色谱法是一种重要的分离分析方法,它是利用不同物质在两相

合集下载

色谱分析法概述

色谱分析法概述

气相色谱法
流动相为气体,根据物质在固定相中 的吸附、溶解等作用的不同进行分离。
液相色谱法
流动相为液体,根据物质在固定相中 的吸附、溶解等作用的不同进行分离。
按分离机制分类
吸附色谱法
利用物质在固定相上的吸附作用进行分离。
分配色谱法
利用物质在固定相和流动相之间的分配平衡 进行分离。
离子交换色谱法
利用物质在固定相上的离子交换作用进行分 离。
缺点
01
02
03
04
样品处理要求高
在进行色谱分析之前,需要对 样品进行预处理,如提取、纯
化等,较为繁琐。
仪器成本高
色谱分析仪器通常较为昂贵, 需要较高的投资成本。
分析时间长
色谱分析法通常需要一定的时 间来完成分离和检测过程。
对操作人员要求高
色谱分析法的操作较为复杂色谱分析法的未来发展
03 色谱分析法的操作流程
样品前处理
01
02
03
样品收集
根据分析目的,选择合适 的采样方法,确保采集到 具有代表性的样品。
样品制备
将采集的样品进行破碎、 混合、稀释等操作,以便 于后续的分离和检测。
样品净化
去除样品中的杂质,降低 干扰,提高检测的准确性 和可靠性。
分离操作
固定相选择
根据待测组分的性质,选择合适的固定相,实现组分 的吸附或分离。
色谱分析法概述
目录
• 色谱分析法简介 • 色谱分析法的分类 • 色谱分析法的操作流程 • 色谱分析法的优缺点 • 色谱分析法的未来发展
01 色谱分析法简介
色谱分析法的定义
定义
色谱分析法是一种分离和分析复杂混合物中各组分的方法,通过利用不同物质 在固定相和流动相之间的吸附、溶解等相互作用的不同,实现各组分的分离和 分析。

色谱法的原理及应用范围

色谱法的原理及应用范围

色谱法的原理及应用范围1. 背景介绍色谱法是一种在化学分析中常用的分离技术,可以用来分离和鉴定混合物中的化合物。

它基于样品中不同化合物在移动相(液相或气相)和固定相之间的分配系数差异来实现分离。

色谱法具有高分辨率、高选择性和广泛的应用范围等优点,被广泛应用于各个领域。

2. 色谱法的原理色谱法的原理是基于分配平衡的原理。

移动相将混合物溶解,涂布在流动相一定的固定相上,其中固定相是通过涂覆或填充在柱子中的。

混合物在移动相和固定相之间通过吸附和解吸来实现分离。

不同物质在两相之间的平衡系数不同,因此在移动相流动过程中,它们会以不同的速率从固定相中移出。

3. 色谱法的分类色谱法可以分为气相色谱法(Gas Chromatography,GC)和液相色谱法(Liquid Chromatography,LC)两大类。

3.1 气相色谱法气相色谱法是使用气体作为流动相的色谱分析方法。

它通常用于分离蒸气压高、热稳定且易挥发的化合物。

气相色谱法常被应用于环境分析、食品安全检测、毒理学研究等领域。

3.2 液相色谱法液相色谱法是使用液体作为流动相的色谱分析方法。

它分为高效液相色谱(High Performance Liquid Chromatography,HPLC)、离子色谱(Ion Chromatography,IC)、凝胶渗透色谱(Gel Permeation Chromatography,GPC)等。

液相色谱法广泛应用于药物分析、食品检测、生化分析等领域。

4. 色谱法的应用范围色谱法在各个领域都有广泛的应用,包括但不限于以下几个方面:•环境分析:色谱法可以用来分析水、空气、土壤等环境中的污染物,帮助监控环境质量和评估环境风险。

•食品安全检测:色谱法可以检测食品中的农药残留、添加剂、重金属等有害物质,保障食品安全。

•生物医药分析:色谱法可用于药物的纯度分析、新药开发中药物代谢产物的检测、血液和尿液中激素和蛋白质的测定等。

生物制药技术试题库答案

生物制药技术试题库答案

一.名词解释1.生物药物是利用生物体.生物组织或其成分,综合应用生物学、生物化学、微生物学、免疫学、生物化工技术和药学的原理与方法进行加工、制造而成的一大类预防、诊断、治疗疾病的物质。

2.单克隆抗体:单个淋巴细胞针对某一抗原产生的单个抗体。

3.生物技术是运用现代生物科学、工程学和其他基础学科的知识,按照预先的设计,对生物进行控制和改造或模拟生物及其功能,用来发展商业性加工、产品生产和社会服务的新兴技术领域。

4.生化药物指从生物体中分离纯化所得的一类具有调节人体生理功能、达到预防和治疗疾病目的的物质。

5.生物制品是利用病原生物体及其代谢产物,依据免疫学原理制成的用于人类免疫性疾病的预防.诊断和治疗的一类制品。

6.贴壁培养:必须让细胞贴附于某种基质上生长繁殖的培养方法。

7.生化分离是指采用适宜的分离、提取、纯化技术,将目标成分从复杂的生物材料(细胞)中分离出来,并获得高纯度的产品的过程。

8.固定化酶:限制或固定于特定空间位置的酶,具体来说,是指经物理或化学方法处理,使酶变成不易随水流失即运动受到限制,而又能发挥催化作用的酶制剂。

9.灭菌:利用物理或化学的方法杀死或除去物料及设备中所有的微生物,包括营养细胞、细菌芽孢和孢子。

10.超临界流体萃取就是利用超临界流体的特性,通过改变临界压力或临界温度来提取和分种化合物。

11.盐析:在蛋白质溶液中加入中性盐随着盐浓度的升高,蛋白质溶解度逐渐降低,最后形成沉淀。

12.抗生素:生物在生命活动中产生,在低微浓度下选择性抑制他种生物机能的物质。

13.等电点沉淀:当溶液在某个pH值时,大分子因所带的正负电荷相等而呈电中性,溶解度最低,发生沉淀。

14.离心分离:利用惯性离心力实现不同颗粒分离的操作。

15.疫苗是典型的免疫类药物。

所谓疫苗,是指将病原微生物(如细菌、病毒等)及其代谢产物(如类毒素),经过人工减毒、灭活或利用基因工程等方法制成的用于预防传染病的主动免疫制剂。

色谱法与药物分析

色谱法与药物分析

色谱法与药物分析色谱法是现代分离分析的一个重要方法. 色谱法分离原理是利用不同物质在固定相和流动相中具有不同的分配系数,当两相作相对移动时,使这些物质在两相间进行反复多次分配,原来微小的分配差异产生了很明显的分离效果,从而依先后顺序流出色谱柱.再通过适当的检测手段,可以对分离后的各组分进行测定.1气相色谱法气相色谱法是以气体为流动相的柱色谱法.由于气体粘度小,组分扩散速率高,传质快,可供选择的固定液种类比较多.采用高灵敏度的通用型检测器,使得气相色谱法具有选择性好,柱效高,灵敏度高的特点.方伊[1]等人曾利用气相色谱法研究了斑蟊素在几种萃取体系中的分配行为,测定了它的分配系数.结果证明此方法的分离效果不错,检测限低,且结果的准确性和精密度良好.气相色谱法更多的应用于测定有机溶剂和药物的含量及残留上,且回收率都很高与填充柱相比,毛细管柱的渗透性大,分析速度快,传质阻力小,因此使用毛细管气相色谱法有利于提高色谱分离能力,加快色谱分析速度,且样品用量少,可促进色谱的应用.孔祥虹[2]等人采用毛细管气相色谱法测定中药材中多种拟除虫菊酯类残留量2液相色谱法2. 1高效液相色谱法高效液相色谱法(HPLC)是20世纪70年代初发展起来的一种新型分离分析技术.它是在经典的液相色谱基础上,引入气相色谱理论,在技术上采用高压输液泵、梯度洗脱技术、新型高效填充剂以及各种高灵敏度检测器,与经典液相色谱法相比较,具有分析速度快、分离效率高、灵敏度高和操作自动化等优点.2. 2离子色谱法离子色谱法是20世纪70年代发展起来的一项新型的液相色谱法.该方法用离子交换树作为固定相,电解质溶液为流动相,用电导检测器检测.为了消除流动相中强电解质背景离子的干扰,设置了化学抑制柱.试样组分在分离柱和抑制柱上的反应原理是:根据离子交换树脂上可电离的离子与流动相中带相同电荷的组分离子进行交换,这些离子对交换树脂具有不同的亲和力而彼此分离.寇兴明[3]等人用双柱法同时测定川附子中氯、磷和硫的离子色谱法,他们以Na2CO3作熔剂,干灰化-沸水浸取法处理样品,Na2CO3-NaHCO3混合液为淋洗液,电导法检测.2. 3反相高效液相色谱法根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法. 当流动相的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析.在中药制剂分析中,大多采用反相色谱法.李赫等人[4]建立的是反相高效液相色谱分析法对不同剂型保健品中类胡萝卜素进行提取,同时测定保健品中4种类胡萝卜素的含量.该法简便、快速、准确,是保健品中多种类胡萝卜素定量测定的可靠方法之一.3薄层色谱法薄层色谱法是上世纪20年代发展起来的一种简单、便捷经济灵敏、高效、应用广泛的分离技术,随着科学技术的发展以及新材料的应用,使其得到了很大发展.出现了许多新技术。

色谱法的原理

色谱法的原理

色谱法的原理
色谱法是一种基于物质在固体或液体静态相和移动相之间分配的原理进行分离和测定的分析方法。

它利用物质在不同相中的亲和力差异,通过在固定相上的分配和在移动相中的迁移来实现样品中各组分的分离。

在色谱法中,固定相是由固体或涂布在固体基质上的液体相构成的。

它负责限制和分散样品中各组分的迁移速率,从而实现分离。

移动相是样品分析过程中经过固定相的流动相。

它使样品中的组分按其亲和力大小分别向前移动,被分离并逐个通过。

分离过程基于样品中各组分在固定相和移动相之间的不同亲和力。

对于柱色谱法,样品进入柱后,固定相会根据样品的成分使不同的组分被分配到不同的位置。

然后,移动相会通过柱将这些组分逐一带走。

由于不同组分在固定相和移动相之间的亲和力不同,它们将以不同的速率迁移。

因此,当移动相流经整个固定相时,样品中不同的组分将被分离。

具体来说,固定相可以是基于吸附、离子交换、分子筛等原理的固体或涂层。

而移动相则可以是各种溶液、气体或超临界流体。

通过调整固定相和移动相的性质,可以实现对特定组分的选择性分离。

分离后的各组分可以通过检测器进行定性和定量测定。

色谱法广泛应用于环境监测、食品安全、药物分析等领域。

不同的色谱方法包括气相色谱(GC)、液相色谱(LC)、离子
色谱(IC)等。

这些方法依靠不同的原理和设备实现样品的分离和分析,但其基本原理都是基于分配作用。

仪器复习题答案)

仪器复习题答案)

仪器复习题答案)复习题答案1.分子光谱:由分子的吸收或发光所形成的光谱称为分子光谱(molecular spectrum),分子光谱是带状光谱。

2.分子荧光分析:某些物质被紫外光照射激发到单重激发态后,在回到基态的过程中发射出比原激发波长更长的荧光,通过测量荧光强度进行定量分析的方法。

3.气相干扰:是指干扰发生在气相过程中(如电离干扰、激发干扰)以气相化学反应引起的干扰。

4.标记PCR(LP-PCR):利用同位素、荧光素等对PCR引物进行标记,用以直观地检测目的基因。

5.毛细管电泳:是指离子或带电粒子以毛细管为分离室,以高压直流电场为驱动力,依据样品中各组分之间淌度和分配行为上的差异而实现分离的液相分离分析技术。

6.红外吸收光谱:又称为分子振动—转动光谱。

当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。

7.Fermi共振:当一振动的倍频与另一振动的基频接近时,由于发生相互作用而产生很强的吸收峰或发生裂分。

8.荧光发射:电子由第一激发单重态的最低振动能级→基态(多为S1→S0跃迁),发射波长为‘2的荧光;10-7~10 -9 s 。

9.原子光谱:原子的电子运动状态发生变化时发射或吸收的有特定频率的电磁频谱.原子光谱是一些线状光谱,发射谱是一些明亮的细线,吸收谱是一些暗线.10.分子吸收光谱:分子对辐射选择性吸收使基态分子跃迁至更高能级的激发态而发出的特征光谱为分子吸收光谱.11.内转化:处于相同的重态的两个离子间的非辐射跃迁.12.宽带吸收:是用紫外可见分光光度法测量溶液中分子或离子的吸收,吸收宽带宽从几纳米到几十纳米,是用的是连续光源,这种测量方法叫13.塔板理论:在每一块踏板上,被分离柱分在气液两相间瞬时达到一次分配平衡,然后随载气从一块踏板以脉动式迁移,经过多次分配平衡后,分配系数小的组分先离开精馏塔,分配系数大的后离开,从而使分配系数不同的组分分离。

色谱分离

色谱分离

高效液相色谱仪
高效液相色谱(HPLC)流程示意图
离子交换色谱
• 离子交换色谱中的固定相是一些带电荷的基团, 这些带 电基团通过静电相互作用与带相反电荷的离子结合。如果 流动相中存在其他带相反电荷的离子,按照质量作用定律, 这些离子将与结合在固定相上的反离子进行交换。固定相 基团带正电荷的时候,其可交换离子为阴离子,这种离子 交换剂为阴离子交换剂;固定相的带电基团带负电荷,可 用来与流动相交换的离子就是阳离子,这种离子交换剂叫 做阳离子交换剂。阴离子交换柱的功能团主要是-NH2, 及-MH3+ :阳离子交换剂的功能团主要是-SO3H及- COOH。其中-NH3+离子交换柱及-SO3H离子交换剂属于 强离子交换剂,它们在很广泛的pH范围内都有离子交换 能力;-NH2及-COOH 离子交换柱属于弱离子交换剂,只 有在一定的pH值范围内,才能有离子交换能力。离子交 换色谱主要用于可电离化合物的分离,例如,氨基酸自动 分析仪中的色谱柱,多肽的分离、蛋白质的分离,核苷酸、 核苷和各种碱基的分离等。
色谱法的发展历程
◆ 1903年 Tswett创立色谱法(在碳酸钙上分离了叶绿素)。 由Tswett创立的色谱法分离效率低,分离时间长,根据样品的不同, 一般分离需要几小时至几天。 ◆20世纪40年代至50年代初,先后出现了纸色谱(paper chromatography,PC)和薄膜色谱法(thin-layer chromatography,TLC)。 特点:较经典色谱法简单、分离时间短,样品量要求小。 ◆1952年,James和Martin提出了气相色谱法(gas chromatography,GC) 特点: 以气体作为流动相。应用范围广泛受到人们重视。但对不 易气化和热不稳定性差的化合物难以分离。 ◆ 20世纪60年代后期由于新型色谱柱填料的,高压输液泵和高灵 敏度的监测器的出现,发展出了高效液相色谱(High performance liquid chromatograghy,HPLC)。

色谱法的原理与应用

色谱法的原理与应用

色谱法的原理与应用色谱法是一种分离和分析化合物的重要方法,广泛应用于化学、生物、环境等领域。

本文将介绍色谱法的原理、分类以及在不同领域的应用。

### 一、色谱法的原理色谱法是利用不同物质在固定相和流动相中的分配系数不同,通过在固定相中的分配和流动相的移动,使混合物中的各种成分在固定相中以不同速度移动,从而实现分离和分析的方法。

其基本原理是根据化合物在固定相和流动相中的分配系数不同,通过在固定相中的分配和流动相的移动,使混合物中的各种成分在固定相中以不同速度移动,从而实现分离和分析的方法。

### 二、色谱法的分类色谱法根据不同的分离机理和操作方式可以分为多种类型,主要包括气相色谱(Gas Chromatography, GC)、液相色谱(Liquid Chromatography, LC)、超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)、薄层色谱(Thin Layer Chromatography, TLC)等。

其中,气相色谱和液相色谱是应用最为广泛的两种色谱方法。

1. 气相色谱(GC):气相色谱是利用气体作为流动相,固体或液体作为固定相的色谱方法。

它具有分离效率高、分析速度快、灵敏度高等优点,广泛应用于石油化工、食品安全、环境监测等领域。

2. 液相色谱(LC):液相色谱是利用液体作为流动相,固体或液体作为固定相的色谱方法。

它适用于分析极性化合物和大分子化合物,具有分离效果好、适用范围广等优点,被广泛应用于生物医药、食品检测、环境监测等领域。

### 三、色谱法的应用色谱法作为一种高效、准确的分析方法,在各个领域都有着重要的应用价值。

以下将介绍色谱法在不同领域的应用情况:1. 化学领域:色谱法在化学领域被广泛应用于有机物的分离和鉴定。

通过气相色谱和液相色谱可以对各种有机物进行分离和定量分析,为化学研究提供了重要的技术支持。

2. 生物领域:色谱法在生物领域的应用主要集中在生物样品的分离和分析上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

色谱扫盲班第一课色谱法概述色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反复分配而实现分离。

在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫液相色谱。

固定相可以装在柱内,也可以做成薄层。

前者叫柱色谱,后者叫薄层色谱。

根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。

色谱法的创始人是俄国的植物学家茨维特。

1905年,他将从植物色素提取的石油醚提取液倒人一根装有碳酸钙的玻璃管顶端,然后用石油醚淋洗,结果使不同色素得到分离,在管内显示出不同的色带,色谱一词也由此得名。

这就是最初的色谱法。

后来,用色谱法分析的物质已极少为有色物质,但色谱一词仍沿用至今,在50年代,色谱法有了很大的发展。

1952年,詹姆斯和马丁以气体作为流动相分析了脂肪酸同系并提出了塔板理论。

1956年范第姆特总结了前人的经验,提出了反映载气流速和柱效关系的范笨姆特方程,建立了初步的色谱理论。

同年,高莱(Golay)发明了毛细管柱,以后又相继发明了各种检测器,使色谱技术更加完善。

50年代末期,出现了气相色谱和质谱联用的仪器,克服了气相色谱不适于定性的缺点。

则年代,由于检测技术的提高和高压泵的出现,高效液相色谱迅远发展,使得色谱法的应用范围大大扩展。

目前,由于高效能的色谱往、高灵敏的检测器及微处理机的使用,使得色谱法已成为一种分析速度快、灵敏度高、应用范围广的分析仪器。

在这里主要介绍气相色谱分析法。

同时也适当介绍液相色谱法。

气相色谱法的基本理论和定性定量方法也适用于液相色谱法。

其不同之处在液相色谱法中介绍。

第二课气相色谱仪典型的气相色谱仪具有稳定流量的载气,将汽化的样品由汽化室带入色谱柱,在色谱柱中不同组分得到分离,并先后从色谱柱中流出,经过检测器和记录器,这些被分开的组分成为一个一个的色谱峰。

色谱仪通常由下列五个部分组成:载气系统(包括气源和流量的调节与测量元件等)进样系统(包括进样装置和汽化室两部分)分离系统(主要是色谱柱)检测、记录系统(包括检测器和记录器)辅助系统(包括温控系统、数据处理系统等)第三课气相色谱仪-载气系统载气通常为氮、氢和氢气,由高压气瓶供给。

由高压气瓶出来的载气需经过装有活性炭或分子筛的净化器,以除去载气中的水、氧等有害杂质。

由于载气流速的变化会引起保留值和检测灵敏度的变化,因此,一般采用稳压阀、稳流阀或自动流量控制装置,以确保流量恒定。

载气气路有单柱单气路和双柱双气路两种。

前者比较简单,后者可以补偿因固定液流失、温度被动所造成的影响,因而基线比较稳定。

第四课气相色谱仪-进样系统进样系统包括进样装置和汽化室。

气体样品可以用注射进样,也可以用定量阀进样。

液体样品用微量注射器进样。

固体样品则要溶解后用微量注射器进样。

样品进入汽化室后在一瞬间就被汽化,然后随载气进入色谱柱。

根据分析样品的不同,汽化室温度可以在50一400℃范围内任意设定。

通常,汽化室的温度要比使用的最高柱温高10一50℃以保证样品全部汽化。

进洋量和进样速度会影响色谱柱效率。

进样量过大造成色谱柱超负荷,进样速度慢会使色谱峰加宽,影响分离效果。

第五课气相色谱仪-分离系统色谱柱是色谱仪的分离系统。

试样中各组分的分离在色谱柱中进行,因此,色谱柱是色谱仪的核心部分。

色谱柱主要有两类:填充柱和毛细管柱,现分别叙述如下:1.填充柱填充柱由柱管和固定相组成,柱管材料为不锈钢或玻璃,内径为2—4毫米,长为1—3米。

往内装有固定相,固定相又包括固体固定相和液体固定相两种。

2.毛细管往毛细管柱又叫空心柱,空心柱分涂壁空心柱,多孔层空心柱和涂载体空心柱。

涂壁空心柱是将固定液均匀地涂在内径0.1—0.5毫米的毛钢管内壁而成。

毛细管的材料可以是不锈钢、玻璃或石英。

这种色谱柱具有渗透性好、传质阻力小等特点,因此柱子可以做得很长(一般几十米,最长可到三百米)。

和填充柱相比,其分离效率高,分析速度快,样品用量小。

其缺点是样品负荷量小,因此经常需要采用分流技术。

柱的制备方法也比较复杂;多孔层空心柱是在毛细管内壁适当沉积上一层多孔性物质,然后涂上固定液。

这种柱容量比较大,渗透性好,故有稳定、高效、决速等优点。

第六课气相色谱仪-检测系统1.热导检测器热导检测器( Thermal coductivity detector,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。

热导检测器由热导池池体和热敏元件组成。

热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。

如果热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。

如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。

这种检测器是一种通用型检测器。

被测物质与载气的热导系数相差愈大,灵敏度也就愈高。

此外,载气流量和热丝温度对灵敏度也有较大的影响。

热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。

热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。

2.氢火焰离子化检测器氢火焰离子化检测器(Flame Ionization Detector,FID)简称氢焰检测器。

它的主要部件是一个用不锈钢制成的离子室。

离子室由收集极、极化极(发射极)、气体入口及火焰喷嘴组成。

在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。

无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。

在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。

离子流经放大、记录即得色谱峰。

有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。

在外加电压作用下,这些离子形成离子流,经放大后被记录下来。

所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。

这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量有机物分析。

其缺点是不能检测惰性气体、空气、水、CO,CO2、NO、SO2及H2S等。

3.电子捕获检测器电子捕获检测器是一种选择性很强的检测器,它只对合有电负性元素的组分产生响应,因此,这种检测器适于分析合有卤素、硫、磷、氮、氧等元素的物质。

在电子捕获检测器内一端有一个多放射源作为负极,另一端有一正极。

两极间加适当电压。

当载气(N2)进入检测器时,受多射线的辐照发生电离,生成的正离子和电子分别向负极和正极移动,形成恒定的基流。

合有电负性元素的样品AB进入检测器后,就会捕获电子而生成稳定的负离子,生成的负离子又与载气正离子复合。

结果导致基流下降。

因此,样品经过检测器,会产生一系列的倒峰。

电子捕获检测器是常用的检测器之一,其灵敏度高,选择性好。

主要缺点是线性范围较窄。

第七课液相色谱仪气相色谱法是一种很好的分离、分析方法,它具有分析速度快、分离效能好和灵敏度高等优点。

但是气相色谱仅能分析在操作温度下能汽化而不分解的物质。

据估计,在已知化合物中能直接进行气相色谱分析的化合物约占15%,加上制成衍生物的化合物,也不过20%左右。

对于高沸点化合物;难挥发及热不稳定的化合物、离子型化合物及高聚物等,很难用气相色谱法分析。

为解决这个问题,70年代初发展了高效液相色谱。

高效液相色谱的原理与经典液相色谱相同,但是它采用了高效色谱柱、高压泵和高灵敏度检测器。

因此,高效液相色谱的分离效率、分析速度和灵敏度大大提高。

就其分离机理的不同,高效液相色谱可以分为液-固吸附色谱、液-液分配色谱、离子交换色谱和凝胶渗透色谱四类。

液—固色谱的色谱柱内填充固体吸附剂,由于不同组分具有不同的吸附能力,因此,流动相带着被测组分经过色谱柱时,各组分被分开。

液—液色谱的流动相和固定相都是液体。

作为固定相的液体涂在惰性担体上,流动相与固定液不互溶。

当带有被测组分的流动相进入色谱柱时,组分在两相间很快达分配平衡,由于各组分在两相间分配系数不同而彼此分离。

以非极性溶液作流动相,极性物质作固定相的液—液色谱叫正相色谱;极性溶液作流动相,非极性物质作固定相的液—液色谱叫反相色谱。

离子交换色谱的色谱柱内填充离子交换树脂,依靠样品离子交换能力的差别实现分离。

而凝胶色谱是按试样中分子大小的不同来进行分离的。

在上述四类色谱中,应用最广泛的是液—液色谱,因此,在本节的讨论中以液—液色谱为主。

高效液相色谱的基本理论和定性定量分析方法与气相色谱基本相同。

高效液相色谱仪由输液系统、进样系统、分离系统、检测系统和数据处理系统组成。

第八课液相色谱仪-输液系统输液系统高效液相色谱的输液系统包括流动相贮存器、高压泵和梯度淋洗装置。

流动相贮存器为不锈钢或玻璃制成的容器,可以贮存不同的流动相。

高压泵是高效液相色谱仪最重要的部件之一。

由于高效液相色谱仪所用色谱柱直径细,固定相粒度小,流动相阻力大,因此,必须借助于高压泵使流动相以较快的速度流过色谱这。

高压泵需要满足以下条件:能提供150-450kg/cm2的压强;流速稳定,流量可以调节;耐腐蚀。

目前所用的高压泵有机械泵和气动放大泵两种。

梯度淋洗装置可以将两种或两种以上的不同极性溶剂,按一定程序连续改变组成,以达到提高分离效果,缩短分离时间的目的。

它的作用与气相色谱中的程序升温装置类似。

梯度淋洗装置分为两类:一类叫外梯度装置;一类内梯度装置。

外梯度装置是流动相在常压下混合,靠一台高压泵压至色谱柱;内梯度装置是先将溶剂分别增压后,再由泵按程序压入混合室,再注入色谱柱。

第九课液相色谱仪-进样系统,分离系统进样系统一般高效液相色谱多采用六通阀进样。

先由注射器将样品常压下注入样品环。

然后切换阀门到进样位置,由高压泵输送的流动相将样品送入色谱柱。

样品环的容积是固定的,因此进样重复性好。

分离系统分离系统包括色谱柱、连接管、恒温器等。

色谱柱是高效液相色谱仪的心脏。

它是由内部抛光的不锈钢管制成,一般长10—50cm,内径2—5mm,柱内装有固定相。

液相色谱的固定相是将固定液涂在担体上而成。

担体有两类:一类是表面多孔型担体;另一类是全多孔型担体。

近年来又出现了全多孔型微粒担体。

这种担体检度为5—10 um,是由nm级的硅胶微粒堆积而成,又叫堆积硅珠。

由于颗粒小,所以柱效高,是目前最广泛使用的一种担体。

在高效液相色谱分析中,适当提高柱温可改善传质,提高柱效,缩短分析时间。

相关文档
最新文档