10-掉话类故障分析与处理
LTE地掉话原因分析报告及处理思路(加精,值得收藏)

LTE的掉话原因分析及处理思路LTE“掉话”是指UE异常退出RRC_CONNECTED状态导致的连接中断。
统计节点为“RrcConnctionReconfigurationComplete”消息正确达到网络侧开始,之后进行的各类业务,未正常释放的均计为“掉话”。
正常释放流程如下:一、外场常见掉话原因分析目前LTE常见掉话原因包括弱覆盖、越区覆盖、切换失败、邻区漏配、系统设备异常、干扰、拥塞等。
掉话原因1:弱覆盖现象:由于弱覆盖导致的掉话,通常有以下表现:1.掉话前服务小区的RSRP持续变差(低于弱覆盖标准,如小于-105dBm),同时服务小区的SINR 也一起持续变差(小于0dB,甚至小于-3dB)。
2.掉话后可能会有一段时间(数秒至数分钟不等,取决于实际网络覆盖情况),UE无数据上报(类似于UE脱网)。
解决方案:要解决此类掉话,需要改善覆盖。
具体手段有:1.首先明确当前的弱覆盖区域由哪些扇区的信号覆盖。
2.根据网络拓扑结构和相关无线环境来确定最适合覆盖该区域的扇区,并加强它的覆盖。
如常用的天馈调整、站点建设等。
具体案例:对呼和浩特市大昭寺前街DT过程中占用到大昭寺华隆小区-FL_3小区,覆盖较差存在掉线风险。
通过调整PA:3→0,RS参考功率:13.4dB→15.2dB,覆盖改善,掉线风险大大降低。
掉话原因2:越区覆盖现象:在支持切换的移动通信网络中,由于无法精确控制无线信号的传播,因此或多或少都会存在越区覆盖的情况,导致“孤岛覆盖”无法与周边站点进行正常切换掉话,通常有以下表现:1.越区覆盖导致的“导频污染”。
在覆盖区内,没有稳定的强信号作为主服务小区。
服务小区信号的频繁变化,是导致掉话的一个主要原因。
2.越区覆盖对主服务小区的干扰(包括邻区漏配、越区信号的迅速变化等)。
在某些区域,主服务小区收到越区信号的干扰,最终导致掉话。
解决方案:1.越区覆盖的一般优化原则是:在区域中已有合理的稳定信号覆盖的情况下,尽可能的控制越区覆盖的信号。
析移动通信中的掉话问题

析移动通信中的掉话问题由于移动通信网络的优化迅猛发展,使人们对网络服务质量提出了更高的要求,移动通信的重点也由网络工程建设进入网络的调整和优化阶段。
通过系统化的网络优化工程,可以充分利用现有的网络设备、资源和容量,最大限度地提高网络的服务质量,提高效益。
对于掉话问题更是势在必行需要解决,就这个问题自己简单的分析了几点原因,提出了几点方案。
一、产生切换掉话的原因所谓切换,就是指当移动台在通话过程中从一个基站覆盖区移动到另一个基站覆盖区,必须改变原有的话音信道而转接到一条新的空闲话音信道上去,以继续保持通话的过程。
切换是移动通信系统中一项非常重要的技术,切换失败会导致掉话,影响网络的运行质量。
(1)越区切换参数定义不合理:上行电平切换门限、切换余量以及切换功率控制参数等定义不合理,致使越区切换失败,产生掉话。
(2)信号强度滞后值设置不度当:信号强滞后值设置太小,小区基站没有足够的时间处理切换呼叫,造成许多呼叫在切换时丢失。
(3)忙时目标基站无切换信道:相邻小区都很繁忙,造成忙时呼叫重建失败导致掉致使手机用户在进行切换时无法占用相邻小区的空闲话音信道。
(4)信号强度太弱:当基站做分担话务量的切换时,有些切换请求会因切入小区的信号强度太弱而失败,有时即使切换成功,也会因信号强度太弱而掉话。
(5)网络存在漏覆盖区或盲区:当移动台进入网络的漏覆盖区或信号强度盲区时,信号变得太弱而发出切换请求,切换不成功引起掉话。
二、产生干扰掉话的原因无线电波传播的特性决定其在传播过程中易受外界多种因素的影响;由于网络内部原因,它还受到网络内部各种因素的影响,如同频、邻频干扰以及网络中设备本身的非线性、设备故障所引起的交调干扰。
(1)设备本身的非线性以及设备故障引起的交调干扰。
设备运行中缺乏定期的指标测试和调整,使交调干扰在一定范围存在。
(2)频率规划或频点选择不正确,在较近距离内存在同频、邻频现象。
目前市区的站点分布越来越密,而分配给网络的频率资源是有限的,因此在通话中产生严重的背景噪音甚至掉话。
掉话处理方法

1.出现小区级掉话时,首先查看该小区有硬件故障告警,2.检查切出成功率是否正常,如果切换成功率较低,检查邻区关系以及是否存在同频同码的情况。
1》邻小区关系中是否存在同频同扰码的现象,这种情况在路测中也可以发现,一般是在邻区表中出现两条相同频点的邻小区关系,这里需要注意的是业务同频同扰的现象,它无法在路测中发现,一般需要对信令进行分析,此时虽然两个小区主载频异频,但measurement report却上报了1G事件,针对这种情况需要通过修改频点和扰码解决(可以通过系统自带的全局参数合法性检查工具进行检查)2》邻小区关系中是否存在同频同码组的现象,这种情况在路测中也可以发现,一般情况是它是影响到终端的测量结果,此时测量结果不准确,造成终端上报系统后系统判断错误,针对这种情况则需要修改频点和扰码解决(可以通过系统自带的全局参数合法性检查工具进行检查)3》是否存在单边邻小区关系,如果存在,添加单边邻区,单边小区的检查可以使用NOP-T工具进行也可以通过对性能统计指标中的小区对切换统计指标来检查。
4》是否存在异频邻小区个数过多的现象(异频邻区数超过8个),如果存在,删除不必要的邻区,这种情况可以使用NOP-T工具进行检查,也可以使用办公软件进行检查。
5》是否存在切换开关设置的问题(有部分HOM开关可能被关掉或在外部小区定义中的切入开关设为禁止),如果存在,打开切换开关。
6》切换相关的事件定义是否准确,不区引用是否正确,如果存在,修改引用。
7》PS切换失败是否存在完整性算法问题,如果存在,将之间的完整性开关设成一致。
8》是否存在邻区漏配的情况9》目标小区拥塞造成的掉话,由于目标小区的资源不足,而本小区的覆盖又越来越差,此时造成掉话,常见的错误代码为no_resource_available或RRM_Celloverload_Release3、检查时隙转换点配置是否正确,是否存在交叉时隙干扰,如果存在,修改时隙转换点4、检查UP时隙贺上行业务时隙的干扰电平,是否存在上行干扰导致掉话,若存在,进行干扰排查5、根据性能指标统计,如果PS域和CS域的BLER都比较高则可能存在干扰,然后再结合载频时隙干扰统计指标来判断是否确实存在干扰,另外通过对信令的分析如存在干扰则一般信令流程正常,未有切换或其他事件,但RNC进行了IURELEASE,原因一般为无线链路的原因(比如无线链路错误等),有时也会发生CELLUPDATE原因为RLCunrecoverable erro如果存在则需要现场排查,现场测试时如果存在干扰则有以下几方面的显示:1》C/I较差:系统内同频的干扰较为严重,发生掉话时会存在终端发射功率较高的现象,同时覆盖也相对较好,表现在RSCP值上,一般都在-90dB以上,另外一表现象就是起呼比较困难,而起呼成功后也容易掉话2》终端发射功率较高,基本上满功率发射,一般都在-20dB以上3》系统外的干扰造成的掉话同样具有终端发射功率较高的现象,也一般都在-20dB以上4》系统外的干扰造成的掉话也可以通过误块率指标进行判断,此时无论是进行CS业务还是PS业务BLER都比较高,且保持时间较长5》系统外的干扰语音业务判断,此时进行通话会出现断字,吞字等现象,比较难以进行通话6.通过对性能指标的统计主要是RRC连接成功率的统计,这其中包括业务相关和非业务相关的统计,如果两种统计都差则可能存在覆盖问题,此时检查CT数据中RRC CONNECTION REQUEST中的PCCPCH的值,则存在弱覆盖现象,需进行功率参数,天线方位角、下倾角的调整7.如果上述都检查不出原因,可能是载波的隐性故障,此时可以尝试闭解载波时隙,或者强行闭载波、时隙观察掉话率的变化8.终端问题,一般是通过对大量的性能数据统计,发现掉话高的小区,然后依据小区信令数据分析信令,可以看出掉话常发生的用户,而后进行处理。
干扰-子帧配比不同导致掉话分析和问题处理

子帧配比不同导致掉话分析和问题处理1 现象描述室分系统,电梯门口天花板上有一个天线,主要覆盖电梯门口的信号(PCI=500,图中圆圈即为天线位置,PCI为500的小区覆盖电梯门口和1F-10F),测试时所在楼层为14楼,楼层内的信号由另外一个小区覆盖(PCI=501)。
除电梯口前通道外,整层楼的信号都比较强RSRP在-60~-75之间,SINR>24,室分打点测试时,一旦路过电梯口,特别是在电梯口天线下,RSRP会降低到-141,SINR也会降到-10,出现掉线的情况。
测试的时候两部终端同时测试,一部上行,一部下行。
2 告警信息无3 原因分析1、初步分析认为可能是RS功率设置过大导致干扰。
因为整层楼的室内区域比较小(在30平米左右),两个小区存在交叠覆盖,产生相互干扰。
所以首先将PCI为500的小区的RS功率降低3dB,发现掉话的情况同样存在,证明和RS功率关系不大;2、继续分析是否两个小区之间的相互邻区漏配了,导致掉话。
后经查看信令发现终端并不存在MR上报不处理的情况,并且后台核查邻区配置后确定两个小区的双向邻区均已经配置,则排除邻区漏配问题。
3、由于初步简单分析并没有查到原因,所以后面进行更详细的分析。
4 处理过程1、首先确定掉话问题,根据测试的结果显示,在电梯厅门口RSRP会突然陡降,然后掉话;2、排除邻区漏配的原因。
邻区已配置且参数配置正确,可排除邻区漏配导致掉话的情况。
因为刚开站,参数都是按照规划参数进行配置的,没有仔细的核查所有的参数配置;3、排除设备告警方面的原因。
核查操作日志,设备故障,告警和外部事件进行核查,没有设备故障,之前的告警也已经消除,没有发现问题;4、排除上行干扰原因。
由于之前的步骤都没有查出问题,所以接着就怀疑是不是因为存在干扰,所以进行了NI跟踪,结果是环境很干净,干扰问题排除;5、核查网规网优参数。
在核查的时候,就发现了一个问题,PCI为500的小区配置的子帧配比为SA1(2:2),而PCI为501小区配置的子帧配比为SA2(3:1),由于PCI为500的小区不光覆盖电梯门口,同时也覆盖1楼至10楼,而7楼为提高上行速率,修改了子帧配比。
掉话原因及处理

GSM网络优化中掉话、拥塞的原因及解决办法1.掉话在移动通信中,掉话是指在分配了话音信道(TCH)后,由于某种原因,使呼叫丢失或中断,正常通话无法进行的现象。
掉话不仅影响网络指标,而且会给用户造成许多不便,是用户投诉的热点。
1.1掉话产生的原因1、由干扰引起的掉话:干扰主要包括同频、邻频及交调干扰。
当手机在服务小区中收到很强的同频或邻频干扰信号时,会引起误码率恶化,使手机无法准确解调邻近小区的BSIC码或不能正确接收移动台测量报告。
基站在通过SDCCH为手机分配好应使用的话音信道后,由于没有临近小区BSIC码而无法判断该使用哪个小区的话音信道,从而产生掉话。
交调干扰主要来自于外部干扰,如CDMA站会对我基站上行频率产生干扰。
2、由于切换引起的掉话:(1) MS在通话中,手机列表中计算6个最好的相邻小区为切换做准备,但当网络覆盖不好时,会产生频繁切换,造成无主控小区,产生掉话。
(2)一些小区由于话务忙,会把话务推给相邻小区,但当相邻小区信号不好或无空闲信道时就会产生掉话。
(3)孤岛效应。
如果服务小区A由于地形的原因产生的场强覆盖小岛C,而在小岛C周围又为小区B的覆盖范围,如在A的相邻小区列表中未添加小区B,那么当用户在C 中建立呼叫后一走出小岛C,由于无处可切换将产生掉话。
3、参数设置不合理引起的掉话:影响掉话的参数主要有切换参数和相邻小区参数。
如:PMRG设置过高或相邻小区参数做错都会导致掉话。
4、基站硬件引起的掉话:BTS的硬件故障也会引起掉话,NOKIA设备中的7745(CHANNEL FAILURE RATE ABOVE DEFINED THRESHOLD)、7949 (DIFFERENCE IN RX LEVELS OF MAIN AND DIVERSITY ANTENNA / TRX)是特别要引起注意的,因为这些告警同时伴随着掉话。
5、Abis接口失败产生的掉话Abis接口的,包括BSC未收到来自BTS的测量报告,超过TA极限,切换过程的一些信令失败以及一些内部原因,此外还有Abis接口的误码率的影响。
VOLTE掉话分析

VOLTE掉话分析VOLTE(Voice Over LTE)是一种在4G LTE网络上实现高质量语音通话的技术。
它比传统的2G和3G网络更高效和先进,但在实际应用过程中,仍有可能出现掉话的情况。
下面将分析VOLTE掉话的可能原因和解决方法。
首先,VOLTE掉话的原因可能和网络覆盖有关。
4GLTE网络有时在一些较为偏远的地区信号覆盖可能不稳定,或者室内覆盖不足,这都可能导致VOLTE掉话。
解决这一问题的方法可以是增加基站的覆盖范围或增加室内信号增强器等设备。
其次,VOLTE掉话的原因还可能和设备功率管理有关。
在信号弱的地方,手机可能会增大功率以保持通信连接,这可能会导致电量消耗过快,进而导致掉话。
此外,设备的软件或硬件故障也可能导致VOLTE掉话。
解决这一问题的方法可以是优化设备的功率管理算法,确保设备正常运行,并及时修复软硬件故障。
再次,VOLTE掉话的原因还可能和网络负载有关。
在高峰时段或网络拥堵的情况下,网络负载增加可能导致语音通话的质量下降,包括掉话。
解决这一问题的方法可以是提升网络的容量,增加带宽等。
此外,VOLTE掉话还可能和网络的QoS(Quality of Service)设置有关。
QoS的设置可以对不同类型的数据流分配不同的优先级,如果语音通话的优先级设置不当,可能导致VOLTE掉话。
解决这一问题的方法可以是合理设置QoS,确保语音通话的优先级高于其他数据流。
最后,VOLTE掉话的原因还可能和网络的连接稳定性有关。
网络的连接不稳定可能导致通话中断,从而出现掉话情况。
解决这一问题的方法可以是优化网络的传输协议,提高连接的稳定性。
总的来说,VOLTE掉话的原因可能涉及网络覆盖、设备功率管理、网络负载、QoS设置和连接稳定性等多个方面。
要解决这一问题,需要优化网络、设备和软件配置,并加强对网络质量的监控和维护。
只有在确保网络稳定和通信质量高的情况下,才能实现高质量的VOLTE通话体验。
GSM常见掉话原因分析

B.过覆盖(Overshooting)
还有一种覆盖问题就是邻区间交叠区过大,甚至出现了过覆盖(Overshooting)的现象。比较典型的情况是:一个较高的基站A的天线没有作下倾角或只有很小的下倾角度,与它相邻的一个基站B的天线高度较低,覆盖范围很小,造成B的覆盖范围被A完全包含。如图7所示。所以在越过绿色的B小区主控覆盖范围后,手机还会“回切”至A小区,但是由于种种原因,A小区并没有C小区的邻区。因此,当测试人员继续行驶后,就会因无邻区可切而造成拖带掉话(例如在红色区域)。解决的办法就是如图中所示,将小区A的覆盖范围控制好(小区A’),就可以解决过覆盖造成掉话的问题。
带内干扰:GSM系统内部干扰主要由以下几个方面原因产生:
l频率规划不合理,引起同频、邻频干扰;
l基站或手机功率设置不合理,引起下、上行链路干扰;
l频率复用不合理;
l由于多径效应、建筑物反射等造成干扰;
l码间干扰;
l TA与实际不符造成时隙干扰。
当MS在服务小区收到很强的同频或邻频干扰信号时,会引起误码率恶化,使手机无法准确解调邻近小区的BSIC或不能正确接收MS的测量报告,从而产生掉话。
l在Layer 2上:BSS/MS每T200时间发送N200+1次SABM/DISC消息,但未从接收端收到回应
2)切换掉话
l MS未能成功切换至目标小区,但未能回到源小区
l MS发送HO FAILURE和UL-SABM消息给源小区,但未得到回应
二、在路测时发现的掉话问题时,我们应从哪些方面进行考虑?
图2干扰基站图
事故原因:同频干扰造成掉话,通过对规划的调整和修改邻区参数,上述问题得到解决。
实例2:直放站、阻断器造成的掉话
随着用户的增多,很多宾馆酒店写字楼等建筑物内为了解决电梯、地下室等信号覆盖的盲区就会出现私建直放站,从而产生了强烈的上下行干扰,有时波及周围很多小区的性能,对网络指标的影响非常大。频率阻断器是一种宽带的干扰器,其安装的目的就是要对移动通信系统产生强烈的干扰,以达到阻断器周围一定范围内手机无法接入系统服务的目的。
移动通信掉话故障分析及解决方案

移动通信掉话故障分析及解决方案掉话率是衡量移动通信无线网络质量的一项重要指标,解决减少掉话成为了提升网络质量和客户满意度的重要工作。
本文例举了移动通信中无线系统几种常见的掉话问题,如因直放站掉话、设备引起的掉话、切换掉话、干扰掉话等,并简要分析了这几类掉话的原因,提出了相应的解决方案。
标签掉话;切换;干扰;直放站1 前言我们在使用手机过程中经常会遇到掉话的问题,这也是许多移动用户申告的热点之一。
所谓掉话,就是指通话双方在通话期间由于某种原因非正常终止通话。
移动通信系统是有线与无线的综合体,它是移动网络在其覆盖范围内,通过空中接口将移动台与基站联系起来,并进而通过移动交换机交换连接,实现用户终端无线联络。
由于移动电话的移动性及无线传输的复杂性,因而一定程度的掉话显得不可避免的。
但随着无线技术的不断发展和网络质量的逐步提升,无线掉话正被逐渐克服和改善。
掉话率是考核无线网络的一项重要指标,它从一个侧面反映了网络运行的质量情况。
2 产生掉话的几种原因2.1 网络漏覆盖或盲区引起的掉话2.1.1 移动网络建设初期,由于资金问题和无线规划的缺陷,以及大众对移动通信需求的飞涨,无线基站在一些地区还存在着许多的盲点和漏点。
当移动台进入网络的漏覆盖区或信号盲区时,因信号太弱而发出切换请求,但切换不成功引起掉话。
2.1.2 初期网络建设为了解决无线覆盖问题,采用全向基站较多,一些基站在工程选址时又往往选到山坡或大楼楼顶等高处上,导致近距离覆盖不好,且覆盖范围又过大,在统计上体现上行信号弱掉话比例较高。
2.2 直放站引起的掉话为减少投资,扩大覆盖范围,一些小基站普遍采用直放站放大信号,但由于目前大量使用的直放站是900MHz宽带放大器,基站与直放站之间绝大多数又是射频连接方式,加之直放站的规划和选址上存在一些问题,特别是部分县局设置的直放站不是接收本局基站的信号,而是就近接收邻县(市)基站的信号,从而造成邻县(市)基站掉话率偏高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M900/M1800 基站子系统故障处理手册目录目录第10章掉话类故障分析与处理...........................................................................................10-110.1 概述...............................................................................................................................10-110.1.1 掉话问题描述......................................................................................................10-110.1.2 掉话的计算公式..................................................................................................10-310.2 导致掉话的几种因素......................................................................................................10-410.2.1 覆盖引起的掉话..................................................................................................10-410.2.2 切换引起的掉话..................................................................................................10-610.2.3 干扰引起的掉话..................................................................................................10-810.2.4 天馈引起的掉话................................................................................................10-1010.2.5 传输引起的掉话................................................................................................10-1110.2.6 无线参数设置不合理.........................................................................................10-1110.2.7 其它原因引起的掉话.........................................................................................10-1210.3 典型案例......................................................................................................................10-1310.3.1 优化切换参数减少掉话.....................................................................................10-1310.3.2 直放站干扰引起掉话.........................................................................................10-1310.3.3 MAIO相同引起干扰掉话...................................................................................10-1510.3.4 上下行不平衡....................................................................................................10-1510.3.5 孤岛效应引起掉话.............................................................................................10-1610.3.6 与版本相关的参数设置.....................................................................................10-17第10章掉话类故障分析与处理10.1 概述在GSM网络中,掉话率是衡量无线网络质量的重要指标。
本章主要分析引起掉话的原因,如何定位和解决问题。
目的是降低掉话率,提高网络质量。
另一方面还可解决由掉话率高造成的最坏小区,降低最坏小区比,提高话务掉话比。
最坏小区比指标定义(按照网络规模的不同分别计算):特大型网络最坏小区比例:最坏小区个数/忙时平均每信道话务量超过0.15Erl的小区个数。
大型网络最坏小区比例:最坏小区个数/忙时平均每信道话务量超过0.12Erl的小区个数。
中型网络最坏小区比例:最坏小区个数/忙时平均每信道话务量超过0.1Erl的小区个数。
最坏小区指标定义:忙时话音信道拥塞率(不含切换)高于5%,或话音信道掉话率高于3%的小区。
话务掉话比指标定义:话务掉话比=(忙时话音信道总话务量×60)/忙时话音信道掉话总次数。
其中,掉话次数的定义为无线侧统计Clear Request消息。
10.1.1 掉话问题描述掉话可分为两种形式:z SDCCH上的掉话:SDCCH的掉话是指在BSC给移动台指配SDCCH而TCH还未指配成功的期间发生的掉话。
z TCH上的掉话:TCH的掉话是指在BSC给移动台成功分配了TCH后,发生的掉话。
造成掉话的原因,主要有三种:z无线链路故障(发生在通信过程中,消息无法正常接收);z T3103超时(发生在切换过程中,MS无法占用目标小区信道,也无法返回原信道);z系统故障(设备故障等各种可能发生的故障)。
(1) 在这三种掉话原因中,主要的掉话形式是无线链路故障。
在GSM规范中有一参数为Radio Link Timeout (无线链路超时)。
当移动台在通信过程中话音质量恶化到不可接收,且无法通过射频功率控制或切换来改善时,移动台认为无线链路故障,强行拆除链路,造成掉话。
GSM规范规定,移动台中有一计数器S,该计数器在通话开始时被赋予一个初值,即参数“无线链路超时”的值。
若移动台解码SACCH 消息(周期120ms)失败,S减1;反之,移动台每正确接收到一SACCH 消息,S加2,但S不可以超过初始被赋予的值,当S为0时,移动台报告无线链路故障。
信令流程如图10-1所示,图中(1)(2)专用模式已建立(SDCCH/TCH);(3)无法解释SACCH的消息块(上行/下行),导致无线链路超时。
前面是相对于下行的情况,在小区属性表下的SACCH复帧数(周期480ms),定义了上行链路连接失败时间。
当BTS检测到无线链路上一个被激活的连接被破坏时,就会向BSC上报连接失败消息Connection Failure。
系统判断连接失败的准则是基于上行链路的误码率或SACCH 是否正确译码。
华为BTS采用后一种判断准则,方法和移动台判断无线链路失效类似。
若基站每正确解出一次移动台的SACCH消息,计数器的值加2,最大不超过数据配置中确定的初值;反之,计数器减1,当计数器的值减为0时,BTS上报连接失败消息。
计数器的初值N是在数据配置中确定的,就是小区属性表中的SACCH复帧数,其单位为480ms。
另外,基站的无线口层二(LAPDm)在层二帧与移动台侧无法正常交互的情况下,会向BSC上报错误指示消息Error Indication,对应于图10-1中的第(3)步,原因值为T200超时,BSC也会释放无线链路,上报清除请求(Clear REQ)。
MSMSC BSC BTS(2) 定时器T3103:(a) 定义:在切换过程中(BSS 内部和BSS 间),BSC 按照此定时器在发起切换小区和目标小区同时保留TCH 。
T3103在BSC 发出切换命令(Handover Command )消息时启动,收到切换完成(Handover Complete )时(BSC 内部切换)或清除命令(Clear Command )时(BSC 间切换)清除。
(b) 该定时器的用途是保持信道足够长的时间以便MS 可以返回信道,若MS 丢失是用于信道释放。
BSC 向移动台发出切换命令时T3103开始计时,在BSC 收到来自切换目标小区的切换完成)或者来自源小区的切换失败(Handover Failure )时就将T3103复位,BSC 将Handover Command 信息发送到BTS 时,如果T3103超时后仍未收到任何消息时,BSC 就判断源小区发生了无线链路失败,进而释放源小区的信道,信令流程如图10-2所示。
MSC BSC BTS1MSBTS2图10-2 T3103超时导致掉话(3) 由设备故障等原因造成的掉话,例如案例八的详细描述。
10.1.2 掉话的计算公式(1) TCH 掉话率=TCH 掉话次数/TCH 占用成功次数×100%(2) TCH 掉话次数统计点:BSC 向MSC 发起Clear Request 消息时,当前占用的信道类型为TCH ;(3) 发送Clear Request 消息的典型原因值一般为:z无线链路失败(Radio Interface Message Failure ) z人工干预(O&M Intervention ) z设备故障(Equipment Failure ) z BSS 与MSC 间协议错误(Protocol Error Between BSS and MSC )z强占(Preemption)信令流程如图10-3所示。