北师大版轴对称图形练习题.doc

合集下载

北师大版七年级数学第七章生活中的轴对称练习题(典型证明题)

北师大版七年级数学第七章生活中的轴对称练习题(典型证明题)

北师大版七年级数学第七章生活中的轴对称练习题(典型证明题)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March- 2 -EDCBA(第3题)1、图中的图形是轴对称图形的有( )个A 2个B 3个C 4个D 5个2、把一个正方形三次对折后沿虚线剪下,得到的图形是( )3、在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是△ABC 、△BCD 的角平分线,则图中的等腰三角形有 (A)5个 (B)4个 (C)3个 (D)2个4、如图,ABC △中,AB AC =,30A ∠=,DE 垂直平分AC ,则数为( )A.80B.75BCD ∠的度65D.455、等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .垂直D .垂直不平分6、等腰三角形顶角的外角是138°,它的一个底角是7、等腰直角三角形的斜边为4cm ,则斜边上的高为8、等腰三角形一腰上的高与底边夹角为40o ,则这个三角形的顶角是9、已知等腰三角形的一边等于4,一边等于9,那么它的周长=10、∠AOB =30°,点P 在OA 上,且OP =2,点P 关于直线OB 的对称点是Q ,则PQ=11、如图,△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =________. 12、已知:如图,△ABC 中,AB =AC ,BE ∥AC ,∠BDE =100°,∠BAD =70°,则∠E =_____________.13、如图在Rt △ABC 中,B 为直角,DE 是AC 的垂直平分线,E 在BC 上, ∠BAE :∠BAC =1:5,则∠C =_________.14.如图,在△ABC 中,AB=AC ,CD 平分∠ACB 交AB 于点D ,AE ∥DC 交BC 的延长线于点E ,已知∠E=36°,则∠BDC= .右下方上右沿虚线A BC D ADE(第4题)第11题第12题 第13题- 3 -ED CAF15.如图,在ABC △中,点D 是BC 上一点,80BAD ∠=°,AB AD DC ==,则C ∠= .16. 如图,△ABC 中AB=AC ,EB=BD=DC=CF ,∠A=40°,则∠EDF•的度数是_____.17、黑板上写着,在正对着黑板的镜子里的像是__________.18、一辆汽车的牌照在车下方水坑中的像是,则这辆汽车的牌照号码应为 .19、如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短。

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)

北师大版七年级数学下册第五章《生活中的轴对称》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各选项中左边的图形与右边的图形成轴对称的是( )2.下面四个选项中的图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多..的是( )A.正方形 B.等边三角形C.等腰三角形 D.线段4.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数是( )A.30° B.40°C.45° D.60°5.如图,在△ABC中,AB的垂直平分线交AC于点E,若AE=2,则B,E两点间的距离是( )A.2 B.3 C.4 D.56.能用无刻度直尺,直接准确画出下列轴对称图形的所有对称轴的是( )7.下列说法正确的是( )A.等腰三角形的一个角的平分线是它的对称轴B.有一个内角是60°的三角形是轴对称图形C.等腰直角三角形是轴对称图形,它的对称轴是斜边上的中线所在的直线D.等腰三角形有3条对称轴8.如图,OP为∠AOB的平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,E为OP上一点,则下列结论中错误..的是( )A.CE=DE B.∠CPO=∠DEPC.∠CEO=∠DEO D.OC=OD9.如图,有一张直角三角形纸片,两直角边AC=5 cm,BC=10 cm,将△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长为( )A.10 cm B.12 cmC.15 cm D.20 cm10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC 交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF.下面4个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF.其中正确的结论有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共30分)11.如图所示的图形中,对称轴的条数大于3的有________个.12.△ABC 和△A ′B ′C ′关于直线l 对称,若△ABC 的周长为12 cm ,△A ′B ′C ′的面积为 6 cm 2,则△A ′B ′C ′的周长为________,△ABC 的面积为________.13.已知等腰三角形的顶角是底角的4倍,则顶角的度数为________.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于D ,若CD =12BD ,点D 到边AB 的距离为6,则BC 的长是________.15.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E ,F 是AD 的三等分点,若△ABC 的面积为12 cm 2,则图中阴影部分的面积为__________.16.如图,AC ,BD 相交于点O ,AB ∥DC ,AB =BC ,∠D =40°,∠ACB =35°,则∠AOD =________.17.如图,这是一组按照某种规律摆放成的图案,则第2 021个图案________轴对称图形(填“是”或“不是”).18.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF=________.19.如图,在正方形网格中,阴影部分是涂灰7个小正方形所形成的图案,再将网格内空白的一个小正方形涂灰,使得到的新图案成为一个轴对称图形的涂法有________种.20.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有__________(填序号).①AC⊥BD;②AC,BD互相平分;③CA平分∠BCD;④∠ABC=∠ADC=90°;⑤筝形ABCD的面积为12 AC·BD.三、解答题(21题8分,26题12分,其余每题10分,共60分) 21.把图中的图形补成轴对称图形,其中MN,EF为各图形的对称轴.22.如图,D为△ABC的边BC的延长线上一点,且CD=CA,E是AD的中点,CF平分∠ACB,且CF交AB于点F,试判断CE与CF的位置关系.23.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,∠DAE与∠DAC的度数比为2∶1,求∠B的度数.24.如图,已知△ABC是等腰三角形,且AB=AC,D是△ABC外一点,连接AD,BD.已知AB=AD,AD∥BC,∠D=35°,求∠DAC的度数.25.如图,校园有两条路OA,OB,在交叉口附近有两块宣传牌C,D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你画出灯柱的位置点P,并说明理由.26.如图①,△ABC为等腰直角三角形,∠BAC=90°,点D为直线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD 左侧作等腰直角三角形ADE,连接CE.(1)当点D在线段BC上时(不与点B重合),线段CE和BD的数量关系与位置关系分别是什么?请给予说明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图②中画出相应的图形,并说明理由.参考答案一、1.C 2.D 3.A 4.B 5.A6.A 7.C 8.B 9.C 10.A二、11.312.12 cm;6 cm213.120°14.1815.6 cm216.75°点拨:因为AB=BC,所以∠BAC=∠ACB=35°.因为AB∥CD,所以∠ABD=∠D=40°.所以∠AOB=180°-35°-40°=105°.所以∠AOD=180°-105°=75°.17.是18.60°点拨:因为AB=BC=CD=DE=EF,所以∠BCA=∠A =15°.所以∠ABC=150°.所以∠CBD=∠CDB=30°.所以∠ACD=135°.所以∠CED=∠ECD=45°.所以∠ADE=120°.所以∠EDF=∠EFD=60°.所以∠DEF=60°.19.320.①③⑤三、21.解:如图所示.22.解:因为CD=CA,E是AD的中点,所以∠ACE=∠DCE.因为CF平分∠ACB,所以∠ACF=∠BCF.因为∠ACE+∠DCE+∠ACF+∠BCF=180°,所以∠ACE+∠ACF=90°,即∠ECF=90°.所以CE⊥CF.23.解:设∠DAC=x,则∠DAE=2x.因为DE是AB的垂直平分线,所以DA=DB.所以∠B=∠DAB=2x.因为∠C=90°,所以2x+(2x+x)=90°,x=18°.所以∠B=36°.24.解:因为AD∥BC,所以∠D=∠DBC,∠DAC=∠ACB.因为AB=AC=AD,所以∠D=∠ABD,∠ACB=∠ABC=∠ABD+∠DBC=2∠D=2×35°=70°.所以∠DAC=70°.25.解:如图,到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C,D的距离相等的点则在线段CD的垂直平分线上,故它们的交点P 即为所求.26.解:(1)CE =BD ,且CE ⊥BD .说明:由题可知AC =AB ,AE =AD .因为∠EAD =∠BAC =90°,所以∠EAD -∠CAD =∠BAC -∠CAD ,即∠EAC =∠DAB .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC=AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ECA =∠DBA .所以∠ECD =∠ECA +∠ACD =∠DBA +∠ACD =180°-90°=90°.所以CE ⊥BD .(2)(1)的结论仍然成立.理由如下:画出的图形如图所示.由题可知AC =AB ,AE =AD .因为∠CAB =∠DAE =90°,所以∠CAB +∠CAD =∠DAE +∠CAD ,即∠CAE =∠BAD .在△ACE 和△ABD 中,⎩⎪⎨⎪⎧AC =AB ,∠CAE =∠BAD ,AE =AD ,所以△ACE ≌△ABD (SAS).所以CE =BD ,∠ACE =∠B .所以∠BCE =∠ACE +∠ACB =∠B +∠ACB =180°-90°=90°. 所以CE ⊥BD .。

北师大版轴对称图形练习题

北师大版轴对称图形练习题

轴对称图形同步练习一.填空。

1.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。

2.圆的对称轴有()条,半圆形的对称轴有()条。

3.在对称图形中,对称轴两侧相对的点到对称轴的()。

4.()三角形有三条对称轴,()三角形有一条对称轴。

5.正方形有()条对称轴,长方形有()条对称轴,等腰梯形有()条对称轴。

二.判断。

1.通过一个圆的圆心的直线是这个圆的对称轴。

( )2.圆是轴对称图形,每一条直径都是它的对称轴。

()3.等腰梯形是对称图形。

( )4.正方形只有一条对称轴。

( )三.选择。

1.下列图形中,对称轴最多的是()。

①等边三角形②正方形③圆④长方形2.下面不是轴对称图形的是()。

①长方形②平行四边形③圆④半圆3.要使大小两个圆有无数条对称轴,应采用第()种画法。

①②③四.作图题。

画下面图形的对称轴.五.应用题。

1. 一只大钟,它的分针长40厘米。

这根分针的尖端转动一周所走的路程是多少厘米??2. 通过一座桥,直径是米的车轮需转500圈,这座桥长多少米?3. 某体育馆有一个圆形的游泳池,池的周长是米,它的直径应是多少米?5.求右图阴影部分的面积。

(单位:厘米)6.计算阴影部分的周长和面积。

(单位:厘米)7.某种自行车轮胎滚动一周的长度是157厘米,这种自行车轮胎围成的圆的面积是多少平方厘米?8.用铁皮剪成一个圆环,内圆半径4厘米,环宽2厘米,它的面积是多少?。

北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

第五章生活中的轴对称达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.观察下列平面图形,其中轴对称图形共有()A.4个B.3个C.2个D.1个(第1题)(第2题)(第3题)2.如图所示的图形是轴对称图形,点A和点D,点B和点E是对应点.若∠A =50°,∠B=70°,则∠D+∠E的度数为()A.100°B.110°C.120°D.130°3.如图,在3×3的正方形网络中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形构成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种4.等腰三角形的一个内角为40°,它的顶角的度数是()A.70°B.100°C.40°或100°D.70°或100°5.将一张正方形纸片依次按图a,图b的方式对折,然后沿图c中的虚线裁剪,最后将图d的纸展开铺平,所看到的图案是()(第5题)(第7题)6.在△ABC中,∠C=90°,BC=16 cm,∠A的平分线AD交BC于D,且CD∶DB=3∶5,则点D到AB的距离等于()A.6 cm B.7 cm C.8 cm D.9 cm7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD的度数为()A.65°B.35°C.30°D.25°8.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰三角形ACD,作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()(第8题)A.15 B.17 C.18 D.20二、填空题(共5小题,每小题3分,计15分)9.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第9题)(第11题)(第12题)(第13题)10.已知等腰三角形的一个内角为70°,则这个等腰三角形底角的度数为________.11.如图,直线AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________.12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB、AC于点E、F,BE=OE,OF=5 cm,点O到BC的距离为4 cm,则△OFC的面积为________cm2.13.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,若∠1∶∠2∶∠3=13∶3∶2,则∠α的度数为________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)如图所示的五角星共有几条对称轴?请你在下图中分别画出来.(第14题)15.(5分)以图中的虚线为对称轴画出该图形的另一半.(第15题)16.(5分)如图,四边形ABCD与四边形EFGH关于直线MN对称.(1)线段AD的对应线段是________,CD=________,∠CBA=________,∠ADC=________.(2)连接AE,BF.AE与BF平行吗?为什么?(3)若AE与BF平行,则能说明轴对称图形中对应点的连线一定互相平行吗?(第16题)317.(5分)在植树节活动中,两个班的学生分别在M,N两处植树,现要在道路AB,AC交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请同学们用圆规、直尺在图中画出供应点P的位置,保留画图痕迹,不写作法.(第17题)18.(5分)如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.(第18题) 19.(5分)如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F. 试说明DE=DF .(第19题)20.(5分)把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.(第20题)(1)试说明MC的长度等于点M到AB的距离;(2)求∠AMB的度数.521.(6分)如图,已知CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O且AO平分∠BAC.试说明OB=OC.(第21题)22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB 交AD的延长线于点E.试说明CE=AB.(第22题)23.(7分)如图,在△ABC中,AB=AC,BD⊥AC于点D.试说明∠DBC=12∠BAC.(第23题)24.(8分)如图,在直角三角形ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP交于点H,试说明BQ⊥CP .(第24题)25.(8分)如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,与AC,AD,AB分别交于点E,M,F.若∠CAD=20°,求∠MCD的度数.7(第25题)26.(10分)综合与探究:如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D与点B,C不重合),连接AD,作∠ADE=40°,DE交线段AC于点E. (1)当∠BDA=115°时,∠EDC=________°,∠DEC=________°;在点D从点B向点C的运动过程中,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,何时DA与DE的长度相等?求出此时∠BDA的度数.(第26题)答案一、1.C 2.C 3.C 4.C 5.D 6.A7.C8.C二、9.210.55°或70°11.312.1013.100°三、14.解:如图所示的五角星共有5条对称轴.对称轴如图所示.(第14题)15.解:如图所示.(第15题)16.解:(1)线段EH;GH;∠GFE;∠EHG(2)AE∥BF.理由如下:因为每对对应点连接成的线段被对称轴重直平分,则EA⊥MN,BF⊥MN,所以AE∥BF.(3)AE∥BF不能说明对应点的连线一定互相平行,还有可能共线.17.解:如图所示,点P即为所求.(第17题)18.解:因为AB=AD,所以∠B=∠ADB,因为∠BAD=26°,所以∠B=12(180°-∠BAD)=12×(180°-26°)=12×154°=77°,所以∠ADB=77°,所以∠ADC=103°. 因为AD=CD,所以∠DAC=∠C,所以∠C=12(180°-∠ADC)=38.5°.919.解:连接AD,因为AB=AC,点D是BC边上的中点.所以AD平分∠BAC(三线合一),因为DE、DF分别垂直AB、AC于点E和F.所以DE=DF(角平分线上的点到角两边的距离相等).20.解:(1)过点M作MN⊥AB,易得∠CAD=∠DAB=30°,因为∠C=90°,MN⊥AB,所以MC=MN(角平分线上的点到角两边的距离相等),即MC的长度等于点M到AB的距离.(2)由题意知∠MAB=∠MBA=30°,所以∠AMB=180°-30°-30°=120°.21.解:因为AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,所以OE=OD,又因为在直角三角形OBE和直角三角形OCD中,∠BOE=∠COD,∠BEO =∠ODC=90°,所以△OBE≌△OCD,所以OB=OC.22.解:因为AB=AC,AD是BC边上的高,所以BD=CD.因为CE∥AB,所以∠BAE=∠E,∠B=∠ECD,所以△ABD≌△ECD,所以CE=AB.23.解:作∠BAC的平分线AE,与BC,BD分别交于点E,F,则∠CAE=1 2∠BAC.因为AB=AC,所以由等腰三角形的“三线合一”可知AE⊥BC,所以∠AEB=90°.因为BD⊥AC,所以∠ADB=90°.又因为∠BFE=∠AFD,所以∠DBC=∠CAE,故∠DBC=12∠BAC.24.解:因为△CAP和△CBQ都是等边三角形,所以∠ACP=∠CBQ=60°,因为∠ACB=90°,所以∠BCP=∠ACB-∠ACP=30°,在△BCH中,∠BHC=180°-∠BCH-∠CBH=180°-30°-60°=90°,所以BQ⊥CP.25.解:因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC.因为∠CAD=20°,所以∠ACD=70°.因为EF垂直平分AC,所以AM=CM,所以∠ACM=∠CAD=20°,所以∠MCD=∠ACD-∠ACM=70°-20°=50°.26.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为∠C=40°,所以∠DEC+∠EDC=140°.因为∠ADE=40°,所以∠ADB+∠EDC=140°,所以∠ADB=∠DEC.在△ABD和△DCE中,因为∠ADB=∠DEC,∠B=∠C,AB=DC=2,所以△ABD≌△DCE.(3)当△ABD≌△DCE时,DA=DE.因为∠ADE=40°,所以∠DAE=∠DEA=70°,所以∠DEC=110°.因为△ABD≌△DCE,所以∠BDA=∠DEC=110°.11。

北师大版数学七年级下册生活中的轴对称单元试题及答案(3套)

北师大版数学七年级下册生活中的轴对称单元试题及答案(3套)

北师大版数学七年级下册生活中的轴对称单元试题及答案(3套)北师大版数学七年级下册生活中的轴对称单元试题及答案(1)一、选择题1.在等边三角形ABC 中,CD 是∠ACB 的平分线,过D 作DE ∥BC 交AC 于E ,若△ABC 的边长为a ,则△ADE 的周长为 ( )A .2aB .C .1.5aD .a2.下列推理中,错误的是 ( ) A .∵∠A =∠B =∠C ,∴△ABC 是等边三角形 B .∵AB =AC ,且∠B =∠C ,∴△ABC 是等边三角形 C .∵∠A =60°,∠B =60°,∴△ABC 是等边三角形 D .∵AB =AC ,∠B =60°,∴△ABC 是等边三角形 3.下列说法中,不正确的是 ( ) A .等腰三角形底边上的中线就是它的顶角平分线 B .等腰三角形底边上的高就是底边的垂直平分线的一部分 C .一条线段可看作以它的垂直平分线为对称轴的轴对称图形 D .两个三角形能够重合,它们一定是轴对称的4.等腰三角形两边的长分别为2cm 和5cm ,则这个三角形的周长是 ( ) A .9cm B .12cmC .9cm 和12cmD .在9cm 与12cm 之间 5.观察图中的汽车商标,其中是轴对称图形的个数为 ()A.2B.3C.4D.56.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为a 34( )A .0B .1C .2D .37.△ABC 中,AB =AC ,点D 与顶点A 在直线BC 同侧,且BD =AD .则BD 与CD 的大小关系为 ( )A .BD >CDB .BD =CDC .BD <CDD .BD 与CD 大小关系无法确定8.下列图形中,不是轴对称图形的是 ( ) A .互相垂直的两条直线构成的图形 B .一条直线和直线外一点构成的图形C .有一个内角为30°,另一个内角为120°的三角形D .有一个内角为60°的三角形9.在等腰△ABC 中,AB =AC ,O 为不同于A 的一点,且OB =OC ,则直线AO 与底边BC 的关系为 ( )A .平行B .垂直且平分C .斜交D .垂直不平分10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )A .锐角三角形B .钝角三角形C .等腰三角形D .直角三角形二、填空题1.正五角星形共有_______条对称轴. 2.黑板上写着在正对着黑板的镜子里的像是__________.3.已知等腰三角形的腰长是底边长的34,一边长为11cm ,则它的周长为________. 4.(1)等腰三角形,(2)正方形,(3)正七边形,(4)平行四边形,(5)梯形,(6)菱形中,一定是轴对称图形的是_____________.5.如果一个图形沿某一条直线折叠后,直线两旁的部分能够_______,那么这个图形叫做轴对称图形,这条直线叫做___________.6.如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =________.7.已知:如图,△ABC中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E=_____________.8.如图,在Rt△ABC中,B为直角,DE是AC的垂直平分线,E在BC上,∠BAE:∠BAC=1:5,则∠C=_________.9.如图,∠BAC=30°,AM是∠BAC的平分线,过M作ME∥BA交AC于E,作MD⊥BA,垂足为D,ME=10cm,则MD=_________.10.如图,OE是∠AOB的平分线,BD⊥OA于D,AC⊥BO于C,则关于直线OE对称的三角形有________对.三、解答题1.如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.2.如图,图中的图形是轴对称图形吗?如果是轴对称图形,请作出它们的对称轴.3.已知∠AOB=30°,点P在OA上,且OP=2,点P关于直线OB的对称点是Q,求PQ之长.4.如图,在△ABC中,C为直角,∠A=30°,CD⊥AB于D,若BD=1,求AB之长.5.如图,在△ABC中,C为直角,AB上的高CD及中线CE恰好把∠ACB三等分,若AB =20,求△ABC的两锐角及AD、DE、EB各为多少?6.如图,AD、BE分别是等边△ABC中BC、AC上的高.M、N分别在AD、BE的延长线上,∠CBM=∠ACN.求证:AM=BN.7.如图,点G 在CA 的延长线上,AF =AG ,∠ADC =∠GEC .求证:AD 平分∠BAC .8.已知:如图,等腰直角三角形ABC 中,∠A =90°,D 为BC 中点,E 、F 分别为AB 、AC 上的点,且满足EA =CF .求证:DE =DF .参考答案一、1. C 2.B 3.D 4.B 5.C 6.C 7.D 8.D 9.B 10.A二、1.5 2. 3.cm 3121或cm 41214.等腰三角形,正方形,正七边形,菱形5.互相重合,对称轴 6.80° 7.50° 8.40° 9.5cm 10.4 三、1.分别以直线Ox ,Oy 为对称轴,作P 点的对应点P '和P '',连结P P '''交Ox 于M ,交Oy 于N 则PM +MN +NP 最短.如图所示.2.略 3.2 4.45.∠A=60°,∠B=30°,AD=5cm,DE=5cm,EB=10cm 6.先证△ENC≌△DMB(ASA),∴ DM=EN.再加上AD=BE即可.7.∵ AF=AG,∴∠G=∠AFG.又∵∠ADC=∠GEC,∴ AD∥GE.∴∠G=∠CAD.∴∠AFG=∠BAD.∴∠CAD=∠BAD.∴ AD平分∠BAC.8.连结AD.在△ADF和△BDE中,可证得:BD=AD,BE=AF,∠B=∠DAF.∴△ADF≌△BDE.∴ DE=DF.北师大版数学七年级下册生活中的轴对称单元试题及答案(2)一、选择题(每小题3分,共30分)1. 观察图形…并判断照此规律从左到右第四个图形是( )A .B .C .D .2. 如图的方格纸中,左边图形到右边图形的变换是( ) A.向右平移7格B.以AB 的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C.绕AB 的中点旋转180°,再以AB 为对称轴作轴对称变换D.以AB 为对称轴作轴对称变换,再向右平移7格3. 如图所示,△与△关于直线对称,则∠等于( )A. B. C.D.4. 下列说法正确的是( )第2题图第3题图A.如果图形甲和图形乙关于直线MN 对称,则图形甲是轴对称图形B.任何一个图形都有对称轴,有的图形不止一条对称轴C.平面上两个大小、形状完全一样的图形一定关于某直线对称D.如果△ABC 和△EFG 成轴对称,那么它们的面积一定相等 5. 如图所示,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点的三角形共有( ) A.3个 B.4个 C.5个 D.6个6.以下各命题中,正确的命题是()(1)等腰三角形的一边长为 4 cm ,一边长为9 cm ,则它的周长为17 cm 或22 cm ; (2)三角形的一个外角等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等; (4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形. A .(1)(2)(3) B .(1)(3)(5) C .(2)(4)(5) D .(4)(5) 7. 将一张正方形纸片如图所示折叠两次,并在上面剪下一个菱形小洞,纸片展开后是( )A .B .C .D .8. 下列说法正确的是( ) A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴第5题图第7题图C.两个全等的三角形组成一个轴对称图形D.直角三角形一定是轴对称图形9. 如图所示,在3×3正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有( ) A.6种 B.5种 C.4种 D.2种10. 如图所示,在△中,,∠,的垂直平分线交于,交于,下列结论错误的是( )A.平分∠B.△的周长等于C.D.点是线段的中点二、填空题(每小题3分,共24分)11. 一位交警在执勤过程中,从汽车的后视镜中看见某车牌照的后5位号码是,该车牌的后5位号码实际是 .12. 光线以如图所示的角度照射到平面镜上,然后在平面镜Ⅰ、Ⅱ间来回反射,已知=60°,β=50°,则= .第9题图第10题图第12题图13. 如图,在△ABC 中,AB=5 cm ,AC=3 cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .14. 如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E = 度.15. 如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 . 16. 如图,在Rt △ABC 中,∠ACB =90°,∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,DE 交AB 于点E ,M 为BE 的中点,连结DM . 在不添加任何辅助线和字母的情况下,图中的等腰三角形是 .(写出一个即可)17. 如图所示,P 是等边三角形ABC 内一点,将△ABP 绕点B 顺时针方向旋转60°,得到△CBP ′.若PB =3,则PP ′= .第15题图第17题图ABDCO E第18题第13题B第14题图第16题图18. 如图所示,是∠的平分线,于点,于,则关于直线对称的三角形共有_______对.三、解答题(共46分)19.(6分)如图所示,在等边△中,分别平分∠和△的外角∠,∥交于点,求证:.20. (6分)如图所示,∥∠的平分线与∠的平分线交于点,过点的直线垂直于,垂足为,交于点.试问:点是线段的中点吗?为什么?21. (6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系; (2)请作出△ABC 关于轴对称的△A ′B ′C ′; (3)写出点B ′的坐标.第21题图ABCDP第20题图22. (6分)公园内有一块三角形空地(如图所示),现要将它分割成三块,种植三种不同的花卉,为了美观,要求每块都要是轴对称图形,请你在图中画出分割线,保留必要的画图痕迹.23. (6分)以直线为对称轴画出图的另一半.24. (8分)已知:如图所示,等边三角形ABC 中,D 为AC 边的中点,E 为BC 延长线上一点,CE =CD ,DM ⊥BC 于M ,求证:M 是BE 的中点. 25. (8分)如图所示,∠内有一点,在射线上找出一点,在射线上找出一点,使最短.第24题图第22题图第25题第23题图参考答案1. D 解析:观察图形可知:单独涂黑的角顺时针旋转,只有D 符合.故选D .2. D 解析:观察可得:要使左边图形变化到右边图形,首先以AB 为对称轴作轴对称变换,再向右平移7格.故选D .3. D 解析:因为 △与△关于直线对称, 所以所以.4. D 解析:A.如果图形甲和图形乙关于直线MN 对称,则图形甲不一定是轴对称图形, 错误;B.有的图形没有对称轴,错误;C.平面上两个大小、形状完全一样的图形不一定关于某直线对称,与摆放位置有关,错误;D.如果△ABC 和△EFG 成轴对称,那么它们全等,故其面积一定相等,正确.故选D . 5. C 解析:与△ABC 成轴对称且以格点为顶点的三角形有 △ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选C .6. D 解析:(1)等腰三角形的一边长为 4 cm ,一边长为9 cm ,则三边长为9 cm ,9 cm ,4 cm ,或 4 cm ,4 cm ,9 cm ,因为4+4<9,则它的周长只能是22 cm ,故此命题错误;(2)三角形的一个外角等于与它不相邻的两个内角的和,故此命题错误; (3)有两边和一角对应相等的两个三角形全等错误,必须是夹角; (4)等边三角形是轴对称图形,此命题正确; (5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形,正确. 如图所示:∵ AD ∥BC ,∴ ∠1=∠B ,∠2=∠C . ∵ AD 是角平分线,∴ ∠1=∠2,第5题答第6题答∴∠B =∠C,∴AB =AC.即△ABC是等腰三角形.故选D.7. C 解析:当正方形纸片两次沿对角线对折成为一直角三角形时,在垂直于斜边的位置上剪菱形,则直角顶点处完好,即原正方形中间无损,且菱形关于对角线对称.故选C.8. B 解析:A.轴对称图形是指1个图形,故错误;B.等边三角形有三条对称轴,即三条中线所在直线,故正确;C.两个全等的三角形不一定组成一个轴对称图形,故错误;D.直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,故错误.故选B.9. C 解析:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,而当涂黑左上角和右下角的小正方形时,不会是轴对称图形,其余的4种情况均可以. 故选C.10. D 解析:因为在△中,,∠,所以∠∠.因为的垂直平分线是,所以,所以∠∠,所以∠∠∠∠,所以平分∠,故正确.所以△的周长为,故正确. 因为∠,∠,所以∠∠∠,所以∠∠,所以,所以,故正确.因为,所以,所以点不是线段的中点,故错误.故选.11. BA629 解析:关于镜面对称,也可以看成是关于某条直线对称,关于某条直线对称的数字依次是BA629.12. 40° 解析:=180°-[60°+(180°-100°)]=40°. 13. 8 14. 1515. 3 解析:要使△PBG 的周长最小,而BG =1一定,只要使BP +PG 最短即可.连接AG 交EF 于M .∵ △ABC 是等边三角形,E 、F 、G 分别为AB 、AC 、BC 的中点, ∴ AG ⊥BC ,EF ∥BC , ∴ AG ⊥EF ,AM =MG , ∴ A 、G 关于EF 对称,∴ P 点与点E 重合时,BP +PG 最小, 即△PBG 的周长最小,最小值是:PB +PG +BG =AE +BE +BG =AB +BG =2+1=3.16. △MBD 或△MDE 或△EAD 解析:由∠ACB =90°,DE ∥AC ,得∠EDC=90°,又M 为BE 的中点,得MB=MD=ME,∴△MBD 和△MDE 是等腰三角形,∵∠BAC 的平分线AD 交BC 于点D ,DE ∥AC ,∴∠EDA =∠EAD =∠DAC , ∴△EAD 是等腰三角形.17. 3 解析:∵ △ABP 绕点B 顺时针方向旋转60°得到△CBP ′, ∴ ∠PBP ′=60°,BP =BP ′,第15题答图∴△BPP′为等边三角形,∴PP′=BP=3.18.解析:△和△,△和△△和△△和△共4对.19. 证明:因为分别平分∠和∠,所以∠∠,∠∠.因为∥,所以∠∠,∠∠.所以∠∠,∠∠.所以.所以.20. 解:点是线段的中点.理由如下:过点作于点因为∥所以.又因为∠的平分线,是∠的平分线,所以所以所以点是线段的中点.21. 分析:(1)易得y轴在C的右边一个单位,轴在C的下方3个单位;(2)作出A,B,C三点关于y轴对称的三点,顺次连接即可;(3)根据所在象限及与坐标轴的距离可得相应坐标.解:(1)(2)如图所示;(3)点B′的坐标为(2,1).22. 解:如图,分别作AB 、BC 的垂直平分线,相交于点P , 沿PA 、PB 、PC 进行分割,得到的△PAB 、△PBC 、△PAC 都是等腰三角形,都是轴对称图形. 23. 分析:作图形的对称图形首先作出各顶点的对称点,然后连接各对称点即为原图形的对称图形.解:作对称图形得:作圆弧的对称图形时以原来圆弧的圆心为圆心,原半径为半径作出圆弧的对称图形.对于矩形的对称图形和外框图形的对称图形首先作出各顶点关于的对称点,连接对称点即为原图形的对称图形.24. 分析:欲证M 是BE 的中点,已知DM ⊥BC ,因此只需证DB =DE ,即证∠DBE =∠E ,根据BD 是等边△ABC 的中线可知∠DBC =30°,因此只需证∠E =30°. 证明:连结BD ,∵ △ABC 是等边三角形,∴ ∠ABC =∠ACB =60°.第21题答图第23题答图第22题答图∵ CD =CE ,∴ ∠CDE =∠E =30°.∵ BD 是AC 边上的中线,∴ BD 平分∠ABC ,即∠DBC =30°, ∴ ∠DBE =∠E .∴ DB =DE.又∵ DM ⊥BE , ∴ DM 是BE 边上的中线,即M 是BE 的中点.25. 解:如图所示,分别以直线、为对称轴,作点的对应点和,连接,交于,交于,则最短.第24题答OP MN第25题答图YX北师大版数学七年级下册生活中的轴对称单元试题及答案(3)一、填空题(每题3分,共30分)1、△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=_____.2、等腰三角形的一个角为100°,则它的两底角为_____.3、等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为_______.4、底角等于顶角一半的等腰三角形是_____三角形,画出此三角形斜边上的高,这时图中有_____个等腰三角形.5、等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_______________.6、26个大写英文字母中,有些字母可以看成轴对称图形,例如_ _(至少写出4个).7、图1中三角形1与____成轴对称图形,整个图形中共有____条对称轴.图1 图2 图38、如图2,如果点M在的∠ACB平分线上且AM=6厘米,则BM=______厘米,你的理由是_____________________________________________.9、如图3,OC平分∠AOB,D为OC上任一点,DE⊥OB于E,若DE=4 cm,则D 到OA的距离为_____.10、请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.二、选择题(每题3分,共15分)11、下列图形中,不是轴对称图形的是( )A.角B.等边三角形C.线段D.不等边三角形12、下列说法中错误的是( )A.两个对称的图形对应点连线的垂直平分线就是它们的对称轴B.关于某直线对称的两个图形全等C.面积相等的两个三角形对称D.轴对称指的是两个图形沿着某一直线对折后重合13、如图,下列图案是我国几家银行的标志,其中不是轴对称图形的有( )14、线段AB 和CD 互相垂直平分于O 点,且OC =21AB , 顺次连结A 、D 、B 、C ,那么图中的等腰直角三角形共有( ) A.4个B.6个C.8个D.10个15、将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是( )三、简答题(本题8分)16、指出下列图形中的轴对称图形,并画出它们的对称轴.ABCD四、解答题17、如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长. (7分)18、如图,△ABC中,AB=AC,点M、N分别在BC所在直线上,且AM=AN。

北师大版七年级(下)全等三角形、对称轴综合测试卷

北师大版七年级(下)全等三角形、对称轴综合测试卷

北师大版七年级(下)轴对称数学综合测试卷一、选择题1.对于下列命题:(1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点; (4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为 A.0 B.1 C.2 D.3 ) ( )2.如图,△ABC 和△A′B′C′关于直线 L 对称,下列结论中正确的有( (1)△ABC≌△A′B′C′ (2)∠BAC=∠B′A′C′ (3)直线 L 垂直平分 CC′ (4)直线 BC 和 B′C′的交点不一定在直线 L 上. A.4 个 B.3 个 C.2 个 D.1 个第2题 第5题 第7题 3.一个角的对称轴是( ) A.这个角的其中的一条边 B.这个角的其中的一条边的垂线 C.这个角的平分线 D.这个角的平分线所在的直线 4.下列四个判断:①成轴对称的两个三角形是全等三角形;②两个全等三角形一定成轴对 称;③轴对称的两个圆的半径相等;④半径相等的两个圆成轴对称,其中正确的有( ) A.4 个 B.3 个 C.2 个 D.1 个 5.如图,在平面内,把矩形 ABCD 沿 EF 对折,若∠1=50°,则∠AEF 等于( ) A.115° B.130° C.120° D.65° 6.下图是我国几家银行的标志,其中是中心对称图形的有( )A.1 个 B.2 个 C.3 个 D.4 个 7.如图,∠1=∠2,PD⊥AB,PE⊥BC,垂足分别为 D、E,则下列结论中错误的是( ) A.PD=PE B.BD=BE C.∠BPD=∠BPE D.BP=BE 8.如图,∠AOB 和一条定长线段 a,在∠AOB 内找一点 P,使 P 到 OA,OB 的距离都等于 a,作法如下:(1)作 OB 的垂线段 NH,使 NH=a,H 为垂足. (2)过 N 作 NM∥OB. (3)作∠AOB 的平分线 OP,与 NM 交于 P. (4)点 P 即为所求. 其中(3)的依据是( ) A.平行线之间的距离处处相等 B.到角的两边距离相等的点在角的平分线上 C.角的平分线上的点到角的两边的距离相等 D.到线段的两个端点距离相等的点在线段的垂直平分线上第8题 第 10 题 第 11 题 9.下列四个图形中,如果将左边的图形作轴对称变换,能变成右边的图形的是()A.B.C.D.10.如图,在桌面上坚直放置两块镜面相对的平面镜,在两镜之间放一个小凳,那么在两镜 中共可得到小凳的象( ) A.2 个 B.4 个 C.16 个 D.无数个 11.如图,直线 l1、l2、l3 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条 公路的距离相等,则供选择的地址有( ) A.1 处 B.2 处 C.3 处 D.4 处二、填空题 11.已知等腰三角形的腰长是底边长的 ________.4 ,一边长为 11cm,则它的周长为 3第 12 题第 13 题第 14 题第 17 题12. 如图, 在△ABC 中, AB=AC, E 分别是 AC, 上的点, BC=BD, D, AB 且 AD=DE=EB, 则∠A=( ) 度. 13.如图,如果直线 m 是多边形 ABCDE 的对称轴,其中∠A=130°,∠B=110°.那么∠ BCD 的度数等于______________ 度. 14.如图,等边△ABC 中,D、E 分别在 AB、AC 上,且 AD=CE,BE、CD 交于点 P,若∠ ABE:∠CBE=1:2,则∠BDP= ( )度.15. 等腰三角形的“三线合一”是指 ( )( ) , , ( ) 互相重合. 16. 在直线、角、线段、等边三角形四个图形中,对称轴最多的是( ) ,它有 ( )条 对称轴;最少的是() ,它有() 条对称轴. 17. 如图,DE 是 AB 的垂直平分线,交 AC 于点 D,若 AC=6 cm,BC=4 cm,则△BDC 的 周长是 ( ) . 18. 一天小刚照镜子时,在镜子中看见挂在身后墙上的时钟,如图,猜想实际的时间应是 ( ) .第 18 题 第 19 题 第 20 题 第 21 题 19.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,BC=30,BD:CD=3:2,则点 D 到 AB 的距离为( ) cm. 20.如图,D、E 为 AB、AC 的中点,将△ABC 沿线段 DE 折叠,使点 A 落在点 F 处,若∠ B=50°,则∠BDF=( ) 度. 21. 如图,直角△ABC 中,∠C=90°,∠BAC=2∠B,AD 平分∠BAC,CD:BD=1:2, BC=2.7 厘米,则点 D 到 AB 的距离 DE= 厘米,AD= ( )厘米.三、解答题1.已知:如图 7—110,△ABC 中,AB=AC,BE∥AC,∠BDE=100°,∠BAD=70°,则∠E 度数?2.如图 7—111,在 Rt△ABC 中,B 为直角,DE 是 AC 的垂直平分线,E 在 BC 上,∠BAE:∠ BAC=1:5,则∠C 的度数?3.如图 7—112,∠BAC=30°,AM 是∠BAC 的平分线,过 M 作 ME∥BA 交 AC 于 E,作 MD⊥ BA,垂足为 D,ME=10cm,则 MD 的长度?4.如图 7—119,点 G 在 CA 的延长线上,AF=AG,∠ADC=∠GEC.求证:AD 平分∠BAC.5.已知:如图 7—120,等腰直角三角形 ABC 中,∠A=90°,D 为 BC 中点,E、F 分别为 AB、 AC 上的点,且满足 EA=CF.求证:DE=DF.6.已知,如图Δ ABC 中,AB=AC,D 点在 BC 上,且 BD=AD,DC=AC.将图中的等腰三角 形全都写出来.并求∠B 的度数.ABDC7.如图,已知 P 点是∠AOB 平分线上一点,PC⊥OA,PD⊥OB,垂足为 C、D, (1)∠PCD=∠PDC 吗? 为什么? (2) 是 CD 的垂直平分线吗? 为什么? OPA CPODB8. 已知,△ABC 中,∠ABC 为锐角,且∠ABC=2∠ACB,AD 为 BC 边上的高,延长 AB 到 E,使 BE=BD,连接 ED 并延长交 AC 于 F.求证:AF=CF=DF.答案 三、1.∠ABC=∠BDE - ∠BAD=100° =30° -70° ∠ACB = ∠ABC =30 ∠DAC = 180-100 - 30 =50 因为 BE//AC ∠E = ∠DAC=50°2∵DE 是 AC 的垂直平分线∴AE=CE ∴∠C=∠CAE ∵∠BAE∶∠BAC=1∶5 ∴∠BAE=1/5∠BAC ∴∠CAE=4/5∠BAC ∴∠C=4/5∠BAC 即∠BAC=5/4∠C ∵∠B=90° ∴∠BAC+∠C=90° ∴5/4∠C+∠C=90° ∠C=40°3 解:过 E 点作 AB 的垂线交 AB 于 F因为 ME‖AB,且 AM 是∠BAC 的平分线 所以∠EMA=∠MAB=1/2 乘以 30°=15° 所以三角形 AEM 为等腰三角形 所以 AE=EM=10cm 又,在直角三角形 AEF 中 ∠BAC=30° 所以 EF=1/2AE=5cm 又 EFDM 为长方形,所以 MD=EF=5cm4 证明:∵AF=AG, ∴∠G=∠GFA. ∵∠ADC=∠GEC, ∴AD∥GE. ∴∠BAD=∠GFA,∠DAC=∠G. ∴∠BAD=∠DAC,即 AD 平分∠BAC.5.证明:连 AD,如图,∵△ABC 为等腰直角三角形,D 为 BC 中点, ∴AD=DC,AD 平分∠BAC,∠C=45°, ∴∠EAD=∠C=45°,在△ADE 和△CDF 中∴△ADE≌△CDF, ∴DE=DF.6. 解 析因为 AB=AC,BD=AD,DC=AC,由等腰三角形的概念得△ABC,△ADB,△ADC 是等腰三角形,再根据角之间的关系求得∠B 的度数.解 答图中等腰三角形有△ABC,△ADB,△ADC ∵AB=AC ∴△ABC 是等腰三角形; ∵BD=AD,DC=AC ∴△ADB 和△ADC 是等腰三角形; ∵AB=AC ∴∠B=∠C ∵BD=AD,DC=AC ∴∠B=∠BAD,∠ADC=∠DAC ∴5∠B=180° ∴∠B=36° .7.解: (1)∠PCD=∠PDC。

北师大版七年级下册数学第五章生活中地轴对称(附答案)

北师大版七年级下册数学第五章生活中地轴对称(附答案)

word 整理版七年级(下)第五章生活中的轴对称练习题一、选一选,牛刀初试露锋芒!(每小题 3 分,共30 分)1.下列图形中,轴对称图形的个数是()A.4 个 B .3 个C.2 个 D .1 个2.下列分子结构模型平面图中,有一条对称轴的是()ABE 22.5C 3.如图1,将长方形ABCD纸片沿对角线BD 折叠,使点C 落在C 处,C D BC 交AD于E,若DBC 22.5°,则在不添加任何辅助线的情况下,图1 则图中45 的角(虚线也视为角的边)的个数是()A.5 个 B .4 个 C .3 个 D . 2个4.下列说法中错误的是()A.两个关于某直线对称的图形一定能够完全重合C.成轴对称的两个图形,其对应点的连线的垂直平分线是它们的对称轴D.平面上两个能够完全重合的图形不一定关于某直线对称学习参考资料5.如图2,△AOD关于直线l 进行轴对称变换后得到△BOC,下列说法中不正确的是().A.∠DAO=∠CBO,∠ADO∠=BCO B .直线l 垂直平分AB、CDC.△AO D和△BOC均是等腰三角形 D .AD=BC,OD=OC6.将一个正方形纸片依次按图 a ,图b的方式对折,然后沿图 c 中的虚线裁剪,图2 最后将图d 的纸再展开铺平,所看到的图案是().a b c dA B C D7.如图3,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,△ABC折叠,使点B与点A重合,折痕为DE,则△ACD的周长图3 为()A.10 cm B .12cm C .15cm D .20cm8.图4 是小明在平面镜里看到的电子钟示数,这时的实际时间是()A.12:01 B .10:51 C .10:21 D .15:10图4 9.把两个都有一个锐角为30°的一样大小的直角三角形拼成如图 5 所示的图形,两条直角边在同一直线上.则图中等腰三角形有()个.A.1 个 B .2 个 C .3 个 D .4个10.如图6,AB AC ,BAC 120 ,AB的垂直平分线交BC于点D,那么DAC 的度数为().A.90 B .80 C .70 D .60图6图5图7二、填一填,狭路相逢勇者胜!(每小题 3 分,共30 分)11.在一些缩写符号:①SOS,②CCTV,③BBC,④WWW,⑤TNT 中,成轴对称图形的是(填写序号)12.已知等腰三角形的顶角是底角的 4 倍,则顶角的度数为.13.如图7,公路BC所在的直线恰为AD的垂直平分线,则下列说法中:①小明从家到书店与小颖从家到书店一样远;②小明从家到书店与从家到学校一样远;③小颖从家到书店与从家到学校一样远;④小明从家到学校与小颖从家到学校一样远. 正确的是. (填写序号)14.汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳如“王、中、田”,请你再举出三个可以看成是轴对称图形的汉字.(笔画的粗细和书写的字体可忽略不记).学习参考资料word 整理版15.如图8(下页),AD是三角形ABC的对称轴,点E、F 是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是.16.从汽车的后视镜中看见某车车牌的后 5 位号码是,则该车的后 5 位号码实际是.17.下午2 时,一轮船从A处出发,以每小时40 海里的速度向正南方向行驶,下午4 时,到达 B 处,在 A 处测得灯塔 C 在东南方向,在 B 处测得灯塔 C 在正东方向,则B、C之间的距离是.18.如图9,在ABC 中,ABC ACB,AB=25cm,AB的垂直平分线交AB于点D,交AC于点E,若B C E的周长为43cm,则底边BC的长为.19.如图10,把宽为2cm的纸条ABCD沿EF,GH 同时折叠,B、C 两点恰好落在AD 边的P 点处,若△PFH 的周长为10cm,则长方A形ABCD 的面积DE PGAD 为.CBF H图10图8 图920.在△ABC中,已知AB=AC,∠A=36°,AB的垂直平分线MN交AC于D.在下列结论中:①∠C=72°;②BD是∠ABC的平分线;③∠BDC=100°;④△ABD 是等腰三角形;⑤AD=BD=BC. 上述结论中,正确的三、想一想,百尺竿头再进步!(共60 分)学习参考资料图1121.(7 分)如图11,在△ABC中,∠C 90 ,AD 平分∠BAC ,DE ⊥AB,如果DE 5cm,∠CAD 32 ,求CD 的长度及∠B的度数.22.(7 分)如图12,已知AB⊥CD,△ABD、△BCE都是等腰三角形,如果CD=8cm,BE=3cm. 求AE的长.图1223.(8 分)如图13,校园有两条路OA、OB,在交叉口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置点P,并说明理由.图1324.(8 分)如图14,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.25.(10 分)(1)观察图15①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助图15⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与图14①~④的图案不能重合).图1526.(10分)如图16,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°. 求∠ACB和∠BAC的度数.27.(10分)如图17,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F 分别是边AB、AC上的中点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.图17答案一、选一选,牛刀初试露锋芒!1.B.点拨:可利用轴对称图形的定义判断.2.A.点拨:选项A有1 条对称轴,选项B、C各有2 条对称轴,选项D有6 条对称轴. 3.A.点拨:图中45 的角分别是:CBC , ABE, AEB, C ED, C DE .4.B.点拨:对称图形的对称点也可能在对称轴上.5.C.点拨:△AO D和△BOC的形状不确定.6.D.点拨:可动手操作,或空间想象.7.C.点拨:由题意得,AD=BD. 故△ACD的周长=AC+CD+AD=AC+BC=15cm8.B.点拨:镜子中看到的时刻的读数与实际时刻的读数关于镜子成轴对称.9.C.点拨:等边三角形是特殊的等腰三角形,故等腰三角形有△EPQ、△BPR、△PAD. 10.A.点拨:可求得 B BAD 30 .二、填一填,狭路相逢勇者胜!11.③,④.12.120°. 点拨:设底角的度数为x,则顶角的度数为 4 x,则有x +x +4 x =180. 13.②、③. 点拨:利用线段的垂直平分线的性质.14.本,幸,苦. 点拨:答案不惟一,只要是轴对称图形即可.15.3.点拨:利用转化思想,阴影部分的面积即为直角三角形ABD的面积. 16.BA629. 点拨:这 5 位号码在镜子中所成的像关于镜面成轴对称.17.80 海里. 点拨:画出示意图可知,△ABC是等腰直角三角形.18.18cm.点拨:由BE+CE=AC=AB=2,5可得BC=43-25=18(cm).19. 220cm .点拨:根据轴对称的性质得,BC的长即为△PFH的周长.20.①②④⑤. 点拨:∠ABC =∠C=∠BDC =72°;∠CBD=∠ABD=∠A=36°.三、想一想,百尺竿头再进步!21.因为AD 平分∠BAC ,DE⊥AB,DC ⊥AC ,所以CD DE 5cm.又因为AD 平分∠BAC ,所以∠CAB 2∠CAD 2 32 64 ,所以∠B 90 64 26 .22.因为△ABD、△BCE都是等腰三角形,所以AB=BD,BC=BE.又因为BD=CD-BC,所以AB= CD-BC=CD-BE=8cm-3cm=5cm,所以AE=AB-BE=2cm.学习参考资料23.如答图 1 所示. 到∠AOB两边距离相等的点在这个角的平分线上,而到宣传牌C、D 的.距离相等的点则在线段C D的垂直平分线上,故交点P 即为所求24.(1)如答图 2 所示. 点拨:利用图中格点,可以直接确定出△ABC中各顶点的对称点的位置,从而得到△ABC关于直线MN的对称图形△ A B C .(2)S ABC 9. 点拨:利用和差法.答图 1答图 225.(1)都是轴对称图形;它们的面积相等(都是4).(2)答案不惟一,如答图 3 所示.答图 326.因为AB=AC,AE平分∠BAC,所以AE⊥BC(等腰三角形的“三线合一”)因为∠ADC=125°,所以∠CDE=55°,所以∠DCE=90°-∠CDE=35 °,又因为CD平分∠ACB,所以∠ACB=2∠DCE=70°.又因为AB=AC,所以∠B=∠ACB=70°,所以∠BAC=180-(∠B+∠ACB)=40°.27.(1)因为EF∥BC,所以∠AEF=∠B,∠AFE=∠C .又因为AB=AC,所以∠B=∠C,所以∠AEF=∠AFE,所以AE=AF,即△AEF是等腰三角形.(2)DE=DF.理由如下:方法一:因为AD是等腰三角形ABC的底边上的高,所以AD也是∠BAC的平分线.又因为△AEF是等腰三角形,所以A G是底边EF上的高和中线,所以AD⊥EF,G E=G F,所以AD是线段E F的垂直平分线,所以DE=DF.方法二:因为AD是高,所以BD=CD(三线和一);又因为点E、F 分别是边AB、AC上的中点,所以BE=CF,又因为∠B=∠C,所以△BDE≌△CDF(SAS),所以DE=DF.学习参考资料学习参考资料。

北师大数学七年级下《5.3简单的轴对称图形》课时练习含答案解析初中数学教学反思设

北师大数学七年级下《5.3简单的轴对称图形》课时练习含答案解析初中数学教学反思设

北师大版数学七年级下册第五单元5.3简单的轴对称图形课时练习一、选择题(共15小题)1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线答案:C解析:解答:对称轴是直线,故B错;须过底边中点,故A错,D错,综上,选C.分析:解决本题关键是首先确定对称轴是直线,其次确定过什么特殊点.2.下面四个图形中,不是轴对称图形的是()A.有一个内角为45度的直角三角形B.有一个内角为60度的等腰三角形C.有一个内角为30度的直角三角形D.两个内角分别为36度和72度的三角形答案:C解析:解答:对于选项A,有一个内角为45度的直角三角形,三个内角分别是45°、90°、45°,是等腰三角形,是轴对称图形;选项B,有一个内角为60°的等腰三角形,三个角度数分别为60°、60°、60°,是等边三角形,是轴对称图形;对于C,有一个内角为30度的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,不是轴对称图形;对于D,两个内角分别为36度和72度的三角形,三个角度数分别为36°、72°、72°,是等腰三角形,是轴对称图形;综上,选C.分析:解决本题关键是判断是不是等腰三角形,是的就是轴对称图形,否则就不是.3.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段答案:B解析:解答:对于选项A,有2个内角相等的三角形,是等腰三角形,是轴对称图形;选项B,有1个内角为30°的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,故不是轴对称图形,故选B;对于C,有2个内角分别为30°和120°的三角形,三个角度数分别为30°、120°、30°,是等腰三角形,是轴对称图形;对于D,线段是以其垂直平分线为对称轴,另一条对称轴是其所在的直线.分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.4.下列图形中,不一定是轴对称图形的是()A.三角形B.射线C.角D.相交的两条直线答案:A解析:解答:题中给出的四个选项中,射线以其所在直线为对称轴,角以其角平分线所在直线为对称轴,相交的两条直线以其夹角的平分线所在直线为对称轴;故选A分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.5.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形答案:C解析:解答:题中给出的四个选项中,有三项是等腰三角形,而等腰三角形一定是轴对称图形,剩下的C就是答案,故选C.分析:判断三角形是否是轴对称图形,关键就是看这个三角形是不是等腰三角形.6.角、线段、三角形、圆、长方形和正方形中,一定是轴对称图形的有()A.4个B.5个C.6个D.3个答案:B解析:解答:通过分析可知,角、线段、圆、长方形和正方形都是轴对称图形,故选B.分析:本题关键是对于每一种图形,找到一条对称轴,找不到的就不是轴对称图形.7.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个答案:A解析:解答:通过分析可以得到等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,故选A.分析:本题关键看是不是等腰三角形,在所有三角形中,只要是等腰三角形,就一定是轴对称图形.8.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5B.4C.6D.7答案:D解析:解答:从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形,故选D.分析:本题关键是找到一条对称轴,解决方法是针对每一字母逐一研究,涉及到的知识点较为单一.9.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形答案:D解析:解答:从A 选项开始研究,有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B 有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C 有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;故选D .分析:本题关键是判断三角形是不是等腰三角形,解决方法逐一研究,涉及到的知识点较为单一.10.有两条或两条以上对称轴的轴对称图形是( )A .等腰三角形B .角C .等边三角形D .锐角三角形答案:C解析:解答:从A 选项开始研究,等腰三角形只有一条对称轴;角也只有一条对称轴,是角平分线所在的直线;等边三角形有三条对称轴;D 锐角三角形的对称轴数量不确定. ∴选C分析:本题关键是看能否找到该图形的对称轴,解决方法逐一研究,涉及到的知识点较为单一11.如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若AD =5cm ,CD =3cm ,则点D 到AB 的距离DE 是( )A . 5cmB . 4cmC . 3cmD . 2cm答案:C解析:解答:∵点D 到AB 的距离是DE∴DE ⊥AB∵BD 平分∠ABC ,∠C =90°∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处∴DE =CD∵CD =3cm∴DE =3cm选C .分析:本题关键是运用翻折,实现DE 与DC 重合,从而判断DE =DC =3cm .12. △ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )DBA .30°B .45°C .36°D .72°答案:C解析:解答:∵有很多等腰三角形,∴得到很多对称的图形∴根据题意将上图构造出来后如下图所示∴∠A =36°故选C分析:本题关键根据题干把图构造出来,然后进行计算就可以了.13.一个等腰三角形的顶角为钝角,则底角a 的范围是( )A .0°<a <9B .30°<a <90°C .0°<a <45°D .45°<a <90°答案:C解析:解答:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选C分析:本题关键先将两个底角的和的范围算出来,然后再将每个底角范围出来,注意是大于小于,不包含等于号.14.如图,△ABC 中,AB =AC ,∠A =36°,∠ABC 和∠ACB 的平分线BE 、CD 交于点F ,则图中共有等腰三角形( )A .7个B .8个C .9个D .10个答案:B解析:解答:∵等腰三角形有两个角相等 D A B C AB C E DF∴只要能判断出有两个角相等就行了将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个.故选B分析:本题关键先将每一个三角形的内角算出来,然后再将三角形的个数数出来,注意不重不漏.15.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .50°答案:C解析:解答:∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB =40°; ②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB =25°故选C① ②分析:本题关键根据题意确定有两种不同的情况.A B B二、填空题(共5小题)16.等腰三角形的对称轴是.答案:底边的垂直平分线解析:解答:∵对称轴是直线∴等腰三角形的对称轴也是直线∵等腰三角形有两条边相等∴这两条边是轴对称后能够重合的两条线段∴这两边的非公共点是轴对称点∴等腰三角形的对称轴是其底边的垂直平分线分析:本题关键是把求等腰三角形的对称轴转化成求线段的对称轴.17.等边三角形有条对称轴,矩形有条对称轴.答案:3|2解析:解答:∵等腰三角形有一条对称轴∴等边三角形可以看成以各个点为顶点的等腰三角形而每一种情况下都分别有一条对称轴∴等边三角形有三条对称轴分析:本题关键是把等边三角形向等腰三角形转化,由此得到有三条对称轴18.不重合的两点的对称轴是.答案:连结这两点所成线段的垂直平分线解析:解答:∵两点之间线段最短∴连结已知不重合两点,得一线段∴原题变成求一条线段的对称轴而线段的对称轴是它的垂直平分线∴不重合的两点的对称轴是连结这两点所成线段的垂直平分线.分析:本题关键是由点想到线段,把原题转化成求线段的对称轴.19.在△ABC中,AB =AC,∠A=80°,则∠B=.答案:50°解析:解答:∵AB=AC∴根据轴对称的性质,将线段BC对折重合后,点A在折痕上∴线段AB、AC关于折痕轴对称设折痕与BC交点为D则△ABD、△ACD关于直线AD轴对称∴∠B=∠C =(180°-∠A)÷2=(180°-80°)÷2=50°分析:本题关键是利用轴对称性质,得到∠B =∠C,再利用三角形内角各可以求得.20.已知M 、N 是线段AB 的垂直平分线上任意两点,则∠MAN 和∠MBN 之间关系是 . 答案:∠MAN=∠MBN解析:解答:∵原题当中没有说明点M 、N 在线段AB 的位置,∴可能有以下四种情况:①如图①,点M 、N 在线段AB 两侧时∵M 、N 是线段AB 的垂直平分线上任意两点∴点A 、B 两点关于直线MN 轴对称∴线段MA 、MB 两点关于直线MN 轴对称同理线段NA 、NB 两点关于直线MN 轴对称∴△MAN 与△MBN 关于直线MN 轴对称∴∠MAN =∠MBN②如图①,当点M 、N 在线段AB 同侧时,按照①中逻辑推理,同样可以得到∠MAN =∠MBN ;③如图③,当点N 在线段AB 上时,同理可得∠MAN =∠MBN ;④如图④,当点M 在线段AB 上时,同理可得∠MAN =∠MBN .综上,一定有∠MAN =∠MBN分析:本题关键是考虑到不论点M 、N 与线段AB 的位置如何,求得∠MAN =∠MBN 原理相同,这是关键点.三、解答题(共5小题)21.如图1,在一条河同一岸边有A 和B 两个村庄,要在河边修建码头M ,使M 到A 和B 的距离之和最短,试确定M 的位置;答案:所求点如下图所示 ①AB ②A ③A ④A B lAB解答:∵两点之间线段最短∴需要能将AM 、BM 两边转化到一条直线上∴用轴对称可以办到求点M 的位置的具体步骤如下:①作点A 关于直线BC 的轴对称点A ’②连结A ’B 交BC 于点M③连结AM则点M 就是所求作的点,能够使M 到A 和B 的距离之和最短.解析:分析:本题关键是要分析出如何求点M 的方法,这是关键点.22.如图所示,P 和Q 为△ABC 边AB 与AC 上两点,在BC 上求作一点M ,使△PQM 的周长最小.答案:所求点如下图所示解答:∵△PQM 的三条边中PQ 已经确定∴只需要另外两边之和最短∵两点之间线段最短BB∴需要能将其它两边转化到一条直线上∴用轴对称可以办到求点M的位置的具体步骤如下:①作点P关于直线BC的轴对称点P’②连结P’Q交BC于点M③连结PM则点M就是所求作的点,能够使PQM的周长最小.解析:分析:本题关键是要分析出如何求点M的方法,这是关键点.23.圆、长方形、正方形都是轴对称图形,说出他们分别有几条对称轴.答案:无数条|2条|4条解答:∵对于圆来说,过圆心的任意一条直线,都能够将这个圆分成能够互相重合的两部分∴过圆心的直线,都是圆的对称轴∴圆有无数条对称轴∵对于长方形来说,过其中心平行于边的直线,都能够把它分成能够互相重合的两部分∴长方形有2条对称轴∵对于正方形来说,属于长方形的对称轴,对其也成立;∴正方形首先有2条对称轴又∵正方形的每一条对角线所在的直线,也能够把这个正方形分成能够互相重合的两部分∴正方形另外还有2条对称轴综上,正方形有4条对称轴解析:分析:本题关键是要分析出每一种图形对称轴的由来,这是关键点.24.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.答案:22解答:∵等腰三角形的一边长等于4,一边长等于9,∴等腰三角形的三边长为4,4,9或4,9,9;当三边长为4,4,9时,4+4<9不能构成三角形,舍去;当三边长为4,9,9时,能够构成三角形,此时,周长为4+9+9 =22答:它的周长是22.解析:分析:本题关键是要考虑到是否能够构成三角形,这是易错点.25.如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为多少?答案:4解答:如图,设点B 落在AC 上后,为点F .则有△AFE ≌△ABE∴∠AFE =∠B =90° AF =AB =2∴FE ⊥AC∵AE =EC∴CF =AF =2∴AC =CF +AF =4答:AC 的长为4.解析:分析:本题考察轴对称的性质,关键是把握住对称一定全等,全等三角形的对应线段相等.AB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称图形同步练习
一.填空。

1.如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是(),折痕所在的直线叫做()。

2.圆的对称轴有()条,半圆形的对称轴有()条。

3.在对称图形中,对称轴两侧相对的点到对称轴的()。

4.()三角形有三条对称轴,()三角形有一条对称轴。

5.正方形有()条对称轴,长方形有()条对称轴,等腰梯形有()条对称轴。

二.判断。

1.通过一个圆的圆心的直线是这个圆的对称轴。

( )
2.圆是轴对称图形,每一条直径都是它的对称轴。

()
3.等腰梯形是对称图形。

( )
4.正方形只有一条对称轴。

( )
三.选择。

1.下列图形中,对称轴最多的是()。

①等边三角形②正方形③圆④长方形
2.下面不是轴对称图形的是()。

①长方形②平行四边形③圆④半圆
3.要使大小两个圆有无数条对称轴,应采用第()种画法。

①②③
四.作图题。

画下面图形的对称轴.
五.应用题。

1. 一只大钟,它的分针长40厘米。

这根分针的尖端转动一周所走的路程是多少厘米?
2. 通过一座桥,直径是1.2米的车轮需转500圈,这座桥长多少米?
3. 某体育馆有一个圆形的游泳池,池的周长是100.48米,它的直径应是多少米?
5.求右图阴影部分的面积。

(单位:厘米)
6.计算阴影部分的周长和面积。

(单位:厘米)
7.某种自行车轮胎滚动一周的长度是157厘米,这种自行车轮胎围成的圆的面积是多少平方厘米? 8.用铁皮剪成一个圆环,内圆半径4厘米,环宽2厘米,它的面积是多少?。

相关文档
最新文档