基于HyperWorks的汽车车架频率响应分析
基于hypermesh及nastran的动刚度以及频率响应曲线图文教程

基于hypermesh及nastran的动刚度以及频率响应曲线图⽂教程Nastran帮助⽂档D:\Program Files\nastran2010\md20101\Doc\pdf_nastran1、打开hypermesh选择nastran⼊⼝。
2、打开或导⼊响应模型(只是⽹格不带实体)。
3、点击material创建材料。
a)Type选择ISOTROPIC(各向同性)b)card image选择MAT1(Defines the material properties for linearisotropic materials.)nastran help⽂档。
c)点击creat/edit,编辑材料属性输⼊E(弹性模量)、NU(泊松⽐)、RHO(密度)。
由于各物理量之间都是相互关联的因此要注意单位的选择(详情见附件⼀)。
这⾥选择通⽤的E=2.07e5,NU=0.3,RHO=7.83e-9。
4、点击properties创建属性。
a)由于是⼆维模型type选择2D。
Card image选择PSHELL(壳单元)。
Material选择刚才新建的材料。
b)点击creat/edit。
c)定义厚度即T(例如T=3,注意此时单位是mm)。
5、创建material以及properties后要将这些数据赋予模型。
a)点击component。
b)由于不是创建是修改,所以左边点选update然后双击选择相应部件。
c)然后双击选择刚才新建的厚度属性。
d)最后点击update。
6、创建加载情况,点击。
a)加⼀个单位动态激励。
创建名为excite的激励,点击creat。
b)加载单位激励。
Analysis-constraints 确定加载⼒的⽅向。
例如X正⽅向加载激励,只需要勾选dof1,且值为1。
Load types选择DAREA。
然后在模型上选择⼀点,最后点击create。
c)创建激励频率范围。
创建名为tabled1,card image为TABLED1,点击creat/edit。
基于HyperWorks的车架模态分析

第"期
张胜兰等: 基于 1234567589 的车架模态分析
Z %% Z
! " # 有限元网格剖分时, 应根据分析的目的并结合模型的特 点, 选择适当的单元类型, 并根据计算机的能力和要求的精度确 定合适的网格大小, 划分网格。 ! $ # 单元质量对有限元计算结果有较大影响。 在有限元网格 划分时, 检查并控制单元的质量参数显得尤为重要。 网格检查内 容一般为是否有重复的节点、 重复的或缺少的单元, 以及高度畸 变或翘曲的单元。单元尺寸应得到控制, 如单元长宽比 ’%&; 单 单元翘曲角’)&(; 单元尺寸应尽量均匀, 要避免特 元内角 1’&(; 别小的单元。在使用 *+,) 单元时, 须分清主次, 即同一个节点 只能丛属于一个主点。 ! - # 施加载荷和边界条件是有限元模型的精华, 这一步需要 的是经验和根据经验做出某种简化或者取舍的勇气。
【 摘要】 这里介绍了 ,-./012034 有限元分析流程, 讨论了建模中应注意的几个问题, 并以某公司 新开发的中巴车车架为研究对象,利用 ,-./012034 建立以壳单元为基本单元的车架有限元分析模 型, 分析了该车架的前七阶固有频率及振型, 为车架响应分析提供了重要的模态参数, 同时也为结构 的改进设计提供了理论依据。 关键词:车架;有限元分析;模态分析;!"#$%&’%() 【 *+),%-.,】 !"#$%&’()* #+) ,-"-#) ).)/)"# 0"0.1*-* /)#+%& %, #+) ,-./012034 *%,#20$)3 &-*(’**)* *)4)$0. 5’)*#-%"* %, AJQ /%&).-"63 *)#* ’7 #+) 0"0.1*-* /%&). %, #+) /-&&.) *-8) 9’* ,$0/) 91 #0:-"6 *+).. ’"-# 0* 90*-( ’"-#3 0"0.18)* #+) ,$0/) ;* ,%$/)$ *)4)" "0#’$0. ,$)5’)"(-)* 0"& (%$$)*7%"& /%&) *+07)*3 *’77.-)* -/< 7%$#0"# /%&0. 70$0/)#)$ ,%$ #+) $)*7%"*) 0"0.1*-* 0"& ,%’"&0#-%" -" #+)%$1 #% -/7$%4) &)*-6" %, #+) 4)+-(.) ,$0/)= /$" 0’%1)2 3%-4$5 3676,$ $8$4$7, -7-8")6)5 9’1-8 -7-8")6)5 !"#$%&’%() 文献标识码:K
石朝亮_基于HyperWorks白车身灵敏度分析及结构优化

KU P
式中,K 是刚度矩阵;U 是单元节点位移矢量;P 是单元节点载荷矢量。
K U P U K X X X
则
U P K U K 1 X X X
一般,结构相应(如约束函数 g)可以描述为位移矢量 U 的函数:
g QTU
所以结构响应的灵敏度[2]为:
各板件质量灵敏度和刚度灵敏度值序号质量灵敏度刚度灵敏度序号质量灵敏度刚度灵敏度220e04600e0510157e04841e05286e03292e0211226e04228e04360e04428e0412342e04141e04117e02191e0213123e03109e03509e03123e0214903e04450e04595e04244e0415305e03428e03120e04188e04158e04693e05186467e03730e02119e04151e04187246e03598e03altair2012hyperworks技术大会论文集白车身各刚度灵敏度区间板件42确定优化方案结合上述质量灵敏度和刚度灵敏度的分析结果增厚质量小且对刚度敏感的板件减薄质量大且对刚度不敏感的板件
-3-
Altair 2012 HyperWorks 技术大会论文集
<1%
1%~3%
3%~5% 图 2 白车身各刚度灵敏度区间板件
>5%
4.2 确定优化方案
结合上述质量灵敏度和刚度灵敏度的分析结果,增厚质量小且对刚度敏感的板件,减薄质 量大且对刚度不敏感的板件。由于白车身中碰撞吸能区、能量传递区和乘员保护区等部位影响 汽车的碰撞性能,在确定优化方案的过程中,这些部位的汽车板件暂不作厚度更改。 在确定零件厚度变化范围时,只要车身零件的厚度调整适度,相应的加工模具就可以不用 改动或只作小改动。根据实际经验,当板件厚度<1.5mm 时,板件增厚与减薄最大值分别为 0.2mm 与 0.1mm;当板件厚度≥1.5mm 时,板件增厚与减薄最大值均为 0.2mm。 最终确定减薄和增厚的部件如图 3 所示,具体参见表 2。
基于HyperWorks的汽车车架频率响应分析

基于HyperWorks的汽车车架频率响应分析汽车车架是汽车各大总成的载体,是重要的受力部件。
车架在工作时除了要满足强度和刚度的要求外,合理的振动特性也是十分重要的。
本文应用HyperWotks软件分析了某型汽车车架的前6阶固有频率及振型,完成了车架模型的频率响应分析。
结合分析结果,改进了其车架结构,降低了汽车的低频振动。
1 HyperWorks分析流程HyperWorks有限元分析流程参见图1。
图1 HyperWorks分析流程在建立某车架有限元模型时需注意以下几个问题:1)在导入CAD几何模型时.要对几何模型进行必要的几何清理(如去除倒角、工艺孔等)。
这样可减小数据转换时的数据丢失;2)如果导人的是规模较大的实体薄壁类零件模型,可对模型使用中面抽取功能。
2 车架结构模态分析车架结构模态分析,尤其是车架结构的低阶弹性模态,它不仅是控制汽车常规振动的关键指标,而且反映了汽车车身的整体剐度性能。
对某车架计算采用自由模态分析方案,将HyperMesh中建立的有限元模型导人OptiStruct进行计算,对比分析了车架结构前6阶自由模态(固有频率值和振型),并在Hypermesh后处理器中查看结果(表1)。
表1 前6阶固有频率及振型3 车架频率响应分析与改进复杂系统受多种振动噪声源的激励,每种激励都可以通过不同的路径,经过衰减,传递到多个响应点。
本文采用HyperWorks软件,对该车架自由边界条件下的模态频率响应进行了分析。
通过对该车架施加频率可变的单位载荷,运用OptiStmct软件在自由边界条件下进行模态频率响应分析。
得出的变形、模态形状和频率相位输出特性如图2-图4所示。
图2 车架频响模型(1为y方向的频率响应;2为z方向的频率响应;3为x方向的频率响应)图3 频响点1的频响曲线(1为x方向的频率响应;2为y方向的频率响应;3为z方向的频率响应)图4 频响点2的频响曲线由上述分析可知,响应点在外部激励频率与车架固有频率相同时,响应较大,最大位移分别达到74.4 Im 和135 mm;相位相差1800。
SolidWorks频率分析(模态)

06
结论与展望
模态分析的局限性和挑战
模型简化
材料属性
模态分析通常基于简化的模型,忽略了一 些细节和实际工况中的影响因素,导致分 析结果可能与实际情况存在偏差。
模态分析中使用的材料属性通常是假设的 或简化的,可能无法完全反映实际材料的 复杂性和非线性特性。
边界条件和载荷
动态响应
模态分析中的边界条件和载荷设置可能难 以完全模拟实际工况,导致分析结果受到 限制。
Solidworks频率分析(模态)
contents
目录
• 模态分析简介 • Solidworks频率分析(模态)基础 • 模态分析案例 • 模态分析结果解读 • 模态分析优化建议 • 结论与展望
01
模态分析简介
定义与目的
定义
模态分析是动力学分析的一种,通过 研究结构的振动特性,如固有频率、 阻尼和模态形状等,来了解结构的动 态行为。
案例二:复杂模型的模态分析
总结词
复杂模型,贴近实际,适用于进阶学习
详细描述
对于复杂的模型,如机械零件、装配体等,进行模态分析可以帮助深入了解实际工程中结构的振动特 性。通过复杂模型的模态分析,可以更准确地预测结构在实际工作条件下的动态性能,为优化设计提 供依据。
案例三:实际工程应用的模态分析
总结词
实际工程,实践应用,具有指导意义
详细描述
将模态分析应用于实际工程中,如桥梁、建筑、航空航天等,可以评估结构的稳定性、振动舒适度等问题。通过 实际工程应用的模态分析,可以为结构的优化设计、振动控制和安全性评估提供重要参考。
04
模态分析结果解读
固有频率和振型
固有频率
固有频率是系统在没有外部激励作用下 的自然振动频率。通过SolidWorks频率 分析,可以获得系统的固有频率,了解 系统的振动特性。
74-基于HyperMesh的车身模态分析[1]
![74-基于HyperMesh的车身模态分析[1]](https://img.taocdn.com/s3/m/759f5b8da0116c175f0e4843.png)
基于HyperMesh 的车身模态分析王得刚 赵春雨 闻邦椿(东北大学机械工程与自动化学院 辽宁沈阳 110004)摘要摘要::应用先进的有限元前后处理软件HyperMesh,采用全新的建模方法,对车身结构进行有限元建模,用MSC.Nastran 软件对模型求解,然后用HyperMesh 对计算结果进行后处理分析。
通过对车身的结构进行有限元模态分析,得到在低频范围内与试验结果基本一致的模态频率和振型,有利于控制车身的固有特性,从而可以对车身设计方案进行全面的评价和改进。
关键词关键词::HyperMesh;车身;模态分析Modal Analysis of Car-body on the Basis of HyperMeshAbstract :Adopted a new modeling method, the finite element modal of car-body is established by HyperMesh, which is an advanced preprocess and postprocess software to finite element. The modal is calculated by MSC.Nastran software. Calculated result is post-progressed by HyperMesh. The modal frequency and mode shape can be gained through the modal analysis of the car-body. The result using FEM is consistent with test result in low frequencies, so it can help controlling the inherent performance of the car-body. Consequently, the result can be used in estimating and improving the design project of the car-body.Key words :HyperMesh ;car-body ;modal analysis1 1 前前言对于实际结构进行模态分析,可从固有频率和振型中得到其发生共振的频率信息和振动形态信息,这对合理地设计车身结构,使其具有良好的动态性能指标,以及解决结构上出现的动态性能缺陷问题具有重要的指导意义。
基于HyperWorks的除雪车车架有限元分析及优化

基于HyperWorks的除雪车车架有限元分析及优化毛敬竞,邓耀,龚运息*(广西科技大学,广西柳州市,545000)摘要:车架是除雪车重要的零部件,通过UG软件建立车架的三维模型,并导入到HYPERMESH软件中进行有限元分析,得出了车架在弯曲和扭转工况下的应力及位移分布情况。
结果显示车架满足弯曲工况下的使用要求,但是在扭转工况下分析的最大应力值765.9MPa大于材料的屈服强度。
本文对车架结构重新设计,优化后的车架在扭转工况下最大应力值降为546.3MPa 小于材料的屈服强度700MPa,满足在此工况下的安全使用要求,这对车架研究人员有着重要的意义。
关键字:车架;有限元;结构优化Finite element analysis and optimization of snowmobile frame based onHyperWorksMAO Jing-jing, DENG Yao, GONG Yun-xi *(College of Mechanical Engineering Guangxi University of Science and Technology , Liuzhou Guangxi, 545006, ) Abstract:The frame is an important part of the snowplow. The three-dimensional model of the frame is established by UG software and imported into HyperMesh software for finite element analysis. The stress and displacement distribution of the frame under bending and torsion conditions are obtained. The results show that the frame meets the use requirements under bending condition, but the maximum stress value of 765.9MPa analyzed under torsion condition is greater than the yield strength of the material. In this paper, the frame structure is redesigned, and the maximum stress value of the optimized frame under torsion condition is 546.3MPa less than the yield strength of the material 700MPa, which meets the requirements of safe use under this condition. This is the reason for the frame researchers It is of great significance.Keyword: Frame; Finite element; Structural optimization0 引言最近几年冬天,各地降雪量增加,给机场道路和人民出行带来了极大的困难,特别是对机场道路来说,往往一场降雪将会导致飞机延误起飞,甚至更严重会使得机场关闭。
ATC报告_基于Hypermesh二次开发实现汽车结构分析自动化_长安汽车_王朋波

安装孔中心建立局部坐标系
将局部坐标系赋给孔中心节点
新建一load collector并在 孔中载荷约束
为loadstep设置结果输出选项
关于常规分析项的自动化
• 示例2-安装点刚度分析自动化工具
中加标记示警。
命名中加标记示警。
关于建模效率提升
工具1工作步骤
各comp以零件号命名 启动工具程序 根据提示选定CSV格式的BOM表文 件 根据提示输入BOM表材料和厚度 的列号 根据提示选择需要操作的多个co mp 程序根据零件号搜索bom表,确 定相应的行,再根据厚度列号和 列号读取相应数据。 程序对comp重新命名,在命名中 体现厚度和材料信息
费时较长
•通常需要2~3次试算。 •每项分析需要4h~20h。
关于常规分析项的自动化
• 示例1-抗凹分析自动化工具
抗凹性分析自动化工具开发思路
确定选择考察 点的有效方案
采用单点加力方案,选
参数设置模板化
总结多个项目的经验,确 定一套通用性好的Abaqus分 析参数,对于大多数情况均能 保证计算收敛性和精度。
• 检查connector 是否与几何点匹 配,清理重复的 焊点
• 一键显示组件多 项信息。 • 自动统一组件ID 、属性ID和零件 号。 • 清理分析设置仅 保留基本模型信 息。
关于建模效率提升
• 示例1-Batchmesh工具
直接用Batchmesher模块进行网格自动划分,用户需进行以下操作
计算精度
参数设置难以统一,不同的参 数对结果影响较大,且经常不 收敛。
通常需要2~3次试算,需花费 工时2h~10h 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于HyperWorks的汽车车架频率响应分析
汽车车架是汽车各大总成的载体,是重要的受力部件。
车架在工作时除了要满足强度和刚度的要求外,合理的振动特性也是十分重要的。
本文应用HyperWotks软件分析了某型汽车车架的前6阶固有频率及振型,完成了车架模型的频率响应分析。
结合分析结果,改进了其车架结构,降低了汽车的低频振动。
1 HyperWorks分析流程
HyperWorks有限元分析流程参见图1。
图1 HyperWorks分析流程
在建立某车架有限元模型时需注意以下几个问题:
1)在导入CAD几何模型时.要对几何模型进行必要的几何清理(如去除倒角、工艺孔等)。
这样可减小数据转换时的数据丢失;
2)如果导人的是规模较大的实体薄壁类零件模型,可对模型使用中面抽取功能。
2 车架结构模态分析
车架结构模态分析,尤其是车架结构的低阶弹性模态,它不仅是控制汽车常规振动的关键指标,而且反映了汽车车身的整体剐度性能。
对某车架计算采用自由模态分析方案,将HyperMesh中建立的有限元模型导人OptiStruct进行计算,对比分析了车架结构前6阶自由模态(固有频率值和振型),并在Hypermesh后处理器中查看结果(表1)。
表1 前6阶固有频率及振型
3 车架频率响应分析与改进
复杂系统受多种振动噪声源的激励,每种激励都可以通过不同的路径,经过衰减,传递到多个响应点。
本文采用HyperWorks软件,对该车架自由边界条件下的模态频率响应进行了分析。
通过对该车架施加频率可变的单位载荷,运用OptiStmct软件在自由边界条件下进行模态频率响应分析。
得出的变形、模态形状和频率相位输出特性如图2-图4所示。
图2 车架频响模型
(1为y方向的频率响应;2为z方向的频率响应;3为x方向的频率响应)
图3 频响点1的频响曲线
(1为x方向的频率响应;2为y方向的频率响应;3为z方向的频率响应)
图4 频响点2的频响曲线
由上述分析可知,响应点在外部激励频率与车架固有频率相同时,响应较大,最大位移分别达到74.4 Im 和135 mm;相位相差1800。
原有车架在低频段振动较强烈的主要原因是由于车架的固有频率与发动机的激励频率(23 Hz)较接近,因此,我们通过改变焊点的位置,使车架的1阶固有频率上升到30 Hz左右,避免了低频共振的发生,降低了汽车的低频振动,从而改善了汽车的乘坐舒适性。
4 结束语
本文对某车架进行有限元模态频率响应分析,得到车架的固有频率和单位激励下的频率响应,并结合分析结果对车架结构进行了优化,提高了汽车的乘坐舒适性。
在新产品设计初期应用本分析方法,既可缩短产品开发周期,也可降低生产成本。
上一页1 2 下一页。