第2章_马尔可夫链

合集下载

(完整版)信息论与编码-曹雪虹-课后习题答案

(完整版)信息论与编码-曹雪虹-课后习题答案

《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。

空间马尔可夫链测算-概述说明以及解释

空间马尔可夫链测算-概述说明以及解释

空间马尔可夫链测算-概述说明以及解释1.引言1.1 概述在空间马尔可夫链的研究中,该模型主要用于描述和分析具有空间特征的随机过程。

与传统的马尔可夫链不同的是,空间马尔可夫链不仅考虑了状态的转移概率,还考虑了状态间的空间依赖关系。

通过将马尔可夫链的状态扩展为空间上的节点,我们可以更好地模拟和分析各种现实世界中的随机过程。

本文将详细介绍空间马尔可夫链的概念和测算方法。

在第二章中,我们将首先给出空间马尔可夫链的定义和基本概念,包括状态空间、状态转移概率和初始概率分布等。

然后,我们将介绍一些经典的空间马尔可夫链模型,如格点模型和连续空间模型,并对它们的特点进行讨论。

在第三章中,我们将重点介绍空间马尔可夫链的测算方法。

这些方法包括参数估计、马尔可夫链融合和模拟仿真等。

我们将详细介绍每种方法的原理和步骤,并给出相应的数学公式和算法。

此外,我们还将讨论测算结果的解释和应用,以及可能存在的限制和改进空间。

总之,本文旨在为读者提供一个全面的关于空间马尔可夫链测算的指南。

通过对该模型的深入理解和应用,我们可以更好地分析和预测各种具有空间特征的随机过程,为实际问题的解决提供科学依据和决策支持。

在未来的研究中,我们也将继续探索空间马尔可夫链的新理论和方法,以适应不断变化的科学和工程需求。

文章结构部分的内容应该是对整篇文章的结构和各个部分的内容进行介绍和说明。

以下是对文章结构部分的内容的一个可能的编写:1.2 文章结构本文共分为引言、正文和结论三个部分。

每个部分的主要内容如下:引言部分:引言部分包括了概述、文章结构和目的三个小节。

概述部分会对空间马尔可夫链测算的主题进行简要介绍,指出该主题的重要性和研究意义。

文章结构部分则会明确说明整篇文章的结构安排和各个部分的主要内容。

目的部分则会明确表达本文的研究目的和所要解决的问题。

正文部分:正文部分分为空间马尔可夫链的概念和空间马尔可夫链的测算方法两个小节。

空间马尔可夫链的概念部分会系统介绍空间马尔可夫链的基本概念、特点和相关理论背景,为后续的测算方法提供理论基础。

第二章-信息论基本概念(3)

第二章-信息论基本概念(3)

H ( X m1 / X1 X 2 X m )
这表明:m阶马尔可夫信源的极限熵H 就等于m阶条件熵,记为H m 1
akm )
设状态 Ei (ak1 ak2 akm ),信源处于状态Ei时,再发出下一个符号akm1
此时,符号序列 (ak2 ak3 a ) km1 就组成了新的信源状态
Ej (ak2 ak3 a ) km1 ,这时信源所处的状态由 Ei 转移到 Ej
状态转移图(香农线图)
0:0.5 E1
1:0.5 E3
1
0:0.6
E2
1:0.4
【注】E1、E2、E3是三种状态,箭头是指从一个状态转移到另
一个状态,旁边的数字代表发出的某符号和条件概率p(ak/Ei) 。 这就是香农提出的马尔可夫状态转移图,也叫香农线图。
二、马尔可夫信源
若信源输出的符号和信源所处的状态满足以下两个条 件,则称为马尔可夫信源:
a1 a2
p(sl
E2
/ xl
a3
sl1 E1 ) 0 sl1 E1 ) 1 sl1 E1 ) 1 sl1 E1 ) 0
可求得状态的一步转移概率:
1
2
1 4
0
1 4
0
0
1 2
1 2
0
0
p(E j
/
Ei
)
0
3
1
0
0
44
0
0
0
0
1
0
0
0
3 4
1 4
此信源满足马尔可夫的 两个条件,所以是马尔可夫 信源,并且是齐次马尔可夫 信源。
对于这个随机序列,若有:
p(xn Sin | xn1 Sin1 ,..., x1 Si1 ) p(xn Sin | xn1 S ) in1

马尔可夫链预测

马尔可夫链预测
(1) pij pij P{ X n 1 j X n i}
N
pij 0,
p
j 1
ij
1
若由X n i转移到X n 1 j的概率pij与n无关,则称该马尔 可夫链是齐次的。
12
几个概念:
13
几个概念:
概率向量:对于任意的行向量(或列 向量),如果其每个元素均非负且总和等于1, 则称该向量为概率向量。
(2)
P
0.7 0.3 0.76 0.24 P 0.72 0.28 0.9 0.1
2
2
如已知初始概率向量 P(0):
含义?
P(0) (0.8 0.2)
0.7 0.3 0.1
p1 (0)
0.9
p2 (0)
37
0.7 0.3 P 0.9 0.1
23
马尔可夫链中任何k步状态转移概率都可由 1步状态转移概率求出。
24
马尔可夫链中任何k步状态转移概率都可由 1步状态转移概率求出。
全概率公式
25
马尔可夫链中任何k步状态转移概率都可由 1步状态转移概率求出。
全概率公式
P ( k ) P ( k 1) P
P
k
P , k 1
k
P —— 一步状态转移概率矩阵
例3
33
考察一台机床的运行状态。机床的运行 存在正常和故障两种状态。S={1,2}。机床在运行中出 现故障:1->2;处于故障中的机床经维修,恢复到正 常状态:2->1。 以一个月为单位,经观察统计,知其从某个月份到 下月份,机床出现故障的概率为0.3。在这一段时间内, 故障机床经维修恢复到正常状态的概率为0.9。 0.3 1 0.9

北大随机过程课件:第 2 章 第 2 讲 马尔可夫链

北大随机过程课件:第 2 章 第 2 讲 马尔可夫链
则称这类随机过程是马尔可夫链。它具有无后效性。 性质 1,马尔可夫链的有限维概率密度可以用转移概率来表示,即
P{ξ (0) = i0,ξ (1) = i1,Lξ (n) = in ,ξ (n +1) = j} = P{ξ (n +1) = j / ξ (0) = i0,ξ (1) = i1,Lξ (n) = in} P{ξ (0) = i0,ξ (1) = i1,Lξ (n) = in} = P{ξ (n +1) = j / ξ (n) = in}⋅ P{ξ (0) = i0,ξ (1) = i1,Lξ (n) = in}
(n)
=
P(m) ik
(n)
⋅Pk(jr
)
(n
+
m)
k
证明 1
按照全概率公式,
P (m+r ) ij
(n)
=
P{ξ (n + m + r) =
பைடு நூலகம்
j /ξ (n) = i}
= ∑ P{ξ (n + m + r) = j,ξ (n + m) = k /ξ (n) = i} k
= ∑ P{ξ (n + m + r) = j /ξ (n + m) = k,ξ (n) = i} k P{ξ (n + m) = k /ξ (n) = i}
1.3 切普曼-柯尔莫哥洛夫方程
切普曼-柯尔莫哥洛夫方程,是用 m 步和 r 步转移概率来表示 m+r 步转移概率。
m
步转移概率:
P (m) ij
(k
)
=
P{ξ (k
+ m)
=
j /ξ (k)

第2章-马尔可夫链

第2章-马尔可夫链

0.4834
0.5009

甲、乙两人进行比赛,设每局比赛中甲胜的概率是p,
乙胜的概率是q,和局的概率是r ,(p q r 1)。
设每局比赛后,胜者记“+1”分,负者记“-1”分,
和局不记分。当两人中有一人获得2分结束比赛。X以n
表示比赛至第n局时甲获得的分数。
(1)写出状态空间;(2)求P(2);
pij a0j,i ,
ji ji
显然{Yn,n≥1}也是一马尔可夫链。
例2 M/G/1排队系统
若以X(t)记在t时刻系统中的顾客数,{X(t),t≥0}则不具马 尔可夫性。
Xn-----第n个顾客走后剩下的顾客数, Yn -----第n+1个顾客接受服务期间来到的顾客数,则
X
n1
Xn 1 Yn ,
CHAPTER 2 马尔可夫链
第一节 基本概念
一、马尔可夫链的定义及例子
1、定义
随机过程Xn, n 0,1, 2, 称为马尔可夫链,若它只
取有限或可列个值(称为过程的状态,记为0,1,2,…),
并且,对任意
及状态
,有
n0
i, j, i0 , i1, , in1
P( X n1 j X 0 i0 , X1 i1, , X n1 in1, X n i)
(3)问在甲获得1分的情况下,再赛二局可以结束比 赛的概率是多少?

(1)
记甲获得“负2分”为状态1,获得 “负1分”为状态2,获得“0分”为状态3, 获得“正1分”为状态4,获得“正2分”为 状态5,则状态空间为
I {1,2,3,4,5}
一步转移概率矩阵
1 0 0 0 0
q
r
p

马尔可夫链的概念及转移概率

马尔可夫链的概念及转移概率

第四章4.1 马尔可夫链的的概念与转移概率一、知识回忆二、马尔可夫链的的定义三、转移概率四、马尔可夫链的一些简单例子五、总结一、知识回忆1. 条件概率定义:设A,B为两个事件,且P(A)>0,称P(B|A)=P(PP) P(P)为事件A发生条件下B事件发生的条件概率。

将条件概率公式移项即得到所谓的乘法公式:P(AB)=P(A)P(B|A)2.全概率公式设试验E的样本空间为S,A为E的事件,假设P1,P2,⋯,PP为S的一个完备事件组,既满足条件:1).P1,P2,⋯,PP两两互不相容,即P P P P=P,i≠j,i,j=1,2,⋯,n2).P1∪P2∪⋯∪P P=P,且有P(P P)>0,i=1,2,⋯,n,那么P(A)=∑P(P P)P(P|PP )PP=1此式称为全概率公式。

3.矩阵乘法矩阵乘法的定义A=(P11P12P13P21P22P23),B=(P11P12P21P22P31P32)C=(P11P12P21P22)如果P11=P11×P11+P12×P21+P13×P31P12=P11×P12+P12×P22+P13×P32P21=P21×P11+P22×P21+P23×P31P22=P21×P12+P22×P22+P23×P32那么矩阵C叫做矩阵A和B的乘积,记作C=AB4.马尔可夫过程的分类马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类:(1)时间、状态都是离散的马尔科夫过程,称为马尔可夫链;(2)时间连续、状态离散的马尔科夫过程称为连续时间的马尔可夫链的;(3)时间、状态都连续的马尔科夫过程。

二、马尔科夫链的定义定义 4.1设有随机过程{P P,n∈T},假设对于任意的整数n∈T和任意的P0,P1,…,P P+1∈P,条件概率都满足P{P P+1=P P+1|P0=P0,P1=P1,…,P P=P P}=P{P P+1=P P+1|P P=P P}那么称{P P,n∈T}为马尔科夫链,简称马氏链。

北大随机过程课件:第 2 章 第 5 讲 马尔可夫链应用分析举例

北大随机过程课件:第 2 章 第 5 讲 马尔可夫链应用分析举例
2
3
状态 4:B 赢 P4 = q + 4q p
4 4
其中状态 0 和状态 4 是两个吸收壁,因此初始概率分布为
p(0) = [ p 4 + 4 p 4 q, 4 p 3 q 2 , 6 p 2 q 2 , 4 p 2 q 3 , q 4 + 4q 4 p]
该随机游动的转移概率矩阵为
⎡1 ⎢p ⎢ P = ⎢0 ⎢ ⎢0 ⎢ ⎣0
例 2:网球比赛
网球比赛在选手 A 和 B 之间进行。网球的计分制是 15,30,40 和 60 分,如果选手 A 赢了 第一球,比分是 15:0,否则比分是 0:15。如果选手 A 接着赢了第二球,比分为 30:0,如果 A 接着赢了第三球,比分为 40:0,如果 A 再接着赢了第四球,则比分为 60:0,选手 A 赢得 该局比赛。当选手 A 赢了第一球而输了第二球,对手 B 得 15 分,从而比分为 15:15。平分 是指第六球后双方分数相同(例如 30:30,40:40,…)。在平分后,接下来的一球如果选手 A 得分/失分,则称此时的状态为 A 占先/B 占先。如果 A 在占先后再得分,则选手 A 赢得该 局。如果选手 B 在占先后再得分,则选手 B 赢得该局。 一旦第一局比赛结束,选手进入第二局比赛,直到一方赢得至少 6 局且至少领先对手两局, 这样该方获得一盘比赛的胜利。因而,一盘结束时的比分为下列情形之一:6:0,6:1,6:2, 6:3,6:4,7:5,8:6,…或是它们的逆序等等(实际规则中采用了决胜局的办法避免一盘比赛 的时间过长,此处不详细讨论)。一盘结束后,进行另一盘,直到一方赢得三盘中的两盘(或 五盘中的三盘) ,从而赢得整场比赛。 试对网球比赛中一局比赛的规则进行分析讨论。
f k ,0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 (n), 2 (n),, i (n), 1 (0), 2 (0),, i (0),
为n时刻Xn的概率分布向量。
称为马尔可夫链{Xn,n≥0}的初始分布向量。 结论:一个马尔可夫链的特性完全由它的一步转移概率矩 阵及初始分布向量决定。 事实上
P X 0 i0 P X 1 i1 X 0 i0 P X 2 i2 X 0 i0 , X 1 i1 P X n in X 0 i0 , , X n 1 in 1 P X 0 i0 P X 1 i1 X 0 i0 P X 2 i2 X 1 i1 P X n in X n 1 in 1 i0 0 pi0i1 pi1i2 pin1,in
(n)
( m)
P
m n
n P ( n ) pij
为马尔可夫链{Xn,n≥0}的n步转移概率矩阵。
证明:
P X n m j X 0 i P X n m j , X n k X 0 i
k 0

P X n m j X n k , X 0 iP X n k X 0 i
为n时刻的一步转移概率。若 i, j S , pij n pij 即pij与n无关,则称{Xn,n≥0}为齐次马尔可夫链。记 P=(pij),称P为{Xn,n≥0}的一步转移概率矩阵.
p00 p10 P pi 0
p01 p11 pi1
p02 p12 pi 2
0 x
x
j i 1
( j i 1)!
dG x ,
j i 1, i 1 其它
Pij 0,
例3 G / M /1排队系统 来到时间间隔分布为G,服务时间分布为指数分布,参 数为 ,且与顾客到达过程独立。 Xn-----第n个顾客来到时见到系统中的顾客数(包括该顾 客),则{Xn,n≥1}是马尔可夫链。记
jS
显然马尔可夫链{Xn,n≥0}的一步转移概率矩阵P为 随机矩阵。 2,n步转移概率 定义:设{Xn,n≥0}是一马尔可夫链,称
n pij P X n m j X m i ,
n 0, i, j 0
为马尔可夫链{Xn,n≥0}的n步转移概率。记
i (n) P X n i ,
k 0

P X n k X 0 i P X n m j X n k
k 0 n m pik pkj k 0
P n P P n 1 P P P n 2 P n
例(马尔可夫预测)P82
类似地可以证明马尔可夫链任意个时刻的联合分布也 完全由一步转移概率矩阵及初始分布向量决定。
P X 0 i0 , X 1 i1 , , X n in
3、定理:切普曼-柯尔莫哥洛夫方程(C-K方程)
p

m n ij
p p
k 0 n ik

m kj
P
其中
( m n )
P P
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n 1 j X n i ) P( f i, Yn 1 j ) P( f i, Y1 j )
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
i S , 有 aij 1
(1)无限制的随机游动 设有一质点在数轴上随机游动, 每隔一单位时间移动一次,每次只能向左或向右移动一单位, 或原地不动。设质点在0时刻的位置为a,向右移动的概率为p, 向左移动的概率为q,原地不动的概率为r(p+q+r=1),且各次 移动相互独立,以Xn表示质点经n次移动后所处的位置,则 {Xn,n≥0}是一马尔可夫链,转移概率为
Yn -----第n个顾客来到时刻到第n+1个顾客来到时刻之间系统 服务完的顾客数,则
X n1 X n 1 Yn
pi ,i 1 j P X n 1 i 1 j X n i P i 1 j X n 1 Yn X n i P Yn j X n i P Yn j e t
Pi,i+1=p, Pi,i-1=q, Pi,i=r, 其余Pi,j=0
(2)带吸收壁的随机游动 设(1)中的随机游动限制在 S={0,1,2, …b},当质点移动到状态0或b后就永远停留在该位 置,即p00=1, pbb=1,其余pij(1≤i,j ≤b-1)同(1),这时 {Xn,n≥0}称为带两个吸收壁0和b的随机游动 ,它是一有限状 态马尔可夫链。
及状态
,有
P( X n 1 j X n i )
2、分类
按马尔可夫过程参数空间和状态空间的不同可分为
t
X t
离散 马尔可夫链 可数状态马 尔可夫过程
连续 马尔可夫序列 连续状态马 尔可夫过程
离散 连续
3、转移概率
定义
i, j S , 称 P X n 1 j X n i pij n
解 一阶转移矩阵为
0.95 0.30 P 0.20 0.20
初始分布为
0.02 0.60 0.10 0.20
0.02 0.06 0.70 0.10
0.01 0.04 0.00 0.50
(1, 2 , 3 , 4 ) (0.25,0.30,0.35,0.10)
0
( t ) j dG t , j!
j 0,1,i
pi0公式略有不同,它是服务台由有i个顾客转为空闲的 概率,
pi 0 P X n 1 0 X n i
0 k i 1



e t
(t )k dG t , k!
i0
例4 直线上的随机游动
a j i , pij 0,
例2 M/G/1排队系统
j i j i
显然{Yn,n≥1}也是一马尔可夫链。
若以X(t)记在t时刻系统中的顾客数,{X(t),t≥0}则不具马 尔可夫性。
Xn-----第n个顾客走后剩下的顾客数, Yn -----第n+1个顾客接受服务期间来到的顾客数,则
所以有
P( X n1 in1 X 0 i0 , X n in ) P( f X n , Yn1 in1 X 0 i0 , X n in ) P( f in , Yn1 in1 X 0 i0 , X n in ) P( f in , Yn1 in1 ) P( X n1 in1 X n in )
1, pij 0 i, j 0 2, pij 1 i 0,1, 2,
j 1
我们来看马尔可夫链的分布
P ( X 0 i0 , X 1 i1 , , X n in ) P ( X 0 i0 ) P ( X 1 i1 X 0 i0 ) P ( X 2 i2 X 0 i0 , X 1 i1 ) P ( X n in X 0 i0 , X 1 i1 , , X n 1 in 1 ) P ( X 0 i0 ) P ( X 1 i1 X 0 i0 ) P ( X 2 i2 X 1 i1 ) P ( X n in X n 1 in 1 )
(2) {Yn,n≥1}为独立同分布随机变量,且X0与{Yn,n≥1}也 相互独立,则{Xn,n≥0}是马尔可夫链,其一步转移概率为
pij=P[f(i,Y1)=j]
证明:设n≥1 ,则Yn+1与X0, X1, …, Xn相互独立,事实上, 因为X1=f(X0,Y1), Y2与X0,Y1独立,所以, Y2与X1, X0 独立。同理, X2=f(X1,Y2)= f(f(X0,Y1),Y2),所以, Y3与X2, X1, X0独立。归纳可得Yn+1与X0, X1, …, Xn相互独立。
可见,马尔可夫链的分布由其初始分布 P( X 0 i0 ) 和

一步转移概率完全决定。
4、马尔可夫链的例子
例1 独立随机变量和的序列 设 {Yn,n≥1}为独立同分布随机变量序列,且Yn取值为非 负整数,其概率分布为P{Yn=i}=ai,i=0,1,2, …令 X0=0,Xn=Y1+…+ Yn ,则易证{Xn,n≥0}是一马尔可夫链,且
例5 Polya(波利亚)模型
罐中有b只黑球及r只红球,每次随机地取出一只后 把原球放回,并加入与抽出球同色的球c只,再第二次 随机地取球重复上面步骤进行下去,{Xn=i}表示第n回 摸球放回操作完成后,罐中有i只黑球这一事件,所以
i b r nc , i P X n 1 j X n i 1 , b 8894 0.60175 3 P 0.4834 0.5009
0.0458 0.0466 0.01820 0.2559 0.0988 0.04355 0.1388 0.36584 0.01196 0.2134 0.14264 0.14306
半年后A种鲜奶的市场占有率为
CHAPTER 2 马尔可夫链
第一节 基本概念 一、马尔可夫链的定义及例子 1、定义
称为马尔可夫链,若它只 随机过程 X n , n 0,1,2,
取有限或可列个值(称为过程的状态,记为0,1,2,…),
并且,对任意
n0 i, j, i0 , i1,, in1 P( X n 1 j X 0 i0 , X 1 i1 , , X n 1 in 1 , X n i )
0 x x j
j!
dG x ,
相关文档
最新文档