APHA 9221E粪大肠菌群
粪大肠菌群的测定

15.7mg硫代硫酸钠可去除样品中1.5mg活性氯,硫代硫酸钠用量可 根据样品实际活性氯量调整。
4 .无菌水:取适量实验用水,经 高压蒸汽灭菌20min, 备用。 5. 硫代硫酸钠( Na2S2O3.5H2O)。 (去除游离氯) 6.乙二胺四乙酸二钠(C10H14N2O8Na2 .2H2O)。 7.乙二胺四乙酸二钠溶液: ρ (C10H14N2O8Na2 .2H2O) =0.15 g/ml 称取15g乙二胺四乙酸二钠,溶于适量水中,定容至100ml,此溶液可保存 30d。 8.硫代硫酸钠溶液: ρ ( Na2S2O3.5H2O) =0.10 g/ml 称取15.7g硫代硫酸钠, 溶于适量水中,定容至100ml,临用现配。
2. 浓缩乳糖蛋白胨培养液: (此溶液用于检验大肠菌群) 按上述乳糖蛋白胨培养液的制备方法配制。除蒸馏水外,各组分用量 增加至三倍。 (即按上述配方比例三倍 (除蒸馏水外) ,配成三倍浓 缩的乳糖蛋白胨培养液)
①在何种情况下用多少三倍浓度的培养基接种? 答:接种体积为10ml时,试管内应装入有3倍浓度乳糖蛋 白胨培养液5ml。
• 三、肯定要加塞子的,我们用的塞子是软材料 (好像是软橡胶? 白色的,塞子中间另有一 个可以活动的塞子,能保证加塞后的试管透气,其实用什么材料不重要的。
• 四、需要的仪器设备为:生化培养箱、无菌操作台 (空气精华级别100) 、高压灭菌锅、 冰箱、干燥箱。
五、干扰和消除
1.
,能破坏微生物细胞内的酶活性,导
若接种量过高,培养液应加倍成分。这是由于样品的量大 的情况下,培养液稀释大,各种成分的相对浓度就会不足, 就不能满足细菌的生长要求,存在实验失败的概率。因此, 合理调整样品量和营养液浓度的比例需要反复实验和多组 对照。
粪大肠菌群数测量方法-概念解析以及定义

粪大肠菌群数测量方法-概述说明以及解释1.引言1.1 概述概述部分的内容可以描述该篇文章的研究背景以及粪大肠菌群数测量方法的重要性。
可以参考以下内容进行撰写:概述粪大肠菌群数(Fecal coliform count)是评估水体、食品和环境卫生安全的重要指标之一。
粪大肠菌群数测量方法的准确性和可靠性对于保障公众健康和环境质量至关重要。
随着生活水平的提高和环境污染问题的日益严重,对粪大肠菌群数测量方法的研究与探索变得尤为重要。
本文旨在详细介绍目前常用的三种粪大肠菌群数测量方法,即第一种测量方法、第二种测量方法和第三种测量方法。
通过比较这三种方法的原理、步骤以及各自的优缺点,可以帮助读者更全面地了解和选择合适的测量方法。
本文结构本文分为引言、正文和结论三个部分。
引言部分对粪大肠菌群数测量方法的研究背景和意义进行了概述。
正文部分详细介绍了三种测量方法的原理、步骤以及优缺点。
结论部分对本文的主要观点进行总结,并对未来相关研究进行展望。
通过本文的阅读,读者可以对粪大肠菌群数测量方法有一个全面的了解,并对选择适合自己研究对象的测量方法具备一定的指导意义。
希望本文能够为相关领域的研究工作者提供有价值的信息和启示,推动粪大肠菌群数测量方法的改进和发展。
1.2 文章结构文章结构部分的内容可以包括对整篇文章的大致框架进行介绍,即各个章节及其内容的概览。
在文章结构部分中,可以简要介绍文章的组成和布局,以帮助读者更好地理解整篇文章的结构和内容安排。
此外,可以提及各个章节的主要目标和内容,以及各个章节之间的逻辑关系。
具体编写文章结构部分的内容如下:文章结构:本文共分为引言、正文和结论三个部分。
引言部分主要概述了本文的研究背景和目的,同时简要介绍了大纲中各个章节的内容安排。
正文部分详细介绍了三种粪大肠菌群数测量方法:第一种测量方法、第二种测量方法和第三种测量方法。
每种测量方法都包括了原理、步骤和优缺点的详细介绍。
通过对这三种测量方法的讨论和比较,读者可以全面了解不同测量方法的特点和应用情况。
什么是粪大肠菌

什么是粪大肠菌什么是粪大肠菌粪大肠菌群粪大肠菌群是大肠菌群的一种,又名耐热大肠菌群粪大肠菌群是生长于人和温血动物肠道中的一组肠道细菌,随粪便排出体外,约占粪便干重的1/3以上,故称为粪大肠菌群。
受粪便污染的水、食品、化妆品和土壤等物质均含有大量的这类菌群。
若检出粪大肠菌群即表明已被粪便污染。
大肠菌群1、大肠菌群是指一群好氧及兼性厌氧,在37℃、24h能分解乳糖产酸产气的革兰氏阴性无芽孢杆菌,它主要来源于人畜粪便,通常可作为水体粪便污染的指标菌大肠菌群2、大肠菌群是指37℃生长时能发酵乳糖,在24h内产酸产气的革兰阴性无芽孢杆菌,除包括大肠埃希氏杆菌属外,还包括肠杆菌科的肠杆菌属、枸椽酸菌属、克雷伯菌属3、大肠菌群是指一群能在36℃,24h内发酵乳糖产酸产气,需氧和兼性厌氧的革兰阴性无芽胞杆菌.它主要包括肠杆菌科的大肠埃希氏菌、枸椽酸杆菌、克雷伯氏菌和阴沟肠杆菌文献来源大肠菌群并非细菌学分类命名,而是卫生细菌领域的用语,它不代表某一个或某一属细菌,而指的是具有某些特性的一组与粪便污染有关的细菌,这些细菌在生化及血清学方面并非完全一致,其定义为:需氧及兼性厌氧、在37℃能分解乳糖产酸产气的革兰氏阴性无芽胞杆菌。
一般认为该菌群细菌可包括大肠埃希氏菌、柠檬酸杆菌、产气克雷白氏菌和阴沟肠杆菌等。
大肠菌群分布较广,在温血动物粪便和自然界广泛存在。
调查研究表明,大肠菌群细菌多存在于温血动物粪便、人类经常活动的场所以及有粪便污染的地方,人、畜粪便对外界环境的污染是大肠菌群在自然界存在的主要原因。
粪便中多以典型大肠杆菌为主,而外界环境中则以大肠菌群其他型别较多。
大肠菌群是作为粪便污染指标菌提出来的,主要是以该菌群的检出情况来表示食品中有否粪便污染。
大肠菌群数的高低,表明了粪便污染的程度,也反映了对人体健康危害性的大小。
粪便是人类肠道排泄物,其中有健康人粪便,也有肠道患者或带菌者的粪便,所以粪便内除一般正常细菌外,同时也会有一些肠道致病菌存在(如沙门氏菌、志贺氏菌等),因而食品中有粪便污染,则可以推测该食品中存在着肠道致病菌污染的可能性,潜伏着食物中毒和流行病的威胁,必须看作对人体健康具有潜在的危险性。
3、大肠菌群、粪大肠菌群和大肠杆菌

↓36±1℃,48±2h
↓44.5±0.5℃,24±2h
————————
———————
↓
↓
↓
↓
浑浊,产气
不产气 浑浊,产气 不产气:粪大肠菌群阴性
查MPN表
大肠菌群阴性 查MPN表
报告大肠菌群
报告粪大肠菌群
的MPN值
的MPN值
大肠菌群计数检验的操作
MPN法
LST不产气(-) 小导管里无气泡
LST产气(+)
36℃±1 ℃ 培养24h
加入 Kovacs氏试剂
接触面红色,阳性
甲基红反应(MR)
肠杆菌科各菌属都能发酵葡萄糖,在分解葡萄糖 过程中产生丙酮酸,进一步分解中,由于糖代谢的 途径不同,可产生乳酸,琥珀酸、醋酸和甲酸等大 量酸性产物,可使培养基PH值下降至pH4.5以下,使 甲基红指示剂变红。
VRBA平板计数法
选择15~150平 板计数典型和
可疑菌落
36℃±1 ℃ 18h ~24h
典型菌落为紫红色 周围有红色胆盐沉
淀环,0.5mm
挑选10个菌落 接种到BGLB
结果报告
经最后证实大肠菌群阳性的BGLB试管比 例乘以VRBA菌落数再乘以稀释倍数,即为每 克(毫升)样品中大肠菌群数。 如:稀释倍数10-3 ,吸取样品稀释液1ml
大肠菌群和粪大肠菌群的检测流程图 MPN法
检样25g
↓
稀释(三个连续的稀释度,如10-1,10-2,10-3)
↓
接种(每个稀释度接种3管LST,每管1ml)
↓ 36±1℃,48±2h
——————————————
↓
↓
浑浊,产气
不产气
↓
报告大肠菌群阴性
粪大肠菌群的测定

粪大肠菌群的测定1 卫生学意义粪大肠菌群测定的卫生学意义:一、与大肠菌群相比,粪大肠菌群在人和动物粪便中所占的比例较大,而且在自然界容易死亡。
因此,粪大肠菌群的存在表明食品近期内可能直接或间接的受到了粪便的污染;二、作为粪便污染指标评价食品的卫生状况,推断食品中肠道致病菌污染的可能性;三、常用做贝类和贝类养殖用水的卫生指标。
2 检验方法2.1 术语与定义一群在44.5 °C培养24h-48h能发酵乳糖、产酸产气的需氧和兼性厌氧革兰氏阴性无芽胞杆菌。
卫生学概念,又称为耐热大肠菌群,主要是大肠杆菌,但也包括克雷伯氏菌属等。
2.2 设备和材料除微生物实验室常规灭菌及培养设备外,其他设备和材料如下:(1)恒温培养箱:36C±1C。
(2)冰箱:2C〜5C。
( 3)恒温水浴箱:46C±1C。
( 4)天平:感量0.1g 。
(5)无菌吸管:1mL(具0.01m该U度)、10mL(具0.1m该U度)或微量移液器及吸头。
( 6)无菌锥形瓶:容量500mL。
( 7)无菌培养皿:直径90mm。
(8) pH计或pH比色管或精密pH试纸。
2.3 培养基和试剂(1)月桂基硫酸盐胰蛋白胨(Lauryl Sulfate Tryptose , LST)肉汤:1) 成分:胰蛋白胨或胰酪胨:20.0g ;氯化钠:5.0g ;乳糖:5.0g ;磷酸氢二钾(KHPO): 2.75g ;磷酸二氢钾(KHPQ): 2.75g ;月桂基硫酸钠:0.1g ; 蒸馏水:1000mL; pH:6.8±0.22) 制法:将上述成分溶解于蒸馏水中,调节pH。
分装到有玻璃小倒管的试管中,每管10 mL。
121 C高压灭菌15 min。
(2)EC肉汤(E.coli , BGLB :1)成分:胰蛋白胨或胰酪胨:20.0 g; 3号胆盐或混合胆盐:1.5 g;乳糖:5.0g ;磷酸氢二钾(K2HPQ) : 4.0g ;磷酸二氢钾(KHPQ) : 1.5g ;氯化钠:5.0g ; 蒸馏水:1000mL pH:6.9 ± 0.1。
粪大肠菌群的监测分析

1.粪大肠菌群粪大肠菌群是总大肠菌群中的一部分,用来表明水质受污染的程度,主要来自粪便。
粪大肠菌群是一类能使乳糖发酵、产酸产气的需氧及兼性厌氧的革兰氏阴性无芽孢杆菌,在44.5 ℃培养24~48h能发酵乳糖产酸产气。
通过对粪大肠菌群的监测,可了解水体受生活污水污染的状况。
粪大肠菌群适用于河流、湖泊等地表水、企业污水及医院废水的监测,是综合评价城镇污水,尤其是生活污水污染的一个必不可少的重要指标。
粪大肠菌群作为地表水环境质量标准唯一的一项微生物监测指标,我国多用多管发酵法进行检测,近几年也更新了好几个相关环境标准。
2样品的采集和保存2.1 采样瓶的准备和存放采集粪大肠菌群的采样瓶需要用牛皮纸封包好后,再经过高压灭菌器灭菌才能使用。
灭菌后的采样瓶里如果含有少量冷凝水,可以放在烘箱里烘干。
有条件的单位,也可以使用无菌采样瓶。
灭菌后的采样瓶也有其保存期,超过两周内未使用就必须重新灭菌。
绝大部分实验室都是在首次灭菌后不再管其使用期限。
采样瓶存放过久可能受到杂菌污染。
2.2 样品采集采样人员大多缺乏细菌学监测知识,出现很多采样不规范的现象。
如:微生物项目水样和理化水样混采;灭菌瓶开盖时间过早、水样在空气中暴露时间过长;水样采集量过满(既容易导致水样中细菌缺氧死亡,又不利于水样检测前振荡摇匀);微生物样品和其他理化项目同时采样时,没有做到细菌样品优先采集;采样人员在采集样品时,没注意避免采样瓶受杂菌污染(手接触到瓶盖和瓶颈、采样设备不规范)。
2.3 样品运输保存在样品的运输和保存过程中,样品的冷藏是关键(温度过高过低都不利于样品的保存)。
由于仪器设备条件不够,运输过程不满足样品所需温度或者路途遥远,送检时间超过6h,都会导致样品失效。
样品交接时间过长(在样品送入实验室之后,采样人员要将采样记录移交给业务室,然后由接样员对水样进行编号并将检测任务下发到监测室),导致样品没有及时分析而超过时限。
特别是,在执法监测和污染源监督性监测中,需要的采样时间长,有时还需要分时间段监测,这过程很容易造成样品超时。
粪大肠菌群检测方法

粪大肠菌群检测方法
粪大肠菌群检测是一项非常重要的检测方法,可以帮助医生了解肠道菌群的健
康状况,对于一些肠道疾病的诊断和治疗具有重要的指导意义。
目前,常见的粪大肠菌群检测方法主要包括传统培养法、分子生物学方法和代谢产物分析法。
传统培养法是最早被使用的检测方法之一,其原理是将粪便样本在特定的培养
基上进行培养,然后观察和计数不同菌种的数量。
这种方法简单易行,但是存在着检测时间长、无法培养一些难以培养的菌种等缺点。
分子生物学方法是近年来得到广泛应用的一种检测方法,其原理是通过PCR
扩增、测序等技术,对粪便样本中的微生物DNA进行检测和分析。
这种方法可以
快速、准确地获取肠道微生物的信息,但是需要专业的设备和技术人员进行操作,成本较高。
代谢产物分析法是一种新兴的检测方法,其原理是通过检测粪便中微生物代谢
产物的种类和含量,来推断肠道微生物的组成和功能状态。
这种方法无需培养微生物,可以直接反映微生物的活动情况,但是目前仍处于研究阶段,需要更多的临床验证。
除了以上几种方法外,近年来还出现了一些新的粪大肠菌群检测技术,如16S rRNA测序技术、宏基因组测序技术等,这些新技术在提高检测灵敏度、准确性和
全面性方面具有一定优势,但是也存在着技术门槛高、设备昂贵等问题。
总的来说,粪大肠菌群检测方法在不断地发展和完善,不同的方法各有优缺点,应根据具体的临床需求和实际情况选择合适的检测方法。
未来随着技术的不断进步,相信粪大肠菌群检测方法会更加快速、准确、全面,为肠道健康的评估和疾病的诊断治疗提供更好的帮助。
粪大肠菌群国家标准

粪大肠菌群国家标准粪大肠菌群是指存在于人和动物的胃肠道内的一类细菌群,其中包括了大肠杆菌等多种细菌。
这些细菌在人体内起着重要的生理功能,但同时也可能引发多种疾病。
因此,制定粪大肠菌群国家标准对于保障公共卫生安全、食品安全和环境卫生具有重要意义。
首先,粪大肠菌群国家标准应明确细菌的检测方法和标准。
目前,常用的检测方法包括培养法、PCR法等,国家标准应明确不同检测方法的适用范围和标准要求,确保检测结果的准确性和可比性。
同时,国家标准还应规定细菌的允许浓度范围,以便监管部门对食品、饮用水、环境卫生等方面进行监测和管理。
其次,国家标准应规定粪大肠菌群在不同环境中的允许浓度限值。
比如在饮用水中,粪大肠菌群的允许浓度应严格控制,以保障民众饮用水的安全。
在食品加工环节,也应规定粪大肠菌群的允许浓度限值,以确保食品的卫生安全。
此外,在环境卫生监测中,国家标准也应规定粪大肠菌群的允许浓度限值,以保障公共环境的卫生与安全。
再次,国家标准还应明确粪大肠菌群的防控措施和应急处置措施。
一旦发现粪大肠菌群超标,应该采取哪些措施来防止疫情扩散,保障公共卫生安全?国家标准应对此进行详细规定,以提供参考依据。
同时,应急处置措施也应该在国家标准中得到规范,以便相关部门在突发事件中能够迅速、有效地处置。
最后,国家标准的制定还需要考虑国际标准的趋势和发展。
粪大肠菌群国家标准应与国际标准保持一致,以便我国在国际贸易中能够顺利对接。
同时,国家标准也应不断更新和完善,以适应不断变化的国内外环境和需求。
综上所述,粪大肠菌群国家标准的制定对于保障公共卫生安全、食品安全和环境卫生具有重要意义。
国家标准的制定需要明确细菌的检测方法和标准、规定允许浓度限值、明确防控措施和应急处置措施,并与国际标准保持一致。
希望相关部门能够加强标准的制定和监管,确保粪大肠菌群在合理范围内,以保障公众的健康和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Standard Methods for the Examination of Water and Wastewater © Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federationpresence-absence (P-A) procedure.Can. J. Microbiol. 15:771.CLARK, J.A. & L.T. VLASSOFF . 1973. Relationships among pollution indicator bacteria isolated from raw water and distribution systems by the presence-absence (P-A) test. Health Lab. Sci.10:163.CLARK, J.A. 1980. The influence of increasing numbers of nonindicator organisms upon the detection of indicator organisms by the membrane filter and presence-absence tests. Can. J.Microbiol. 26: 827.CLARK, J.A., C.A. BURGER & L.E. SABATINOS . 1982. Characterization of indicator bacteria in municipal raw water, drinking water and new main water samples. Can. J. Microbiol.28:1002.JACOBS, N.J., W.L. ZEIGLER, F.C. REED, T.A. STUKEL & E.W. RICE . 1986. Comparison of membrane filter, multiple-fermentation-tube, and presence-absence techniques for detecting total coliforms in small community water systems. Appl. Environ. Microbiol. 51:1007.RICE, E.W., E.E. GELDREICH & E.J. READ . 1989. The presence-absence coliform test for monitoring drinking water quality. Pub. Health Rep. 104:54.9221 E. Fecal Coliform ProcedureElevated-temperature tests for distinguishing organisms of the total coliform group that also belong to the fecal coliform group are described herein. Modifications in technical procedures,standardization of methods, and detailed studies of the fecal coliform group have established the value of this procedure. The test can be performed by one of the multiple-tube proceduresdescribed here or by membrane filter methods as described in Section 9222. The procedure using A-1 broth is a single-step method.The fecal coliform test (using EC medium) is applicable to investigations of drinking water,stream pollution, raw water sources, wastewater treatment systems, bathing waters, seawaters,and general water-quality monitoring. Prior enrichment in presumptive media is required for optimum recovery of fecal coliforms when using EC medium. The test using A-1 medium is applicable to source water, seawater, and treated wastewater.1. Fecal Coliform Test (EC Medium)The fecal coliform test is used to distinguish those total coliform organisms that are fecal coliforms. Use EC medium or, for a more rapid test of the quality of shellfish waters, treated wastewaters, or source waters, use A-1 medium in a direct test.a. EC medium:Tryptose or trypticase20.0g Lactose5.0g Bile salts mixture or bile salts No. 31.5g Dipotassium hydrogen phosphate, K 2HPO 4 4.0gStandard Methods for the Examination of Water and WastewaterPotassium dihydrogen phosphate, KH2PO4 1.5gSodium chloride, NaCl 5.0gReagent-grade water 1L Add dehydrated ingredients to water, mix thoroughly, and heat to dissolve. pH should be 6.9± 0.2 after sterilization. Before sterilization, dispense in fermentation tubes, each with an inverted vial, sufficient medium to cover the inverted vial at least partially after sterilization. Close tubes with metal or heat-resistant plastic caps.b. Procedure: Submit all presumptive fermentation tubes or bottles showing any amount of gas, growth, or acidity within 48 h of incubation to the fecal coliform test.1) Gently shake or rotate presumptive fermentation tubes or bottles showing gas, growth, or acidity. Using a sterile 3- or 3.5-mm-diam loop or sterile wooden applicator stick, transfer growth from each presumptive fermentation tube or bottle to EC broth (see Section 9221B.2).2) Incubate inoculated EC broth tubes in a water bath at 44.5 ± 0.2°C for 24 ± 2 h.Place all EC tubes in water bath within 30 min after inoculation. Maintain a sufficient water depth in water bath incubator to immerse tubes to upper level of the medium.c. Interpretation: Gas production with growth in an EC broth culture within 24 ± 2 h or less is considered a positive fecal coliform reaction. Failure to produce gas (with little or no growth) constitutes a negative reaction. If multiple tubes are used, calculate MPN from the number of positive EC broth tubes as described in Section 9221C. When using only one tube for subculturing from a single presumptive bottle, report as presence or absence of fecal coliforms.2. Fecal Coliform Direct Test (A-1 Medium)a. A-1 broth: This medium may be used for the direct isolation of fecal coliforms from water. Prior enrichment in a presumptive medium is not required.Lactose 5.0gTryptone20.0gSodium chloride, NaCl 5.0gSalicin 0.5gPolyethylene glycol p-isooctylphenyl ether*#(35) 1.0mLReagent-grade water 1L Heat to dissolve solid ingredients, add polyethylene glycol p-isooctylphenyl ether, and adjust to pH 6.9 ± 0.1. Before sterilization dispense in fermentation tubes with an inverted vial sufficient medium to cover the inverted vial at least partially after sterilization. Close with metal or heat-resistant plastic caps. Sterilize by autoclaving at 121°C for 10 min. Store in dark at room© Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment FederationStandard Methods for the Examination of Water and Wastewater © Copyright 1999 by American Public Health Association, American Water Works Association, Water Environment Federation temperature for not longer than 7 d. Ignore formation of precipitate.Make A-1 broth of such strength that adding 10-mL sample portions to medium will not reduce ingredient concentrations below those of the standard medium. For 10-mL samples prepare double-strength medium.b. Procedure: Inoculate tubes of A-1 broth as directed in Section 9221B.1b 1). Incubate for 3h at 35 ± 0.5°C. Transfer tubes to a water bath at 44.5 ± 0.2°C and incubate for an additional 21± 2 h.c. Interpretation: Gas production in any A-1 broth culture within 24 h or less is a positive reaction indicating the presence of fecal coliforms. Calculate MPN from the number of positive A-1 broth tubes as described in Section 9221C.3. BibliographyPERRY, C.A. & A.A. HAJNA . 1933. A modified Eijkman medium. J. Bacteriol. 26:419.PERRY, C.A. & A.A. HAJNA . 1944. Further evaluation of EC medium for the isolation of coliform bacteria and Escherichia coli .Amer. J. Pub. Health 34:735.GELDREICH, E.E., H.F. CLARK, P.W. KABLER, C.B. HUFF & R.H. BORDNER . 1958. The coliform group. II. Reactions in EC medium at 45°C. Appl. Microbiol. 6:347.GELDREICH, E.E., R.H. BORDNER, C.B. HUFF, H.F. CLARK & P.W. KABLER . 1962. Type distribution of coliform bacteria in the feces of warm-blooded animals. J. Water Pollut. Control Fed.34:295.GELDREICH, E.E. 1966. Sanitary significance of fecal coliforms in the environment. FWPCA Publ. WP-20-3 (Nov.). U.S. Dep. Interior, Washington, D.C.ANDREWS, W.H. & M.W. PRESNELL . 1972. Rapid recovery of Escherichia coli from estuarine water.Appl. Microbiol. 23:521.OLSON, B.H. 1978. Enhanced accuracy of coliform testing in seawater by a modification of the most-probable-number method. Appl. Microbiol. 36:438.STRANDRIDGE, J.H. & J.J. DELFINO . 1981. A-1 Medium: Alternative technique for fecal coliform organism enumeration in chlorinated wastewaters. Appl. Environ. Microbiol. 42:918.9221 F.Escherichia coli Procedure (PROPOSED)Escherichia coli is a member of the fecal coliform group of bacteria. This organism in water indicates fecal contamination. Enzymatic assays have been developed that allow for the identification of this organism. In this method E. coli are defined as coliform bacteria that possess the enzyme E -glucuronidase and are capable of cleaving the fluorogenic substrate 4-methylumbelliferyl-E -D -glucuronide (MUG) with the corresponding release of the fluorogen when grown in EC-MUG medium at 44.5°C within 24 ± 2 h or less. The procedure is used as a confirmatory test after prior enrichment in a presumptive medium for total coliform bacteria.This test is performed as a tube procedure as described here or by the membrane filter method as。