧化氮。

在太阳能电池、能量存储、阴极材料制备等方面,电化学方法也被广泛应用。

电化学法制备材料具有制备多种材料的优点,可以制备出多元化、复杂的材料。

总之,材料制备方法的选择与材料的应用密切相关。

未来,随着材料学和化学等学科的不断发展,新型材料制备方法也会不断涌现出来,为新能源、新材料等领域的发展提供更多的动力和支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料制备新技术
材料制备是现代工业生产中的重要环节,随着科技的不断发展,新的材料制备
技术也不断涌现。

本文将介绍一些新的材料制备技术,以及它们在各个领域的应用。

首先,我们来谈谈纳米材料制备技术。

纳米材料是一种具有纳米级尺寸的材料,具有特殊的物理、化学性质,广泛应用于材料科学、生物医学、能源等领域。

目前,常见的纳米材料制备技术包括溶胶-凝胶法、气相沉积法、机械合金化法等。

这些
技术能够制备出具有特殊形貌和性能的纳米材料,为各个领域的应用提供了新的可能性。

其次,我们介绍一些新型涂层材料的制备技术。

涂层材料是一种能够在材料表
面形成一层保护膜或功能膜的材料,具有防腐、耐磨、导热等特性。

近年来,随着纳米技术和薄膜技术的发展,新型涂层材料的制备技术也在不断创新。

例如,磁控溅射法、离子束溅射法、原子层沉积法等技术能够制备出高质量、高性能的涂层材料,为航空航天、汽车制造、电子器件等领域提供了新的解决方案。

另外,我们还要介绍一些生物材料制备技术。

生物材料是一种能够与生物体相
容并发挥特定功能的材料,具有广泛的应用前景。

目前,生物材料制备技术主要包括生物降解材料制备、生物仿生材料制备、生物活性材料制备等。

这些技术能够制备出具有良好生物相容性和功能性的材料,为医疗器械、组织工程、药物传递等领域带来了新的发展机遇。

综上所述,材料制备新技术的不断涌现为各个领域的发展带来了新的机遇和挑战。

我们相信随着科技的不断进步,新的材料制备技术将会不断涌现,并为人类社会的发展做出更大的贡献。

相关文档
最新文档