TVS ESD 二极管介绍与应用说明
TVS瞬态电压抑制二极管(钳位二极管)原理参数

TVS瞬态电压抑制二极管(钳位二极管)原理参数瞬态抑制(TVS)又叫钳位二极管,是目前国际上普遍用法的一种高效能庇护器件,它的外型与一般二极管相同,但却能汲取高达数千瓦的浪涌功率,它的主要特点是在反向应用条件下,当承受一个高能量的大脉冲时,其工作阻抗立刻降至极低的导通值,从而允许大通过,同时把电压钳制在预定水平,其响应时光仅为10-12毫秒,因此可有效地庇护线路中的精密元器件。
瞬态电压抑制二极管允许的正向浪涌电流在TA=250C,T=10ms条件下,可达50~200A。
双向TVS可在正反两个方向汲取瞬时大脉冲功率,并把电压钳制到预定水平,双向TVS适用于沟通电路,单向TVS普通用于直流电路。
可用于防雷击、防过电压、抗干扰、汲取浪涌功率等,是一种抱负的庇护器件。
耐受能力用瓦特(W)表示。
瞬态电压抑制二极管的主要电参数(1)击穿电压V(BR) 器件在发生击穿的区域内,在规定的实验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。
(2)最大反向脉冲峰值电流IPP在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。
IPP与最大钳位电压VC(MAX)的乘积,就是瞬态脉冲功率的最大值。
用法时应正确选取TVS,使额定瞬态脉冲功率PPR大于被庇护器件或线路可能浮现的最大瞬态浪涌功率。
瞬态电压抑制二极管的分类瞬态电压抑制二极管可以按极性分为单极性和双极性两种,按用途可分为各种电路都适用的通用型器件和特别电路适用的专用型器件。
如:各种沟通电压庇护器、 4~200mA电流环保器、数据线庇护器、同轴电缆庇护器、电话机庇护器等。
若按封装及内部结构可分为:轴向引线二极管、双列直插TVS阵列(适用多线庇护)、贴片式、组件式和大功第1页共5页。
tvs在二极管吸收电路中的应用

tvs在二极管吸收电路中的应用
在二极管吸收电路中,TVS(穿阻型稳压二极管)主要用于保护电路免受过电压的损害。
具体应用包括:
1. 保护电路免受ESD(静电放电)伤害:当外部静电放电过
电压达到一定水平时,TVS可以提供较低的电阻,将过电压
分流到地或其他电源引线上,以保护电路免受ESD伤害。
2. 保护电路免受电压脉冲干扰:当电路受到瞬态电压干扰、过瞬态电压(如闪电击中)时,TVS可以提供较低的电阻,吸
收过电压,以保护电路免受损坏。
3. 保护电路免受电磁脉冲(EMP)影响:在有高强度电磁脉
冲干扰的环境中,TVS可以吸收过电压,并将其释放到地或
其他电源引线上,防止电路受到损害。
总的来说,TVS通过在有害电压出现时提供一个低阻抗路径,将过电压从受保护设备分散或引流掉,保护电路免受过电压的破坏。
esd静电二极管原理

esd静电二极管原理
ESD静电二极管,又称为TVS二极管,是一种专门用于保护电子设备免受静电放电(ESD)伤害的二极管。
静电放电是一种突发的电
荷释放现象,当人或物体在摩擦或分离时,会产生静电电荷,而这些电荷会在接触物体时释放出来,导致设备短暂的电压过高。
ESD静电二极管的工作原理是,在设备输入/输出端口引入一定
的电阻和电容,使其能够吸收和分散短暂高压脉冲。
当静电放电发生时,二极管会迅速导通,将过高的电压分散到地线上,从而保护设备不受损伤。
ESD静电二极管的选择需要考虑设备的输入/输出端口的特性,
如最大电压和最大电流容许值、响应时间和反复使用次数等。
常见的ESD二极管类型有单向和双向两种,单向的适用于保护单向信号线,而双向的可用于保护双向信号线或者直流电源线。
在电子设备的设计中,应该充分考虑ESD静电二极管的保护作用,避免静电放电对设备的损害。
- 1 -。
TVS二极管和ESD二极管

T V S二极管和E S D二极管This model paper was revised by the Standardization Office on December 10, 2020TVS管与ESD保护二极管的区别TVS管与ESD保护二极管的区别ESD 静电放电(Electro-Static discharge)TVS 瞬变电压抑制二极管(Transient Voltage Suppressors)TVS瞬态电压抑制这里不论TV是如何产生的,比如直接或者间接的雷击,静电放电,大容量的负载投切等因素导致的浪涌.电压从几伏到几十千伏甚至更高.ESD静电放电保护这里的ES主要是三种模型所表述.其中主要应用是HBM 和 MM,简单说,就是人或者设备对器件放电(静电),但是器件不能损坏.典型的HBM CLASS 1C模型规定一个充电1000V-2000V的100pF的电容通过一个1500欧姆的电阻对器件放电.MM模型要比人体模型能量大一些.电容是200pF,电压大概在200-400之间,不过没有串联电阻了.典型的人体模型放电,峰值电流小于,时间150ns典型的机器模型放电,峰值电流小于8A,时间5ns典型的雷击浪涌(电力线入线处使用的TVS)峰值电流3000A,时间20us原理是一样的,但根据功率和封装来分就不一样.ESD和TVS比较的话,要看用在那些用途上,像ESD主要是用来防静电,防静电就要求电容值低,一般是之间为最好.而TVS就做不到这一点,TVS的电容值比较高.通过分别对其进行符合IEC61000-4-2标准的+/-8KV接触放电,分析捕获的IEC应波型可以得知,TVS保护性能强过贴片压敏很多倍.压敏电阻采用物理吸收原理,每经过一次ESD事件,材料就会受到一定物理损伤,形成永久性的漏电通道,而TVS是采用的半导体钳位原理,在经历ESD事件时,瞬间将能量传递出去,对器件本身并无影响.他们应用的场合不同,TVS一般用于处级和次级保护,而ESD主要用于板级保护.选择TVS一般是看器件的功率和封装,ESD器件一般看中的是它的ESD rating (HBM/MM)和IEC61000-4-2的LEVEL,高速的USB和I/O很重视它的C瞬态抑制二极管:瞬态抑制二极管是一种限压型的过压保护器件,也叫TVS,以pS级的速度把过高的电压限制在一个安全范围之内,从而起到保护后面电路的作用。
esd二极管的主要参数

esd二极管的主要参数摘要:一、ESD 二极管的概念与作用二、ESD 二极管的主要参数1.钳位能力2.响应速度3.电容4.电流5.电压三、ESD 二极管的应用领域四、ESD 二极管的优点及选购注意事项正文:一、ESD 二极管的概念与作用ESD 二极管,即静电放电保护二极管,是一种用于静电防护的半导体器件。
其主要作用是在电路中对静电放电进行保护,防止静电放电对电路造成损害。
二、ESD 二极管的主要参数1.钳位能力:ESD 二极管的钳位能力是指其能够在多大的电压范围内限制电压波动。
当电路中出现静电放电时,ESD 二极管能够快速响应,将电压限制在安全范围内,保护电路免受损坏。
2.响应速度:ESD 二极管的响应速度是指其对静电放电的反应速度。
ESD二极管具有较快的响应速度,能够在纳秒级别内快速响应,有效抑制静电放电对电路的影响。
3.电容:ESD 二极管的电容是指其存储电荷的能力。
低电容的ESD 二极管可以减少对电路中信号的影响,保持信号的完整性。
4.电流:ESD 二极管的电流是指其导通电流。
当电路中出现静电放电时,ESD 二极管能够迅速导通,将电流引入地线,消除静电放电对电路的影响。
5.电压:ESD 二极管的电压是指其工作电压范围。
ESD 二极管通常具有较低的工作电压,以降低对电路中其他元件的影响。
三、ESD 二极管的应用领域ESD 二极管广泛应用于通信、计算机、消费电子等领域,如USB 接口、HDMI 接口、显示器接口等,以保护电路免受静电放电的损害。
四、ESD 二极管的优点及选购注意事项ESD 二极管具有体积小、钳位能力强、响应速度快、电容低、电流大、电压低等优点,是静电防护的理想选择。
TVS二极管的工作原理及主要参数

TVS二极管的工作原理及主要参数在电子行业中,静电放电(简称ESD)对产品的危害是极大的。
特别是在干燥的冬天,有时候你的电路突然就工作不正常了,然后找原因突然发现某个元件不知所以的坏掉了。
除了注意不要随意用手触摸电路板及电子元件等常规注意事项,在电路设计的时候还应该在电路入口加TVS二极管。
TVS是用来端口防护的,防止端口瞬间的电压冲击造成后级电路的损坏。
有单向与双向之分,单向TVS一般应用于直流供电电路,双向TVS应用于交流供电电路。
一、工作原理如上图,直流电路中单向TVS反向并联于电路中,当电路正常工作时,TVS处于截止状态(高阻态),不影响电路正常工作。
当电路出现异常过电压并达到TVS(雪崩)击穿电压时,TVS迅速由高电阻状态突变为低电阻状态,泄放由异常过电压导致的瞬时过电流到地,同时把异常过电压钳制在较低的水平,从而保护后级电路免遭异常过电压的损坏。
当异常过电压消失后,TVS阻值又恢复为高阻态。
二、主要参数①Vrwm截止电压在Vrwm下,认为TVS是不工作的,即是不导通的。
要求Vrwm要大于工作电压,否则工作电压大于Vrwm会导致TVS反向漏电流增大,接近导通,或者雪崩击穿,影响正常电路工作。
通常选取截止电压为工作电压的1.1~1.2倍。
②IR漏电流漏电流,也称待机电流。
对于同功率和同电压的TVS,在VRWM≤10V时,双向TVS漏电流是单向TVS漏电流的2倍。
漏电流主要带来了功率的损耗,或者是在模拟信号中,会影响AD信号的采样值,所以TVS的漏电流越小越好。
③VBR击穿电压击穿电压,指在V-I特性曲线上,在规定的脉冲直流电流IT或接近发生雪崩的电流条件下测得TVS两端的电压。
④IPP峰值脉冲电流,VC钳位电压IPP及VC是衡量TVS在电路保护中抵抗浪涌脉冲电流及限制电压能力的参数。
对于同型号TVS,在相同IPP下的VC越小,说明TVS的钳位特性越好。
TVS钳位电压应小于后级被保护电路可承受的瞬态安全电压,VC与TVS的雪崩击穿电压及IPP 都成正比。
TVS管,ESD保护,压敏电阻,自恢复保险丝之间的区别

TVS管,ESD保护,压敏电阻,自恢复保险丝之间的区别(一)一、TVS管TVS(Transient Voltage Suppresser瞬态电压抑制器)是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。
当它的两端经受瞬间的高能量冲击时,TVS能以极高的速度把两端间的阻抗值由高阻抗变为低阻抗,以吸收一个瞬间大电流,从而把它的两端电压钳制在一个预定的数值上,从而保护后面的电路元件不受瞬态高压尖峰脉冲的冲击。
正因为如此,TVS可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压TVS管是瞬态电压抑制器(Transient Voltage Suppressor)的简称。
它的特点是:响应速度特别快(为ps级);耐浪涌冲击能力较放电管和压敏电阻差,其10/1000μs波脉冲功率从400W~30KW,脉冲峰值电流从0.52A~544A;击穿电压有从6.8V~550V的系列值,便于各种不同电压的电路使用。
TVS管有单向与双向之分(单向的型号后面的字母为“A”,双向的为“CA”),单向TVS管的特性与稳压二极管TVS管使用时,一般并联在被保护电路上。
为了限制流过TVS管的电流不超过管子允许通过的峰值电流IPP,应在线路上串联限流元件,如电阻、自恢复保险丝、电感等。
相似,双向TVS管的特性相当于两个稳压二极管反向串联。
二、压敏电阻压敏电阻是一种限压型保护器件。
利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。
压敏电阻的主要参数有:压敏电压、通流容量、结电容、响应时间等。
压敏电阻的响应时间为ns级,比空气放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。
压敏电阻主要可用于直流电源、交流电源、低频信号线路、带馈电的天馈线路。
压敏电阻的失效模式主要是短路,当通过的过电流太大时,也可能造成阀片被炸裂而开路。
TVS管与ESD保护二极管的区别

TVS管与ESD保护二极管的区别TVS瞬态电压抑制这里不论TV是如何产生的,比如直接或者间接的雷击,静电放电,大容量的负载投切等因素导致的浪涌.电压从几伏到几十千伏甚至更高.ESD静电放电保护这里的ES主要是三种模型所表述.其中主要应用是HBM 和MM,简单说,就是人或者设备对器件放电(静电),但是器件不能损坏. 典型的HBM CLASS 1C模型规定一个充电1000V-2000V的100pF的电容通过一个1500欧姆的电阻对器件放电.MM模型要比人体模型能量大一些.电容是200pF,电压大概在200-400之间,不过没有串联电阻了.典型的人体模型放电,峰值电流小于0.75A,时间150ns典型的机器模型放电,峰值电流小于8A,时间5ns典型的雷击浪涌(电力线入线处使用的TVS)峰值电流3000A,时间20us原理是一样的,但根据功率和封装来分就不一样.ESD和TVS比较的话,要看用在那些用途上,像ESD主要是用来防静电,防静电就要求电容值低,一般是1--3.5PF之间为最好.而TVS就做不到这一点,TVS的电容值比较高.通过分别对其进行符合IEC61000-4-2标准的+/-8KV接触放电,分析捕获的IEC应波型可以得知,TVS保护性能强过贴片压敏很多倍.压敏电阻采用物理吸收原理,每经过一次ESD事件,材料就会受到一定物理损伤,形成永久性的漏电通道,而TVS是采用的半导体钳位原理,在经历ESD事件时,瞬间将能量传递出去,对器件本身并无影响.在结电容方面两者都可以做到1pF以下.0603-060E0R20P-LF 压敏电阻是0603封装工作电压5v,容值0.2pf是业界中目前最低的容值.主要用在HDMI和VGA端口,但是其它端口也可以使用.性能及特点:1.极低电容量(<0.2pF),提供理想的高速数据传输端口保护.2.频率响应范围:0-6GHZ3.接触放电: 8KV (IEC 61000-4-2)空气放电:15KV (IEC 61000-4-2)ESD静电放电保护快速反应时间<1ns,完全通过IEC 61000-4-2静电放电抗扰度国际试验标准.BS0060SS(SOD-123)超小结电容TSS管特点:满足IEC61000-4-5 浪涌承受能力:15A(10/1000μS)IEC 61000-4-2 (ESD) ± 15 kV (air), ± 8 kV (contact)无极性、双向浪涌保护、吸收特性良好他们应用的场合不同,TVS一般用于处级和次级保护,而ESD主要用于板级保护.TVS(transient voltage suppressor) ,而ESD( Electrolstatic discharge ).选择TVS 一般是看器件的功率和封装,ESD器件一般看中的是它的ESD rating (HBM/MM)和IEC61000-4-2的LEVEL,高速的USB和I/O很重视它的C.当然他们的ppk.IPP.VC.Vbr.Vm 也都很重要.具体的内容大家可以参考MICROSEMI/ONSEMI/PROTECKDEVICES等公司的网站.一般都有比较专业的介绍.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TVS ESD 二极管介绍与应用说明便携式设备的ESD保护十分重要,而TVS二极管是一种十分有效的保护器件,与其它器件相比有其独特的优势,但在应用时应当针对不同的保护对象来选用器件,因为不同的端口可能受到的静电冲击有所不同,不同器件要求的保护程度也有不同。
要注意相应的参数鉴别以及各个生产商的不同设计,同时还要进行合理的PCB布局。
本文介绍在便携式设备的ESD保护中如何应用TVS二极管器件。
便携式设备如笔记本电脑、手机、PDA、MP3播放器等,由于频繁与人体接触极易受到静电放电(ESD)的冲击,如果没有选择合适的保护器件,可能会造成机器性能不稳定,或者损坏。
更坏的情况是查不出确切的原因,使用户误认为是产品质量问题而损坏企业信誉。
一般情况下,对此类设备暴露在外面可能与人体接触的端口都要求进行防静电保护,如键盘、电源接口、数据口、I/O口等等。
现在比较通用的ESD标准是IEC61000-4-2,应用人体静电模式,测试电压的范围为2kV~15kV(空气放电),峰值电流最高为20A/ns,整个脉冲持续时间不超过60ns。
在这样的脉冲下所产生的能量总共不超过几百个微焦尔,但却足以损坏敏感元器件。
便携式设备所采用的IC器件大多是高集成度、小体积产品,精密的加工工艺使硅晶氧化层非常薄,因而更易击穿,有的在20V左右就会受到损伤。
传统的保护方法已不再普遍适用,有的甚至还会造成对设备性能的干扰。
TVS二极管的特点可用于便携式设备的ESD保护器件有很多,例如设计人员可用分立器件搭建保护回路,但由于便携设备对于空间的限定以及避免回路自感,这种方法已逐渐被更加集成化的器件所替代。
多层金属氧化物器件、陶瓷电容还有二极管都可以有效地进行防护,它们的特性及表现各有不同,TVS二极管在此类应用中的独特表现为其赢得了越来越大的市场。
TVS二极管最显着的特点一是反应迅速,使瞬时脉冲在没有对线路或器件造成损伤之前就被有效地遏制,二是截止电压比较低,更适用于电池供电的低电压回路环境。
另外对TVS二极管设计的改进使其具有更低的漏电流和结电容,因而在处理高速率传导回路的静电冲击时有更理想的性能表现。
TVS二极管的优势TVS与齐纳二极管:与传统的齐纳二极管相比,TVS二极管P/N结面积更大,这一结构上的改进使TVS 具有更强的高压承受能力,同时也降低了电压截止率,因而对于保护手持设备低工作电压回路的安全具有更好效果。
VS与陶瓷电容:很多设计人员愿意采用表面贴装的陶瓷电容作ESD保护,不但便宜而且设计简便,但这类器件对高压的承受力却比较弱。
5kV的冲击会造成约10%陶瓷电容失效,到10kV时,损坏率达到60%,而TVS可以承受15kV电压。
在手持设备的使用过程中,由于与人体频繁接触,各个端口必须至少能够承受8kV接触冲击(IEC61000-4-2标准),可见使用TVS可以有效保证最终产品的合格率。
TVS与MLV:多层金属氧化物结构器件(MLV)也可以进行有效的瞬时高压冲击抑制,此类器件具有非线性电压-电流(阻抗表现)关系,截止电压可达最初中止电压的2~3倍,这种特性适合用于对电压不太敏感的线路和器件的保护,如电源回路。
而TVS二极管具有更好的电压截止因子,同时还具有较低的电容,这一点对于手持设备的高频端口非常重要,因为过高的电容会影响数据传输,造成失真或是降级。
TVS二极管的各种表面封装均适合流水线装配的要求,而且芯片结构便于集成其它的功能,如EMI和RFI 过滤保护等,可有效降低器件成本,优化整体设计。
另一个不能忽略的特点是二极管可以很方便地与其它器件集成在一个芯片上,现有很多将EMI过滤和RFI防护等功能与TVS集成在一起的器件,不但减少设计所采用的器件数目降低成本,而且也避免PCB 板上布线时易诱发的伴生自感。
ESD应用1.底部连接器的应用底部连接器设计广泛应用在移动消费类产品上,目前市场上应用产品主要为移动电话、PDA、DSC(数码相机)以及MP3等便携产品。
由于是直流回路,可选用高电容器件。
此端口可能会受到高能量的冲击,可以选用集成了TVS和过流保护功能的器件。
2 RJ-45(10/100M以太网网络)RJ-45接口广泛应用在网络连接的接口设备上,典型的应用就是10/100M以太网网络。
3. 视频线路的保护目前视频常见的输出端口设计有D-SUB、DVI(28线)、SCART(19线)和D-TERMINAL(主要日系产品在用)。
视频数据线具有高数据传输率,数据传输率高达480Mbps,有的视频数据传输率达到1G 以上,因而要选择低电容LCTVS,它通常是将一个低电容二极管与TVS二极管串联,以降低整个线路的电容(可低于3pF),达到高速率回路的要求。
4. SIM卡数据线路保护SIM卡数据线路保护一直是各个公司的产品重点,而且专门为此类端口设计的集ESD(TVS)/EMI/RFI防护于一个芯片的器件,充分体现了片式器件的无限集成方案。
在针对不同用途选择器件时,要避免使器件工作在其设计参数极限附近,还应根据被保护回路的特征及可能承受ESD冲击的特征选用反应速度足够快、敏感度足够高的器件,这对于有效发挥保护器件的作用十分关键,另外集成了其它功能的器件也应当首先考虑。
5. USB保护一般USB的ESD保护分上行和下行两种情况。
6. 音频/扬声器数据线路保护在音频数据线路保护方面,由于音频回路的信号速率比较低,对器件电容的要求不太高,100pF 左右都是可以接受的。
有的手机设计中将耳机和麦克风合在一起,有的则是分立线路。
前一种情况可以选择单路TVS,而后一种情况如果两个回路是邻近的,则可以选用多路TVS阵列,只用一个器件就能完成两个回路的保护。
7. 按键/开关对于按键和开关回路,这些回路的数据率很低,对器件的电容没有特殊要求,用普通的TVS阵列都可以胜任。
在选择TVS二极管时,必须注意以下几个参数的选择:1. 最小击穿电压VBR和击穿电流I R。
VBR是TVS最小的击穿电压,在25℃时,低于这个电压TVS是不会发生雪崩的。
当TVS流过规定的1mA电流(I R)时,加于TVS两极的电压为其最小击穿电压V BR。
按TVS 的V BR与标准值的离散程度,可把V BR分为5%和10%两种。
对于5%的V BR来说,V WM=0.85VBR;对于10%的V BR来说,V WM=0.81VBR。
为了满足IEC61000-4-2国际标准,TVS二极管必须达到可以处理最小8kV(接触)和15kV(空气)的ESD冲击。
2. 最大反向漏电流ID和额定反向关断电压V WM。
V WM这是二极管在正常状态时可承受的电压,此电压应大于或等于被保护电路的正常工作电压,否则二极管会不断截止回路电压;但它又需要尽量与被保护回路的正常工作电压接近,这样才不会在TVS工作以前使整个回路面对过压威胁。
当这个额定反向关断电压V WM加于TVS的两极间时它处于反向关断状态,流过它的电流应小于或等于其最大反向漏电流ID。
3. 最大箝位电压V C和最大峰值脉冲电流I PP。
当持续时间为20mS的脉冲峰值电流I PP流过TVS时,在其两端出现的最大峰值电压为V C。
V C、I PP反映了TVS的浪涌抑制能力。
V C与VBR之比称为箝位因子,一般在1.2~1.4之间。
VC是二极管在截止状态提供的电压,也就是在ESD冲击状态时通过TVS的电压,它不能大于被保护回路的可承受极限电压,否则器件面临被损伤的危险。
4. P ppm额定脉冲功率,这是基于最大截止电压和此时的峰值脉冲电流。
对于手持设备,一般来说500W 的TVS就足够了。
最大峰值脉冲功耗P M是TVS能承受的最大峰值脉冲功耗值。
在给定的最大箝位电压下,功耗P M越大,其浪涌电流的承受能力越大。
在给定的功耗P M下,箝位电压V C越低,其浪涌电流的承受能力越大。
另外,峰值脉冲功耗还与脉冲波形、持续时间和环境温度有关。
而且,TVS所能承受的瞬态脉冲是不重复的,器件规定的脉冲重复频率(持续时间与间歇时间之比)为0.01%。
如果电路内出现重复性脉冲,应考虑脉冲功率的累积,有可能损坏TVS。
5. 电容量C。
电容量C是由TVS雪崩结截面决定的,是在特定的1MHz频率下测得的。
C的大小与TVS的电流承受能力成正比,C太大将使信号衰减。
因此,C是数据接口电路选用TVS的重要参数。
电容对于数据/信号频率越高的回路,二极管的电容对电路的干扰越大,形成噪声或衰减信号强度,因此需要根据回路的特性来决定所选器件的电容范围。
PCB设计时的考虑PCB layout对防静电影响重大,所以必须在layout前就得考虑ESD防护问题,而不是在板子出来后才加以修正。
加TVS diode绝对是简单而实用的防ESD方式,但它还是需要在画线路图时就选好具体料号或封装,并在PCB上留好位置,一旦在测试当中没办法通过时就可以把它加上再测,当然,如果不加TVS 也能通过那就更好了。
如果没留位置且测试通不过,这是件麻烦事。
TVS应用时需要考虑layout,需要考虑泄放路径的最短化,再好的TVS如果layout不好,它同样没办法起到防ESD的作用。
不管选择怎样的TVS器件,它们在电路板上的布局非常重要。
TVS布局前的导线长度应该减到最小,因为快速(0.7ns)ESD放电电流在电感性布线上感应出很高的电压尖峰,影响ESD保护的性能。
另外,快速ESD脉冲可能在电路板上相邻(平行)导线间产生感应电压。
如果上述情况发生,由于将不会得到保护,因为感应电压路径将成为另一条让浪涌到达IC的路径。
因此,被保护的输入线不应该被放置在其它单独、未受保护的走线旁边。
推荐的ESD抑制器件PCB布局方案应该是:应尽可能的滤除所有的I/O口的干扰信号,靠近连接器/触点PCB侧。
图一是PCB布局的建议.走线时,尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰;输入输出端用的导线应尽量避免相邻平行。
最好加线间地线,以免发生反馈藕合。
图二是布线时的优化建议。
对于便携式设备来说,各类集成电路的复杂性和精密度的提高使它们对ESD也更加敏感,以往的通用回路设计也不再适合。
合理的PCB布局最重要的是要在使用TVS二极管保护ESD损害的同时避免自感。
ESD设计很可能会在回路中引起寄生自感,会对回路有强大的电压冲击,导致超出IC的承受极限而造成损坏。
负载产生的自感电压与电源变化强度成正比,ESD冲击的瞬变特征易于诱发高强自感。
减小寄生自感的基本原则是尽可能缩短分流回路,必须考虑到包括接地回路、TVS和被保护线路之间的回路,以及由接口到TVS的通路等所有因素。
所以,TVS器件应与接口尽量接近(直接就近泻放ESD 干扰,避免串入后续电路),与被保护线路尽量接近(画版时原则上要靠近被保护的芯片),这样才会减少自感耦合到其它邻近线路上的机会。