奥数专题:方阵
【奥数专项】人教版小学数学奥数思维拓展四年级上册方阵问题(试题)含答案与解析

奥数专项——方阵问题(试题)一.选择题(共8小题)1.在一个正方形花坛四周种树,每边种5棵(四个顶点也要种),一共要种()棵.A.20B.28C.16D.152.一个方阵每边站20人,(四个顶点都有人),那么这个方阵一共有()人.A.400B.76C.361D.803.一个方阵共有49人,那么这个方阵最外层有()A.28人B.24人C.30人D.36人4.用花盆摆一个方阵,最外层共有60盆花,方阵最外层每边有()盆花.A.14B.13C.15D.165.同学们围成一个正方形做游戏,每边站20人,四个顶点都有人,最外圈一共有()人.A.72B.76C.806.学校要美化校园,要在正方形水池四周摆花,四个角都摆一盆,每边都摆5盆,那么一共要准备()盆花.A.16B.20C.24D.267.同学们做操,站成7行,每行6人,现在要求站成方队,最少要去掉()人.A.5B.6C.78.在一个正方形的操场上四周植树,要求4个角各植1棵,每边都植12棵,一共要植树()棵.A.40B.44C.48二.填空题(共7小题)9.为美化校园,同学们在学校正方形花圃四周摆放菊花,如果每边摆5盆,至少要准备盆。
10.团体操方阵表演,最外层每边15人,最外层一共有人,这个方阵一共有人。
11.小芳用黑棋在围棋盘的左上方和右下方各摆了一个方阵,每个方阵每行摆5粒,摆5行,再在每个方阵的最外面摆一圈白棋。
白棋一共摆了粒,黑棋一共摆了粒。
12.儿童节前夕,学校后勤人员在童话广场用盆花摆出了一个8×8的方阵,外三层用的是蝴蝶兰,里面用的是大叶海棠.蝴蝶兰要准备盆,大叶海棠要准备盆.13.运动会开幕式上,“花环”队同学在操场上排成方队表演,每行7人,有7行,“花环”方队最外边一圈有人。
14.同学们排成一个正方形方阵,这个方阵的最外层每边都有10人,最外层一共有人。
15.四年级同学举行队列表演,共组成8个方队。
每个方队排成5行,每行5人。
奥数-14方阵问题+答案

方阵问题方阵是古代军队作战时采用的一种队形,方阵平面一般呈现“回”字形状,是把军队在野外开阔地上排列成方形阵式。
数学中的方阵是指行数与列数一样多的矩阵。
n×n阶矩阵被称为n阶方阵。
将若干人或物按一定条件排成正方形(简称方阵),根据已知条件求总数,求每条边个数或层数等,这类问题就叫做方阵问题。
1.方阵每边人数相邻两层物体总数相差8,每边相差2。
每边人数=一层总数÷4+1 或一层总数=(每边人数-1)×42.方阵总人数①实心方阵:总人数=每边人数×每边人数②空心方阵:总人数=外边方阵人数-内边方阵人数内边人数=外边人数-层数×2若将空心方阵分成四个相等的矩形计算,则:空心方阵总人数=(外边人数-层数)×层数×43.方阵问题思维方法:①重叠点思维:若有边与边的重叠情况,把各边点数相加时重叠点计算了两次,因此需要再减去重叠点个数,才是最终的全部数目;②逆向法思维:如已知空心方阵的总数求外层每条边的数目,可逆用求总数公式:外边人数=空心方阵总人数÷4÷层数+层数。
【例1】在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?解:22×22=484(人)练习一1、小刚用若干枚棋子摆成一个中实方阵,最外层每边摆6枚,请问:要摆成这样一个中实方阵至少需要多少枚棋子?最外一层的棋子总数是多少?2、同学们做早操,排成一个方阵,从前、后、左、右数,王强都是第5个,这个方阵共有多少人?3、花坛最外层一条边上有18盆花,最外层有多少盆花?【例2】有一队士兵排成一个中实方阵,最外一层有100人,请问:方阵中一共有士兵多少人?解析:100÷4+1=26(人),因此方阵中一共有26×26=676(人)。
练习二1、四年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,请问:方阵最外层每边的人数是多少?这个方阵共有多少人?2、某学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?3、正方形舞厅四周均匀的装彩灯,如果四个角都装一盏且每边装12盏,那么这个舞厅四周共装彩灯多少盏?4、五年级有4个班级,每个班级有36人,要组成一个方阵,最外层有几个人?【例3】121人的方阵,现要增加1行1列,需要增加多少人?解析:因为11×11=121,所以现有的方阵每条边是11人。
数学专项复习小升初典型奥数之方阵问题

数学专项复习小升初典型奥数之方阵问题在小升初的数学考试中,方阵问题是一个常考的知识点,也是奥数中的典型题型。
对于即将面临小升初的同学们来说,掌握方阵问题的解题方法和技巧至关重要。
接下来,让我们一起来深入了解方阵问题。
首先,我们要明白什么是方阵。
方阵就是行数和列数相等的正方形队列。
比如,一个 5 行 5 列的队列就是一个方阵。
方阵问题主要包括以下几个方面:一、方阵的基本特点1、方阵不论在哪一层,每边上的数量都相等。
每向里一层,每边上的数量就减少 2。
2、每层数量相差 8(除了最里层)。
3、实心方阵的总数=每边数量×每边数量二、方阵的层数、每层数量与总数的关系假设一个方阵有 n 层,最外层每边有 a 个,那么从外往里第二层每边数量为 a 2,第三层每边数量为 a 4,以此类推。
每层数量=每边数量×4 4总数=最外层每边数量×最外层每边数量三、常见的方阵问题类型及解题方法1、已知方阵总数,求每边数量比如,一个实心方阵的总数是 64 人,求每边有多少人?我们知道实心方阵的总数=每边数量×每边数量,因为8×8 =64,所以每边有 8 人。
2、已知每边数量,求方阵总数若一个方阵每边有 9 人,求这个方阵的总人数。
总数= 9×9 = 81(人)3、求方阵的层数及每层的数量例如,一个方阵总数为 144 人,最外层每边有 12 人,求方阵的层数和每层的数量。
首先,最外层数量= 12×4 4 = 44(人)因为每层数量相差 8,所以从外往里第二层数量为 44 8 = 36(人),第三层为 36 8 = 28(人),第四层为 28 8 = 20(人),第五层为 20 8 = 12(人)。
所以这个方阵一共有 5 层。
四、解题技巧和注意事项1、画图辅助理解在解决方阵问题时,通过画图可以更直观地看出方阵的结构和数量关系,有助于我们找到解题的思路。
2、找准关键信息认真审题,确定题目中给出的是方阵总数、每边数量还是其他相关信息,根据已知条件选择合适的公式进行计算。
三年级奥数---方 阵 问 题(答案)

训练点24——方阵问题方阵的基本特点:(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2。
(2)每边人(或物)数和四周人(或物)的关系;四周人(或物)数=[每边人(或物)数-1]×4每边人(或物)数=四周人(或物)数÷4+1(3)中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4★1、棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒?思路分析:棋子排成每边8粒的正方形,即每排八粒,共八排,可见棋子总数是8个8粒,即8×8=64粒,最外层的棋子数可按公式:一周总点数=每边粒数×4-4求得.解:8×8=64(粒)8×4-4=32-4=28(粒)答:棋子共有64粒,最外层有28粒.2、为了绿化小区,在一块正方形的地四周种树,四个角都种一棵,每边种13棵,这块地的四周共有多少棵树?解:(13-1)×4=48(棵)……四周共种的3、有学生若干人,排成5层的中空方阵,最外层每边人数是12人,问有多少学生?思路分析:已知方阵最外层人数为12人,可见五层每边人数分别是12人﹑10人﹑8人﹑6人和4人,中间空心部分为每边2人的方阵.解:12×12-2×2=144-4=140(人)答:共有学生140人.4、学校进行课间操比赛,高年级同学恰好可以排成一个实心方阵,可学校操场较小,只好横竖各减少一排,这样就减少了23个人,问这个学校高年级有多少个学生?解:(23+1)÷2=12(人)12×12=144(人)或(23-1)÷2+1=12(人)12×12=144(人)……高年级人数★★5、仪仗队原计划64名少先队员手持彩旗,在彩车周围排成一个每边二层的方阵,后来决定在方阵外面再增加一层,成为三层方阵,求需要增加多少名学生?解:(66+8)÷2=36(人) 36+8=44(人) 增加人数或 64÷4÷2+2=10(人) (10+2)×4-4=44(人)6、某班抽出一些学生参加节日活动队表演,想排成一个正方形方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人?解:(1)原来每边多少人?(7+4-1)÷2=10÷2=5(人)(2)共抽出多少学生?5×5+7=25+7=32(人)或6×6-4=36-4=32(人)综合算式:[(7+4-1)÷2]2+7=[10÷2]2+7=52+7=25+7=32(人)答:共抽出32个学生.7、用棋子摆成方阵,恰为每边24粒的实心方阵,若改为3层的空心方阵,它的最外层每边应放多少粒?24×24=576(粒)解:576÷4÷3+3=48+3=51(粒)答:最外层每边棋子数为51粒.8、有一队学生排成一个空心方阵,最外层60人,最内层28人,求总人数?解:60÷4+1=16(人)……最外每边人数16×16=256(人)……实心方阵总人数28÷4+1=8(人)……最里层每边人数(8-2)×(8-2)=36(人)……最里实心方阵256-36=220(人)……总人数9、一队战士排成中空方阵,最外层的人数为44人,最内层的人数为28人,这方阵共有多少人?解:(1)44÷4+1=12(人)(2)12×12=144(人)(3)28÷4+1=8(人)(4)(8-2)×(8-2)=36(人)(5)144-36=108(人)……空心方阵人数★★★10、设计一个团体操表演队,想排成6层的中空方阵,已知参加表演的有360人,问最外层每边应安排多少人?思路分析:可利用公式:“中空方阵最外层每边人数=总人数÷4÷层数+层数”求得。
小学奥数关于方阵问题的计算公式

【导语】让学⽣体会到数学源于⽣活、⽤于⽣活的同时,更应该让学⽣体会到数学⾼于⽣活,体会到数学可以带动社会的发展,带动⽣活质量的提⾼,这样更能激发学⽣学好数学。
以下是整理的相关资料,希望对您有所帮助。
⽅阵问题公式
(1)实⼼⽅阵:(外层每边⼈数)2=总⼈数。
(2)空⼼⽅阵:
(最外层每边⼈数)2-(最外层每边⼈数-2×层数)2=中空⽅阵的⼈数。
或者是
(最外层每边⼈数-层数)×层数×4=中空⽅阵的⼈数。
总⼈数÷4÷层数+层数=外层每边⼈数。
例如,有⼀个3层的中空⽅阵,最外层有10⼈,问全阵有多少⼈?
解⼀先看作实⼼⽅阵,则总⼈数有
10×10=100(⼈)
再算空⼼部分的⽅阵⼈数。
从外往⾥,每进⼀层,每边⼈数少2,则进到第四层,每边⼈数是
10-2×3=4(⼈)
所以,空⼼部分⽅阵⼈数有
4×4=16(⼈)
故这个空⼼⽅阵的⼈数是
100-16=84(⼈)
解⼆直接运⽤公式。
根据空⼼⽅阵总⼈数公式得
(10-3)×3×4=84(⼈)。
小学三年级奥数第7讲 方阵问题附答案解析

第7讲方阵问题一、【知识要点】1、方阵问题:把若干人或物排列成正方形队列的形式,根据排列规律,引出的计算问题就叫做方阵问题2、方阵问题的特点是:方阵每边的实物数量相等,相邻两边的实物数量相差2,相邻两层的实物数量相差83、方阵问题的解题思路是:(1)实心方阵:每边数×每边数=总数(每边数-1)×4=每层数每层数÷4+1=每边数(2)空心方阵:大实心方阵-小实心方阵=总数(每边数-层数)×层数×4=总数二、【典型题解】例1:四年级同学举行广播操比赛,排成了8行8列。
如果去掉一行一列,要去掉几人?还剩多少人?针对练习11、同学们排队,要排成每行10人,共10行的方阵,共需要多少人?2、同学们排成十行十列的方阵,如果去掉一行一列,要去掉多少人?3、小明用棋子摆了一个实心方阵,后来他又加上15个棋子,使横竖各增加一排,成为一个大的实心方阵,原来的实心方阵每排有几个棋子?例2:菊花展上,园丁李师傅要摆一个正方形空心花坛,已知四边各摆5盆菊花,且四个角上都有一盆,请计算李师傅摆这个花坛共要用多少盆菊花?针对练习21、一个正方形池塘四周栽满了树,已知每边栽了9棵,并且四个角上都有一棵,这个池塘四周一共栽了多少棵树?2、学校的升旗台成正方形,在四周共放了40盆花,每个角放一盆,每边放花多少盆?3、沿一个正方形水池的四周栽树一行,四角都要栽1棵,共载树152棵。
问每边栽多少棵树?例3:某校180名学生,排成一个三层空心方阵,这个方阵外层每边有多少名学生?针对练习31、一个两层空心花盆阵,最外层每边放了10盆,一共用花多少盆?2、由24人组成两层中空方阵,现在外面增加2层,要增加多少人?3、一个三层的中空方阵,最内层共有80人,这个方阵共有多少人?例4:某班抽出一些学生参加节日活动表演,如果排成一个正方形实心方阵多7人,如果每行每列增加1人,就少4人,共抽出学生多少人?三、能力训练题:1、同学们站队,一共站了15行,如果要去掉2行2列,一共要去掉多少人?2、一些战士排成一个方阵,横竖各增加一人,就要增加11人。
六年级下小升初典型奥数之方阵问题

六年级下小升初典型奥数之方阵问题在六年级下册的小升初奥数中,方阵问题是一个较为常见且重要的知识点。
对于即将面临小升初的同学们来说,掌握方阵问题不仅能够提升数学思维能力,还能在考试中应对自如。
什么是方阵呢?简单来说,方阵就是行数和列数相等的正方形队列。
比如,一个 5 行 5 列的队列就是一个方阵。
方阵问题中有几个关键的概念需要我们理解。
首先是“最外层人数”,它指的是方阵最外层一周的人数。
其次是“方阵总人数”,也就是整个方阵包含的人数。
还有“相邻两层人数差”,相邻两层每边人数相差 2,所以相邻两层人数相差 8(四个角的人数会重复计算)。
我们先来看一个简单的例子。
一个方阵最外层每边有 6 个人,那么这个方阵的最外层人数是多少呢?我们可以这样计算:每边有6 个人,四条边就有 6×4 = 24 个人。
但是这样计算的话,四个角的人都被重复计算了一次,所以要减去 4,即 24 4 = 20 人。
所以这个方阵的最外层人数是 20 人。
那方阵的总人数怎么计算呢?如果方阵每边有 n 个人,那么总人数就是 n×n ,也就是 n 的平方。
比如一个每边有 8 个人的方阵,总人数就是 8×8 = 64 人。
接下来我们再深入探讨一些稍微复杂的情况。
如果在一个方阵中,去掉一行一列,那么去掉的人数怎么计算呢?假设原来方阵每边有 n个人,去掉一行一列,就去掉了 2n 1 个人。
比如一个每边有 7 个人的方阵,去掉一行一列,就去掉了 2×7 1 = 13 个人。
还有一种情况,如果在方阵的外层增加一层,那么增加的人数是多少呢?我们知道相邻两层人数相差 8,所以增加一层就增加 8 个人。
为了更好地理解方阵问题,我们再来看几个具体的例题。
例 1:学校举行团体操表演,五年级学生排成一个方阵,最外层每边站 15 人。
请问这个方阵最外层一共有多少人?整个方阵一共有多少人?最外层人数:15×4 4 = 56(人)方阵总人数:15×15 = 225(人)例 2:一个正方形花坛,原来摆成一个 9 行 9 列的实心方阵。
三年级奥数方阵问题

方阵问题知识结构一、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
例题精讲【例 1】小华观看团体操表演,他看到表演队伍中的一个方阵变换成一个正三角形实心队列,他估计队伍中人数大概在30至50人之间,你能告诉他到底有多少人吗?【考点】方阵问题【难度】3星【题型】解答【解析】方阵总人数的特点:它是两个相同自然数的积,而三角形队列总人数的特点是:总数是从1开始若干个连续自然数的和,我们只要在3050~的范围内找出同时满足这两个条件的数就可以得出总人数.由于队伍可以排成方阵,在30至50人的范围内人数可能是66=36⨯人或77=49⨯人,又因为=++++⋯+=++++⋯++,所以总人数是36人.,361234849123494【答案】36人【巩固】在一次运动会开幕式上,有一大一小两个方阵合并变换成一个10行10列的方阵,求原来两个方阵各有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】根据时间多少和学生具体情况可考虑教给学生平方数的概念,并记住一些简单的平方数.10行10列的方阵由100人组成,原来的小方阵每行或每列人数都不会超过10人,大方阵人数应该在50100~之间,可取64或81,运用枚举法,可求出满足条件的是:大方阵有64人,小方阵有36人.【答案】大方阵有64人,小方阵有36人【例 2】同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学.每行每列的人数同样多,做操的同学一共有多少人?【考点】方阵问题【难度】2星【题型】解答【解析】带领学生画图求解.一共有几行?列式:4+6+1=11(行)一共有几列?列式:5317+-=(列)一共有多少人?列式:11777⨯=(人)【答案】77人【巩固】一群小猴排成整齐的队伍做操,长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴.长颈鹿数了数,金丝猴的左边有4只猴,右边也有4只猴,前面有5只猴,后面也有5只猴.小朋友,你能算出有多少只猴子在做操吗?【考点】方阵问题【难度】2星【题型】解答【解析】一共有多少行?列式:5+5+1=11(行)一共有多少列?列式:4+4+1=9(列)一共有多少只猴子?11999⨯=(只).【答案】99人【例 3】四年级一班同学参加了广播操比赛,排成每行8人,每列8人的方阵,问方阵中共有多少学生?如果去掉一行一列.还剩多少同学?【考点】方阵问题【难度】2星【题型】解答【解析】可以根据“实心方阵总人数=每边人数×每边人数”得到8行8列的实心方阵人数为:8864⨯=(人),去掉一行一列后,还剩7行7列,也可通过同样的方法得出总人数为:77=49⨯(人).【答案】8行8列的实心方阵人数为64人,去掉一行一列后,还剩49人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方阵
1、有100个人站成一个实心方阵,那么这个方阵的最外层共有多少人?从外向里算起的第二层有多少人?从里向外算起的第三层有多少人?
2、一个实心方阵,最外层一共有20人.请问:
(1)最外层每边有多少人?这个方阵一共有多少人?
(2)如果要组成一个更大的方阵,至少需要增加多少人?
(3)如果给这个方阵最外面再增加一层,那么需要增加多少人?
3、若干名同学站成一个15×15的实心方阵.请问:最外层一共有多少人?这个方阵一共有多少层?从里向外算起的第七层有多少人?
4、一个实心方阵,最外层共有44人.请问:
(1)这个方阵共有多少人?
(2)要让这个方阵减少一行一列,一共减少了多少人?
5、海军某部排成一个方阵,最外层人数为48,则该方阵共有多少人?
6、有一队士兵,排成了一个方阵,最外层一周共有240人,这个方阵共有多少人?
7、一个团体操方队,共有15层,最内层每边20人.这个方队共有多少人?
8、参加小学生运动会团体操表演的运动员排成一个正方形队列,如果要使这个正方形队列减少一行一列,则要减少33人.参加团体操表演的运动员原来有多少人?
9、小明用围棋子摆一个方阵,这个方阵的横、竖各一列的棋子之和为21枚.他摆这个方阵共用多少枚棋子?
10、红领巾小学四年级有120名学生.他们排成一个三层的空心方阵.请问:
(1)这个方阵最外层每边有多少人?
(2)如果在外面加一层,变成一个四层的空心方阵,应该增加几个人?
(3)如果在内部再加一层,变成一个五层的空心方阵,还需要再增加几个人?
11、五(1)班的学生进行队列训练,排成两层空心方阵,已知最外层每边有6人,求这个班共有多少人?
12、用围棋排成三层空心方阵,最里层共有12颗,求这个方阵共有棋子多少颗?
13、有120朵花,排成一个三层的方阵花坛.这个花坛的最外层每边应排多少朵花?
14、六一儿童节,120人排成一个空心方阵,这个方阵最外层每边有13人.求空心方阵的层数?
15、用红、绿两种颜色的小正方形瓷砖铺成一块正方形墙面:由外到内算起,这个墙面最外层铺的是红色瓷砖,第二层是绿色瓷砖,第三层是红色瓷砖,第四层是绿色瓷砖……这样依次铺下去,一共使用了400块瓷砖.请问:这个墙面上哪种颜色的瓷砖更多?两种瓷砖相差多少块?
16、有一队学生,排成一个空心方阵,最外层人数共52人,最内层人数共28人,求这队学生共多少人?
17、有120朵花,排成一个三层的方阵花坛.这个花坛的最外层每边应排多少朵花?
18、同学们排一个方阵,中间的实心方阵是女同学,外面三层是男同学,最外两层又是女同学.已知方阵中男同学108人,女同学有多少人
19、公园原计划栽种一个实心方阵,每边24棵.现要留出中间的地方修一个小亭.如果再增加24棵,想种成5层的空心方阵,最内层种多少棵?
20、刘老师把一些树苗栽种成一个尽量大的实心方阵,结果还多出了6棵树苗;后来又运来了34棵树苗,恰好能补成一个更大的实心方阵.那么后来的方阵最外层每边有多少棵树?
21、观察右边各图的规律,则第100个图中,小黑圆点共有多少个?
22、如图,一块绿地由3块相同的等边三角形草地和一个水池构成.现在要在草地上种花,要求在草地与草地的公共点处种上花(即图中的A、B、C点),且每块草地上的花朵排成一个三角形实心点阵,每块草地上最外层的每条边上有10朵花.请问:整个绿地一共要种多少朵花
23、如图,有一个长方形的“田”字道路,整个长方形的长为100米、宽为70米.现在需要在所有道路上种树,相邻两棵树之间的距离都相等,而且可以拐弯的地点(顶点或中点)都要种上树,那么最少要种多少棵树?
24、在学校的运动会上,同学们集体表演一个节目,站成了一个空心的正六边形阵列,与图中的阵列类似.从外向内一共8层,依次站着两层六年级的同学、两层五年级的同学、两层四年级的同学以及两层三年级的同学.已知参加表演的六年级同学有126名,请问:
(1)最外层有多少人?
(2)现在阵列中一共有多少人?
(3)如果想要让一、二年级的同学把这个空心阵列填满,还需要多少人
25、昊昊用一些棋子摆成了一个两层的空心方阵,后来他又多摆上去28个棋子,使得图形变成一个三层的空心方阵.开始时昊昊可能摆了多少个棋子?
26、阳光小学的学生在操场上排成一个方阵,方阵的行距和列距都相等.已知方阵最外面一圈都是男生,往内一圈都是女生,然后是男生……如此下去直到最里面.如果男生总数比女生总数多52人,那么共有学生多少人?。