中考数学非常难的动点直角三角形求最短距离问题解题技巧分享

合集下载

动点问题中的最值、最短路径问题解析版

动点问题中的最值、最短路径问题解析版

专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A 、B 是平面直角坐标系两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.(2)双动点模型P是∠AOB一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值.作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求.OBPP'P''MN5. 二次函数的最大(小)值()2y a x h k=-+,当a>0时,y有最小值k;当a<0时,y有最大值k.二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析)三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为例2.(2019·凉山州)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()x y A B C F D EO x=-5A .817B . 717C . 49D . 59例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2Q b y +22AM QM +332时,求b 的值.例5. (2019·)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm .当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为cm ;连接BD ,则△ABD 的面积最大值为2cm .例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值. ABC DH O M N专题01 动点问题中的最值、最短路径问题(解析)例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为【答案】4.【解析】解:∵PQ⊥EP,∴∠EPQ=90°,即∠EPB+∠QPC=90°,∵四边形ABCD是正方形,∴∠B=∠C=90°,∠EPB+∠BEP=90°,∴∠BEP=∠QPC,∴△BEP∽△CPQ,∴BE BP CP CQ=,∵AB=12,AE=3,∴BE=9,设CQ=y,BP=x,CP=12-x,(0<x<12)∴912xx y=-,即()()21216499x xy x-==--+,∴当x=6时,y有最大值为4,即CQ的最大值为4.【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.例2.(2019·)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()A . 817B . 717C . 49D . 59【答案】B .【解析】解:S △ABE =142BE OA BE ⨯⨯=,当BE 取最小值时,△ABE 面积为最小值.设x =-5与x 轴交于点G ,连接DG ,因为D 为CF 中点,△CFG 为直角三角形,所以DG =152CD =,∴D 点的运动轨迹为以G 为圆心,以5半径的圆上,如图所示 xyABD E O x=-5G由图可知:当AD 与圆G 相切时,BE 的长度最小,如下图,xyABD E O x=-5G H过点E 作EH ⊥AB 于H ,∵OG =5,OA =8,DG =5,在Rt △ADG 中,由勾股定理得:AD =12,△AOE ∽△ADG , ∴AO AD OE DG =, 求得:OE =103, 由OB =OA=8,得:BE =143,∠B =45°,AB =82 ∴EH =BH =27223BE =,AH =AB -BH =1723, ∴tan ∠BAD =727317172EH AH ==, 故答案为B .【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).【答案】②③.【解析】解:根据题意可知:OE =12AB =12,即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分),根据弧长公式,得点E 的路径长为:9012180π⨯⨯=6π,故①错误; 因为AB =24,当斜边AB 上的高取最大值时,△OAB 的面积取最大值,点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大, 所以△OAB 的面积取最大值为:124122⨯⨯=144,故②正确;连接OE 、DE ,得:OD ≤OE +DE ,当O 、E 、D 三点共线时取等号,即OD 的最大值为25,如图,过点D 作DF ⊥y 轴于F ,过点E 作EG ⊥y 轴于G ,25DF OD 即:1225EG DF =,512AF AD EG AE ==, 即:51125AF EG DF ==,设DF =x ,在Rt △ADF 中,由勾股定理得:221255x x ⎛⎫+= ⎪⎝⎭,解得:x =26,在Rt △ODF 中,由勾股定理得:OF =26,即点D 的坐标为)2626125,262625(,故③正确.综上所述,答案为:②③. 例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点.若点Q (1,2Q b y +)在抛物线上,当22AM QM +的最小值为3324时,求b 的值. 【答案】见解析. 【解析】解:∵2y x bx c =-+经过点A (-1,0),∴1+b +c =0,即21y x bx b =--- ∵点Q (1,2Q b y +)在抛物线2y x bx c =-+上, ∴324Q b y =--, 即13,224b Q b ⎛⎫+-- ⎪⎝⎭, ∵b >0,∴Q 点在第四象限,2222AM QM AM QM ⎛⎫+=+ ⎪⎝⎭所以只要构造出22AM QM ⎛⎫+ ⎪⎝⎭即可得到22AM QM +的最小值取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,△AGM 为等腰直角三角形,GM =22AM ,即当G 、M 、Q 三点共线时,GM +MQ 22QM +取最小值, 此时△MQH 为等腰直角三角形,∴QM=2QH=3224b⎛⎫+⎪⎝⎭,GM=22AM=()212m+∴()223332222=21222244bAM QM AM QM m⎛⎫⎡⎤⎛⎫+=++++=⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦①∵QH=MH,∴324b+=12b m+-,解得:m=124b-②联立①②得:m=74,b=4.即当22AM QM+的最小值为3324时,b=4.【点睛】此题需要利用等腰直角三角形将22AM QM+转化为222AM QM⎛⎫+⎪⎝⎭,进而根据两点之间线段最短及等腰三角形性质求解.例5. (2019·)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,12AC cm=.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为2cm.【答案】24-1223623126;【解析】解:如图1所示,当E运动至E’,F滑动到F’时,DD'E'G图1过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H ,可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’,∴Rt △E ’D ’G ≌Rt △F ’D ’H ,∴D ’G =G ’H ,∴D ’在∠ACH 的角平分线上,即C ,D ,D ’三点共线.通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;BD'图2∵∠BAC =30°,AC =12,DE =CD∴BC =CD =DE=由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,∴DD ’=CD ’-CD =12-D 点运动路程为2DD ’=24-D'图3如图3所示,当点D 运动至D ’时,△ABD ’的面积最大,最大面积为:'''''''ABC AE D BD F E CF D S S S S ++-△△△正方形=(((211112222⨯+⨯--⨯+⨯=【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值.BD【答案】见解析.【解析】(1)证明:过点O 作ON ⊥CD 于N , AC 是菱形ABCD 的对角线,∴AC 平分∠BCD ,∵OH ⊥BC ,ON ⊥CD ,∴OH =ON ,又OH 为圆O 的半径,∴ON 为圆O 的半径,即CD 是圆O 的切线.(2)由题意知:OC =2MC =4,MC =OM =2,即OH =2,在Rt △OHC 中,OC =2OH ,可得:∠OCH =30°,∠COH =60°,由勾股定理得:CH==23OCH OMHS S S π-=-△阴影扇形(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,∴∠MM ’H =30°=∠HCM ,∴HM ’=HC=即PH +PM的最小值为在Rt △M ’PO 及Rt △COD 中,OP =OM ’ tan 30°=3,OD =OCtan 30°=3, 即PD =OP +OD=B D。

动点直角三角形问题的解法

动点直角三角形问题的解法

“动点直角三角形问题”的三种解法李永红中考数学压轴题中常会出现“动点直角三角形问题”,如2013年山西、成都、攀枝花、长春、济宁、绵阳、襄阳等省市中考数学试卷中均出现了“动点直角三角形问题”,对于这类问题的解决,即使是数学尖子生也感到很棘手.其实,解决“动点直角三角形问题”有“法”可循,并不算“难”.一、例题分析例1 在直角坐标系中,已知点)0,1(A ,)2,0(-B ,将线段AB 绕点A 按逆时针方向旋转090至AC ,如图1.(1)求点C 的坐标;(2)若抛物线2212++-=ax x y 经过点C .①求抛物线的解析式;②在抛物线上是否存在点P (点C 除外)使ABP ∆是以AB 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.分析(1)构造三垂图可求得点C 的坐标为)1,3(-C .(2)①将点C 的坐标代入2212++-=ax x y 可求得抛物线的解析式为221212++-=x x y . ②法1(利用数形结合):如图2,易求得直线AC 的解析式为2121+-=x y . 由⎪⎪⎩⎪⎪⎨⎧++-=+-=2212121212x x y x y 解得⎩⎨⎧=-=11y x 或⎩⎨⎧-==13y x (舍去).此时点P 的坐标为)1,1(-.设过点B 且与直线AC 平行的直线的解析式为b x y +-=21,将点)2,0(-B 代入,得2-=b ,所以过点B 且与直线AC 平行的直线的解析式为221--=x y .由⎪⎪⎩⎪⎪⎨⎧++-=--=221212212x x y x y 解得⎩⎨⎧-=-=12y x 或⎩⎨⎧-==44y x .此时点P 的坐标为)1,2(--或)4,4(-.综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法2(构造三垂图):如图3,延长CA 交抛物线于点),(1n m P ,过点1P 作x D P ⊥1轴于点D ,易证DA P 1∆∽AOB ∆,∴OBAD OA D P =1.∵1=OA ,2=OB ,m AD -=1,n D P =1,∴211m n -=,即m n 2121-=.∵点),(1n m P 在抛物线上,∴221212++-=m m n .由⎪⎪⎩⎪⎪⎨⎧++-=-=2212121212m m n m n 解得⎩⎨⎧=-=11n m 或⎩⎨⎧-==13n m (舍去).此时点P 的坐标为)1,1(-.过点B 作直线AC 的平行线,交抛物线于点2P ,3P .过点2P 作y E P ⊥2轴于点E ,易证2BEP ∆∽AOB ∆,可求得点2P 的坐标为)1,2(--;过点3P 作y F P ⊥3轴于点F ,易证3BFP ∆∽AOB ∆,可求得点3P 的坐标为)4,4(-;综上,存在符合条件的点P ,其坐标为)1,1(-或)1,2(--或)4,4(-. 法3(利用勾股定理): 设抛物线上存在点)22121,(2++-m m m P ,使ABP ∆是以AB 为直角边的直角三角形.分别利用勾股定理可得52=AB ,,)22121()1(2222++-+-=m m m AP 2222)42121(++-+=m m m BP . 当点A 、B 分别为直角顶点时,分别由+2AB =2AP 2BP 、+2AB 2BP 2AP =得到关于m 的一元四次方程,用已学知识难以求解.例2 已知抛物线32++=bx ax y 与x 轴交于点)0,3(-A ,)0,1(B ,与y 轴交于点C ,如图4. (1)求抛物线的解析式及顶点的坐标;(2)在抛物线的对称轴l 上存在点Q ,使ACQ ∆为直角三角形,请求出点Q 的坐标.分析(1)易求得抛物线的解析式为322+--=x x y ,顶点坐标为)4,1(-.(2)法1(利用数形结合):由于不易求直线AQ 或CQ 的解析式,所以本题不适合利用数形结合来解决. 法2(构造三垂图):如图5,在对称轴l 上存在四个符合条件的点Q ,分别构造三垂图并利用三角形相似可求得)4,1(1-Q ,)2,1(2--Q ,)2173,1(3+-Q ,)2173,1(4--Q . 法3(利用勾股定理):设点Q 的坐标为),1(n -,分别利用勾股定理可得182=AC ,,422n AQ +=22)3(1-+=n CQ .当090=∠ACQ 时,由+2AC =2CQ 2AQ 得224)3(118n n +=-++,解得4=n ,所以)4,1(1-Q .当090=∠CAQ 时,由+2AC =2AQ 2CQ 得22)3(1418-+=++n n ,解得2-=n ,所以)2,1(2--Q .当090=∠AQC 时,由+2AQ =2CQ 2AC 得18)3(1422=-+++n n ,解得2173±=n ,所以)2173,1(3+-Q ,)2173,1(4--Q . 综上,符合条件的点Q 有四个,分别为)4,1(1-Q ,)2,1(2--Q ,)2173,1(3+-Q ,)2173,1(4--Q . 二、方法比较利用数形结合:该方法并不是对每一个题都适用,当相应的直线方程能较容易求出时,可以使用该方法,而且解法比较简捷.构造三垂图:该方法对每一个题都适用,但解法较繁,当考虑情况不周时容易漏解.利用勾股定理:当动点在曲线上时,利用勾股定理得到的方程是一元四次方程,用已学知识难以求解,该方法不适用;当动点在直线上时,利用勾股定理得到的三个方程是一元一次方程或一元二次方程,容易求解而且不易漏解.通过上述分析和比较可以看到,解“动点直角三角形问题”通常有三种解法,解题时应根据题设条件选择恰当的解法,才能使问题快速地得以解决.。

【初二】最短距离问题总结

【初二】最短距离问题总结

【初二】最短距离问题总结在初二数学课程中,最短距离问题是一个常见的问题类型。

本文将对最短距离问题进行总结和简要解析。

最短距离问题定义最短距离问题是指在给定的条件下,求解两个点之间最短路径的问题。

该问题常见于几何、图论和最优化等领域,在实践中具有广泛的应用。

最短距离问题解决方法1. 直线距离计算最简单的情况是直线距离计算。

当两个点在平面直角坐标系中给出时,可以使用勾股定理(即直角三角形斜边长度公式)计算两点之间的直线距离。

2. 曼哈顿距离计算曼哈顿距离是指在矩形网格中,从一个点到达另一个点所需要的最小移动次数(只能上下左右移动,不能斜向移动)。

曼哈顿距离计算可以通过两点横纵坐标的差值相加得到。

3. 最短路径算法对于复杂的情况,如图论中求解两点之间的最短路径,可以使用最短路径算法。

常见的最短路径算法包括迪杰斯特拉算法(Dijkstra Algorithm)和弗洛伊德算法(Floyd Algorithm)等。

这些算法可以在给定网络、权重或距离信息的情况下,计算出两点之间最短路径的长度和路径。

最短距离问题应用举例最短距离问题在实际生活中有广泛的应用,下面列举几个例子:1. 导航系统:导航系统通过计算起点和终点之间的最短路径,为驾驶员提供最优的导航路线。

2. 物流配送:物流公司需要计算货物从起点到终点的最短路径,以最大程度地减少运输成本和时间。

3. 网络通信:计算机网络中的路由算法使用最短路径算法来确定数据包传输的最佳路径。

4. 旅行规划:旅行者可以使用最短路径算法规划旅游路线,使得行程更加紧凑和高效。

总结最短距离问题是初二数学课程中的一个重要内容。

通过不同计算方法和最短路径算法,可以有效地解决两点之间最短路径的问题。

最短距离问题在实际中有许多应用场景,涉及导航、物流、网络通信和旅行规划等领域。

如何利用勾股定理求得最短距离

如何利用勾股定理求得最短距离

如何利用勾股定理求得最短距离人教版初中八年级(下册)第十八章介绍了勾股定理的内容和它的一些运用,勾股定理主要用来解决直角三角形三条边之间的关系的一个重要定理。

它在解三角函数、四边形以及实际生活中的运用也极其广泛,也是近几年全国各地中考的高频考点。

其中勾股定理在解决某些出现的最短距离的问题中发挥了很好的作用。

现分别举出勾股定理在长方体、圆柱体、圆锥体中是如何求得最短距离的例子,以便找出用它来解决问题的技巧和方法。

例1、 如图所示,有一个长方体木箱,长为40cm ,宽为30cm ,高为50cm ,点Q 距离点C 为10cm , 一只蚂蚁从A 点爬行到Q 点的最短距离是多少?【分析】这一道题从表面上看似乎与勾股定理没有什么联系,但通过仔细分析后,将长方体展开,就会与勾股定理产生联系,要解决本题必须分两种情况。

解: 第一种情况:将长方体右侧面CBGF 展开,使得与面ABCD 在同一个平面上,过Q 点作QH ⊥BC 于H ,连接AQ ,如图2,AQ 就是蚂蚁从A 点爬行到Q 点的距离。

由题意可知,cm AB 40=,cm BH CQ 10==,cm QH 50=,则cm AH 50=,根据勾股定理可得:222QH AH AQ +=,cm QH AH AQ 7125050502222≈=+=+=。

第二种情况:将上面的面CDEF 展开,使得与面ABCD 在同一个平面上,连接AQ ,如图3,AQ 就是蚂蚁从A 点爬行到Q 点的距离。

由题意可知,cm AB 40=,cm BQ 60=,根据勾股定理可得:222BQ AB AQ +=,22BQ AB AQ +=,cm AQ 72320604022≈=+=。

显然,第一种情况所求得的AQ 的值要比第二种情况所求得的AQ 的值要小,所以蚂蚁从A 点爬行到Q 点的最短距离是cm 250。

例2、如图4,有一个圆柱体,它的高为12cm ,底面半径为3cm ,在圆柱体下底面的A 点有一只蚂蚁,它想吃到上底面与A 点相对的B 点处的食物,沿着圆柱体侧面爬行的最短距离是多少?(π的近似值取3)A B D C E F G• •Q 图1A B D C E FG• • Q 图2 FGQ • H A BDCEF G•• Q 图3EF • Q【分析】这看上去是一个曲面的路线问题,但实际上可以通过圆柱体的侧面展开图来转化为 平面上的路线问题。

勾股定理最短路径问题做题技巧

勾股定理最短路径问题做题技巧

勾股定理是数学中的经典定理,被广泛应用于解决直角三角形中的各种问题。

其中,勾股定理最短路径问题是一个常见而又有一定挑战性的问题,需要我们对勾股定理的应用进行深入理解和掌握。

下面,我将共享一些在做勾股定理最短路径问题时的一些技巧和注意事项,希望能对大家有所帮助。

1. 确定直角三角形在解决勾股定理最短路径问题时,首先需要确定问题中是否存在直角三角形。

通常情况下,我们可以通过问题描述中给出的线段长度或角度信息来判断是否为直角三角形。

一旦确定存在直角三角形,我们便可以应用勾股定理来解决最短路径问题。

2. 确认最短路径在确定了直角三角形后,接下来我们需要确认问题中所要求的最短路径。

这个最短路径可能是直角三角形中的某条边,也可能是直角三角形内部的某一段路径。

在实际问题中,我们经常需要根据具体情况来判断最短路径的具体位置。

3. 应用勾股定理一旦确定了直角三角形和最短路径,我们就可以开始应用勾股定理来求解问题了。

勾股定理的表达式为a^2 + b^2 = c^2,其中a、b分别为直角三角形的两条直角边,c为斜边。

我们可以根据勾股定理的这一表达式来进行问题的推理和计算,从而得出最终的最短路径结果。

4. 注意特殊情况在应用勾股定理解决最短路径问题时,我们还需要特别注意一些特殊情况。

当直角三角形的两条直角边长度相等时,斜边也将会最短,这种情况下我们可以直接应用勾股定理来得出结果。

另外,当直角三角形的两条直角边长度有一个为0时,斜边也将为另一条直角边,这时最短路径也就不言而喻了。

5. 结合实际问题当我们应用勾股定理解决最短路径问题时,需要将数学知识与实际问题相结合,确保解答的合理性和可行性。

我们可以通过画图、列方程等方法来辅助求解,从而得出准确的最短路径结果。

在解决勾股定理最短路径问题时,我们需要确保对勾股定理的基本原理有充分的理解,同时要灵活运用对问题进行分析和求解。

希望以上共享的技巧和注意事项能够帮助大家在做题时更加得心应手,解决问题时得心应手。

三角形最短距离问题

三角形最短距离问题

三角形最短距离问题三角形最短距离问题是一个常见的几何问题,它涉及到如何找到三角形内两个点之间的最短距离。

在解决这个问题之前,我们首先需要了解一些基本概念和定理。

我们来回顾一下三角形的基本定义。

三角形是由三条线段组成的图形,它们的端点连接起来形成一个封闭的图形。

三角形有三个顶点和三条边,其中任意两条边的交点称为顶点。

根据三角形的边长关系,我们可以将三角形分为等边三角形、等腰三角形和一般三角形。

在解决三角形最短距离问题时,我们通常会遇到以下几种情况:1. 在一般三角形中,我们需要找到两个点之间的最短距离。

这个问题可以通过计算两个点之间的直线距离来解决。

我们可以使用勾股定理来计算两点之间的距离,即d = √((x2-x1)² + (y2-y1)²),其中(x1, y1)和(x2, y2)分别表示两个点的坐标。

2. 在等腰三角形中,我们需要找到顶点到底边的最短距离。

根据等腰三角形的性质,顶点到底边的最短距离是底边中点到顶点的距离。

因此,我们可以通过计算底边中点的坐标来解决这个问题。

3. 在等边三角形中,我们需要找到任意两个点之间的最短距离。

由于等边三角形的三条边相等,任意两个点之间的最短距离是等边三角形边长的一半。

因此,我们可以通过计算等边三角形的边长来解决这个问题。

除了上述情况外,我们还可以通过其他方法解决三角形最短距离问题,如使用向量法、坐标轴法等。

这些方法可以根据具体情况选择使用,以求解问题的简洁和高效。

总结起来,三角形最短距离问题是一个几何问题,涉及到三角形内两个点之间的最短距离。

通过运用几何定理和方法,我们可以有效地解决这个问题。

在实际应用中,三角形最短距离问题经常出现,比如在计算机图形学、建筑设计和地理测量等领域。

因此,掌握解决这个问题的方法对于我们的学习和工作都具有重要意义。

在解决这个问题时,我们应该注重思维的灵活性和问题的实际应用,以期得到准确和有效的解答。

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。

利用一次函数和二次函数的性质求最值。

动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。

②一个动点速度是参数字母。

③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。

④通过相似三角形过度,转化相似比得出方程。

⑤利用a、t范围,运用不等式求出a、t的值。

①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。

⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。

【配套K12】中考数学 专题复习六 求最短路径问题

【配套K12】中考数学 专题复习六 求最短路径问题

中考数学专题复习学案六求最短路径问题【专题思路剖析】知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

这类问题在中考中出现的频率很高,一般与垂线段最短、两点之间线段最短关系密切解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【典型例题赏析】类型1 利用“垂线段最短”求最短路径问题例题1:(2015•辽宁省盘锦,第15题3分)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为.考点:轴对称-最短路线问题;菱形的性质.分析:连接BD,与AC的交点即为使△PBE的周长最小的点P;由菱形的性质得出∠BPC=90°,由直角三角形斜边上的中线性质得出PE=BE,证明△PBE是等边三角形,得出PB=BE=PE=1,即可得出结果.解答:解:连接BD,与AC的交点即为使△PBE的周长最小的点P;如图所示:∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=DA=2,∴∠BPC=90°,∵E为BC的中点,∴BE=BC=1,PE=BC=1,∴PE=BE,∵∠DAB=60°,∴∠ABC=120°,∴∠PBE=60°,∴△PBE是等边三角形,∴PB=BE=PE=1,∴PB+BE+PE=3;故答案为:3.点评:本题考查了菱形的性质、轴对称以及最短路线问题、直角三角形斜边上的中线性质;熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.【方法点评】本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.【变式练习】(2015•福建第16题 4分)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A 长度的最小值是.考点:翻折变换(折叠问题)..分析:首先由勾股定理求得AC的长度,由轴对称的性质可知BC=CB′=3,当B′A有最小值时,即AB′+CB′有最小值,由两点之间线段最短可知当A、B′、C三点在一条直线上时,AB′有最小值.解答:解:在Rt△ABC中,由勾股定理可知:AC===4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.点评:本题主要考查的是轴对称的性质、勾股定理和线段的性质,将求B′A的最小值转化为求AB′+CB′的最小值是解题的关键.类型2 利用“两点之间线段最短”求最短路径问题例题2:(2015•四川凉山州第26题5分)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.考点:菱形的性质;坐标与图形性质;轴对称-最短路线问题..分析:点B的对称点是点D,连接ED,交OC于点P,再得出ED即为EP+BP最短,解答即可.解答:解:连接ED,如图,∵点B的对称点是点D,∴DP=BP,∴ED即为EP+BP最短,∵四边形ABCD是菱形,顶点B(2,0),∠DOB=60°,∴点D的坐标为(1,),∴点C的坐标为(3,),∴可得直线OC的解析式为:y=x,∵点E的坐标为(﹣1,0),∴可得直线ED的解析式为:y=(1+)x﹣1,∵点P是直线OC和直线ED的交点,∴点P的坐标为方程组的解,解方程组得:,所以点P的坐标为(),故答案为:().点评:此题考查菱形的性质,关键是根据一次函数与方程组的关系,得出两直线的解析式,求出其交点坐标.【方法点评】“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.【变式练习】(2015•营口,第10题3分)如图,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()A.25° B.30° C.35° D.40°考点:轴对称-最短路线问题.分析:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=CM,OP=OC,∠COA=∠POA;PN=DN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.解答:解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴CM+DN+MN=5,即CD=5=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故选:B.点评:本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.类型3、求圆上点,使这点与圆外点的距离最小的方案设计在此问题中可根据圆上最远点与最近点和点的关系可得最优设计方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学非常难的动点直角三角形求最短距离问题解题技巧分

套路技巧:点的运动轨迹模糊难辨时,化一般为特殊,通过找特殊点确定运动轨迹。

本题的难点就在于你无法确定动点C的运动轨迹,如果你能确定它的运动轨迹,这样就能通过确定特殊点的位置来确定所求点的轨迹,由于B点运动轨迹为直线,为了保证三角形形状不变,所以C点的运动轨迹也应该属于一条直线,思路如下:
①当点C在y=4的直线上时,图像如下:
此时,在RTCDB中,C点坐标为(6,4)
②当点C运动到X轴上时,图像如下
BC=4,CD=3,BD=5
此时C点坐标为(3,0)
通过(6,4),(3,0)确定直线方程为y=4x/3-4
这样,我们就可以得出如下图形
直线和X和Y轴交点为C,E,垂线段OF的长度即为所求长度
OC=3,OE=4,CE=5,则OF=12/5
想要免费获得更多原创数学资料,请点赞,转发,点击我头像,私信我,回复:初中数学资料。

相关文档
最新文档