第十一章卡方检验
第十一章卡方检验

第十一章卡方检验
2统计量的条件:T≥5
2
(AT)2 T
校正的2
2 (AT0.5)2
T
第十一章卡方检验
2检验的基本公式
2 (AT)2
T
❖ A—实际频数 ❖ T— 根据H0确定的理论频数
第十一章卡方检验
2检验基本思想
2值反映了样本实际频数与理论频数的符合程度。 如果原假设成立, 2值不会太大;反之,A若与T差 距大, 2值也大;当2值超出一定范围时,就有理
有效率 % 70.7 70.7
70.7
T a 8 7 0.7 % 0 5 6 .6 T b 8 0 2.3 % 9 2.4 3
T c 6 7 0.7 % 0 4.4 2 T d 6 2 0.3 % 9 1.6 7
第十一章卡方检验
四格表的理论频数由下式求得 :
nn
T RC
RC
n
式中:TRC为第R 行C 列的理论频数, nR为相应的行合计, nC为相应的列合计。
➢ 四格表资料比较的是两种处理的效果。 ➢ 每种处理只产生两种相互对立的结果,如生与死,有
效与无效,患病与未患病,阳性与阴性,检出与未检 出,等等。
第十一章卡方检验
四格表资料的一般形式
处理组 A B
合计
发生数 a c
a+c
未发生数 合计
b
a+b
d
c+d
b+d
n=a+b+c
+d
第十一章卡方检验
例11-1 某医师为比较中药和西药治疗胃炎的疗效,随机 抽取140例胃炎患者分成中药组和西药组,结果中药组 治疗80例,有效64例,西药组治疗60例,有效35例, 问中药和西药治疗胃炎的效果是否相同?
第十一章 卡方检验

第一节 独立样本列联表的χ2检验
四格表资料: 1.完全随机设计的两样本率比较的χ2检验
2. 2 × 2列联表资料的χ2检验
3.R × C列联表资料的χ2检验
一、 χ2检验的基本思想
例11.1 某研究者欲比较甲、乙两药治疗小儿上消化 道出血的效果,将90名患儿随机分为两组,一组采 用甲药治疗,另一组采用乙药治疗,一个疗程后观 察结果,见下表。问两药治疗小儿上消化道出血的 有效率是否有差别?
Likelihood Ratio
10.338
1
.001
Fisher's Exact Test
.003
.002
Linear-by-Linear Association
9.761
1
.002
N of Valid Cases
90
a. Computed only for a 2x2 table
b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 11. 50.
理论频数(theoretical frequency)
理论频数的计算方法: 在H0成立的情况下,即甲药治疗小儿上消化道出
血的有效率与乙药治疗小儿消化道出血的有效 率相同。 则理论上两种人群有相同的有效率74.44%,这时 计算出其相应的各个格子的理论频数。
(a) T11
(b) T12
(c) T21
(d) T22
其基本公式:
∑ χ2 = (A - T)2
T
2
0.5
0.4
0.3
纵高
理 解χ2值
0.2 0.1
统计学卡方检验

根据分析结果,为患者提供个体化的干预措施,提高生存质量。
06
卡方检验注意事项及局限 性讨论
样本量要求及抽样方法选择
样本量要求
卡方检验对样本量有一定的要求,通常建议每个单元格的期望频数不小于5,以确保检验结果的稳定性和可靠性 。当样本量不足时,可能会导致检验效能降低,增加第二类错误的概率。
抽样方法选择
在进行卡方检验时,应选择合适的抽样方法。简单随机抽样是最常用的方法,但在某些情况下,如分层抽样或整 群抽样可能更适合。选择合适的抽样方法有助于提高检验的准确性和可靠性。
期望频数过低时处理策略
合并类别
当某个单元格的期望频数过低时,可以考虑 合并相邻的类别,以增加期望频数。合并类 别时应注意保持类别的逻辑性和实际意义。
适用范围及条件
适用范围
卡方检验适用于多个分类变量之间的独立性或相关性检验,如医学、社会科学等领域的调查研究。
条件
使用卡方检验需要满足一些前提条件,如样本量足够大、每个单元格的期望频数不宜过小等。此外, 对于有序分类变量或存在空单元格的情况,需要采用相应的处理方法或选择其他适合的统计方法。
02
卡方检验方法
统计学卡方检验
目录
• 卡方检验基本概念 • 卡方检验方法 • 数据准备与预处理 • 卡方检验实施步骤 • 卡方检验在医学领域应用举例 • 卡方检验注意事项及局限性讨论
01
卡方检验基本概念
定义与原理
01
02
定义
原理
卡方检验是一种基于卡方分布的假设检验方法,用于推断两个或多个 分类变量之间是否独立或相关。
确定分组界限
在确定分组界限时,可以采用等距分组、等频分组或 基于数据分布的分组方法。选择合适的分组界限有助 于保持各组之间的均衡性,减少信息损失。
第十一章 统计分析和调查报告

• 2、定序变量 • 3、定距或定比变量
第十三章 撰写研究报告
• 研究研究报告及其类型 • 研究报告是反映社会调查成果的一种书面 报告,它以文字、图表等形式将调查研究 的过程、方法和结果表现出来。其目的是 告诉有关读者,对于所研究的问题是如何 进行调查的,取得了哪些结果,这些结果 对于认识和解决这一问题有哪些理论意义 和实际意义等等
其它故事与发表情况
• 另外两种形式的故事叫做批判的故事(吸 引读者对社会问题的注意和重视)和形式 的故事(理论的表述)。 • 民族志写作惯例发生了变化。今天,被发 表的现实主义的故事越来越少,而印象主 义或坦白的故事则相对越来越多。 • 没有完美的理论,也没有完美的报告。
• 导言部分 • 普通调查报告的第一部分称作导言,它的主要任务是向读者简要地介绍 整个调查的有关背景。其中,最主要的内容包括调查的目的、调查的内 容、调查的对象、调查的时间、地点、调查的方法等等。导言的具体写 法有下列几种常见的方式。 • (1)直述式 • 即开门见山,平铺直述,直接把调查的目的,内容,对象,范围等一一写出.例 如: • 为了全面了解老年人的生活状况,加强老年人的社会保障工作,沈阳 师范大学社会学系于2003年2月至4月,在辽宁省沈阳市调查了300位老 年人的家庭与生活情况。下面是这次调查的方法及主要结果。 • (2)悬念式。 • 即先描述某种社会现象和社会问题,然后对这种社会现象和问题产生的 原因、它的影响等等提出一系列疑问,最后介绍调查的基本情况.例如: • 老年人丧偶是生活中十分普遍的现象,而老年人再婚,则是近年来出 现在我国社会中的一种新的社会现象。据有关部门统计,本市1980年再 婚老年夫妇为68对,1984年为116对,1988年为302对;1991年为: 495对;1994年为623对。促使老年人再婚比例提高的原因是什么?;社 会舆论对老年人再婚的评价如何?老年人再婚给他们的家庭及其生活带 来了哪些变化?;为了弄清这些问题,沈阳师范大学社会学系于今年3—5月,对沈阳市180对再婚老年夫妇进行了调查。
卡方检验算法范文

卡方检验算法范文卡方检验是一种用于确定两个类别变量之间是否存在显著关联的统计方法。
它基于观察值与期望值之间的差异来判断关联性。
在卡方检验中,我们将观察到的频数与预期的频数进行比较,以确定它们是否有显著的差异。
卡方检验的基本原理是假设零假设,即两个变量之间没有关联。
然后根据观察情况得到的频率表,计算出预期频率表。
最后,使用其中一种统计量来比较观察频率和预期频率。
卡方检验的步骤如下:1.构建频数表:根据研究问题,将两个类别变量的数据构建成一个二维频数表。
其中,行可以表示一个类别变量的不同取值,列可以表示另一个类别变量的不同取值。
然后将观察到的频数填入表格中。
例子:类别变量B类别变量AA1A2A3A4B1n11n12n13n14B2n21n22n23n24B3n31n32n33n342.计算预期频数:根据零假设,我们可以通过行和列的边际频数计算出期望频数。
每个单元的期望频数可以使用以下公式计算:期望频数=(行的边际频数*列的边际频数)/总频数例子:类别变量B类别变量AA1A2A3A4B1e11e12e13e14B2e21e22e23e24B3e31e32e33e34其中,eij表示第i行,第j列的预期频数。
3.计算卡方统计量:通过使用观察频数和预期频数,可以计算出卡方统计量,用于比较差异的程度。
卡方统计量的计算公式如下:χ²=Σ[(观察频数-预期频数)²/预期频数]其中,Σ表示对所有单元进行求和。
4.自由度和临界值:计算自由度和基于显著水平的临界值。
自由度的计算公式为:自由度=(行数-1)*(列数-1)临界值可以从卡方分布表中获取,根据给定的显著水平和自由度。
5.判断显著性:根据卡方统计量和临界值的比较,判断是否存在显著性差异。
如果卡方统计量大于临界值,则拒绝零假设,认为两个变量之间存在显著关联。
卡方检验的应用广泛,特别适用于两个分类变量之间的关联性分析。
它可以用于许多领域的研究和实践,例如医学、社会科学、市场研究等。
医学统计学(6) 卡方检验

•进一步的两两比较
•P<0.017才有 统计学意义!!
【例6】某中医院用三种治疗方法治疗413例糖尿病患者, 资料见表。为避免中医不同证型对疗效比较的影响,分 析3种疗法治疗的病人按3种中医分型的构成比有无差别?
SPSS软件操作
• 第1步:定义变量
• 第2步:输入 原始数据
• 第3步:定义频数 • 选择数据→加权个案 • 频数→加权个案(频 数变量)
CMH多维卡 方检验
• 第4步:x2检验(2) • 选择统计 量按钮 • 在交叉表: 统计量对 话框:勾 上卡方
• 第4步:x2检验(3) • 选择单元 格按钮 • 在交叉表: 单元显示 对话框: 勾上观察 值、百分 比:行、 列
• 第5步:结果解读(1)
• 结果解读:中西医组的治愈率为98.2%,西 医组的治愈率为74.0%。
【例4】某医师为研究乙肝免疫球蛋白预防胎儿宫内感 染HBV的效果,将33例HBsAg阳性孕妇随机分为预防 注射组和非预防组,结果见表。问两组新生儿的HBV总 体感染率有无差别?
• 第1步:定义变量
SPSS软件操作
• 第2步:输入 原始数据
• 第3步:定义频数 • 选择数据→加权个案 • 频数→加权个案(频 数变量)
医学统计学 (6 )
《中华医学杂志》对来稿统计学处理的有关要求
卡方检验(chi-square test)
• χ2检验是现代统计学的创始人之一,英国人 Karl . Pearson于1900年提出的一种具有广 泛用途的统计方法。 • 可用于两个或多个率间的比较,计数资料 的关联度分析,拟合优度检验等等。
关联性分析
列联系数的意义 • |rp|<0.4,关联程度低 • 0.4≤|rp|<0.7,关联程度中等 • |rp|≥0.7,关联程度高
第11章卡方检验(0429修改)

第十一章2χ检验2χ检验(chi-square test)是英国统计学家K. Pearson于1900年提出的,以2χ分布(chi-square distribution)和拟合优度检验(goodness-of-fit test)为理论依据,是一种应用范围很广的统计方法。
本章主要介绍率或构成比比较的2χ检验,频数分布的拟合优度2χ检验,线χ检验,以及四格表的Fisher确切概率法。
性趋势2第一节2χ检验的基本思想2χ检验是在2χ分布的基础上,利用样本信息考察样本频数分布与假设成立条件下的理论频数分布之间差异的假设检验方法。
下面以例11.1为例,说明2χ检验的基本思想。
例11.1 某研究者欲比较血塞通注射液和银杏达莫注射液治疗急性脑梗死的效果,将240例急性脑梗死患者随机分为两组,一组给予血塞通注射液治疗,另一组给予银杏达莫注射液治疗,一个疗程后观察结果,见表11.1。
问两种针剂治疗急性脑梗死的有效率是否有差别?表11.1 血塞通和银杏达莫治疗急性脑梗死的疗效血塞通114 6 120 95.00银杏达莫104 16 120 86.67合计218 22 240 90.83表11.1中,114、6、104、16这4个数据是分组变量药物(一般作为行变量)与效应指标疗效(一般作为列变量)交叉分组后,基于样本观察到的发生频数,称为实际频数(actual frequency),用符号A表示。
行合计、列合计、总合计及有效率是根据这4个基本数据计算而来。
该类型资料称为22⨯列联表资料,亦称四格表(fourfold table)资料。
血塞通组的有效率(95.00%)和银杏达莫组的有效率(86.67%)仅是样本观察的结果,由于存在抽样误差,需进行假设检验,才能得到关于两种针剂治疗急性脑梗死的总体有效率是否有差别的结论。
当两样本含量均比较大时,可以采用第十章介绍的两样本率比较的Z检验,还可采用本章介绍的2χ检验。
一、对总体建立假设例11.1的无效假设为012:H ππ=,即两种针剂治疗急性脑梗死的有效率相同。
统计学教程-卡方检验

Lower
Upper
3.000
.992
9.068
2.500
.987
.833
.684
100
6.334 1.016
❖ 结果显示,OR=3.00,说明吃了该食物者发生食物中
毒的可能性是没有吃该食物者的3.00倍?
分层卡方检验
例4 某研究人员对3家医院的卫生服务情况进行 了调查,现希望分析寻求就诊和性别之间有无 联系。(数据见cmh.sav)
Exact Sig. (1-sided)
Likelihood Ratio
14.550
1
.000
Fisher's Exact Test
.000
.000
Linear-by-Linear Associ ati on
13.910
1
.000
McNemar Test
.013c
N of Valid Cases
58
poison
Yes 10
No 30
6.4
33.6
6
54
9.6
50.4
16
84
16.0
84.0
Total 40
40.0 60
60.0 100 100.0
❖ 这就是两变量的四格表。
两分类变量间关联程度的度量
结果分析
Chi-Square Tests
Pearson Chi-Square Continuity Correction a
a. Computed onlyfor a 2x2 table
b. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5. 16.