第 5 讲 线性变换 (2)

合集下载

线性变换初步线性变换的定义表示与性质

线性变换初步线性变换的定义表示与性质

线性变换初步线性变换的定义表示与性质线性变换初步线性变换是线性代数中的一个重要概念,它在数学、物理学、计算机科学等领域中都有广泛的应用。

本文将介绍线性变换的定义、表示以及一些性质。

1. 定义线性变换是指保持向量加法和数乘运算的变换。

具体来说,对于两个向量u和v以及一个数k,如果对于线性变换T有以下两个性质成立:a) T(u + v) = T(u) + T(v)b) T(ku) = kT(u)则称T为一个线性变换。

线性变换可以将一个向量空间中的向量映射到另一个向量空间中的向量。

2. 表示线性变换可以用矩阵表示。

设V和W分别是两个向量空间,假设它们的维度分别为n和m。

如果存在一个n×m的矩阵A,使得对于任意的向量u∈V,都有T(u) = Av,则称矩阵A表示线性变换T。

例如,对于一个二维平面上的旋转变换,可以通过一个2×2的矩阵来表示。

对于一个三维向量的缩放变换,可以通过一个3×3的矩阵来表示。

3. 性质线性变换具有一些重要的性质:a) 线性变换保持向量加法。

即,对于线性变换T和任意的向量u、v,有T(u + v) = T(u) + T(v)。

b) 线性变换保持数乘运算。

即,对于线性变换T和任意的向量u以及数k,有T(ku) = kT(u)。

c) 线性变换保持零向量。

即,对于线性变换T,有T(0) = 0。

d) 线性变换保持线性组合。

即,对于线性变换T和任意的向量组u₁, u₂, ..., uₙ以及对应的系数k₁, k₂, ..., kₙ,有T(k₁u₁ + k₂u₂ + ... + kₙuₙ) = k₁T(u₁) + k₂T(u₂) + ... + kₙT(uₙ)。

e) 线性变换的复合仍然是线性变换。

即,如果T₁表示线性变换S₁,T₂表示线性变换S₂,则T₁∘T₂表示线性变换S₁∘S₂。

这些性质使得线性变换在代数运算和几何变换中具有重要的应用。

总结线性变换是保持向量加法和数乘运算的变换。

第三章第五讲 线性变换

第三章第五讲 线性变换

通识教育平台数学课程系列教材第一节向量空间第二节向量的线性相关性第三节向量空间的基及向量的坐标第四节欧氏空间第五节线性变换定义1一、线性变换的定义设σ是向量空间V 到向量空间W 的一个映射,如果σ满足:1) σ( α+ β) = σ( α) + σ( β),2) σ( k α) = k σ( α).其中α,β为V 中任意向量,k 为任意实数σ有上面的性质也说成σ保持向量的线性运算. 简言之,线性映射就是保持线性关系的映射.则称σ是V 到W 的一个线性映射. σ(α) 称为α在σ下的象,也可记为σα.§5 线性变换向量空间V 到其自身的线性映射称为V 中的线性变换.(1) 向量空间中变换的写法σ: ( x , y ) →( x + y , x -y ), (x , y ) ∈R 2σ( x , y ) = (x + y , x -y ), ( x , y ) ∈R 2注:(2)).()()(2121βαβασσσk k k k +=+可简写成σ(α+ β) = σ(α) + σ(β),σ(k α) = k σ( α).(3) 通常用花体字母T , S , … 来表示V 中的线性变换. 向量α在线性变换T 下的像,记为T (α) 或T α.上一页例1设A为n 阶实矩阵,对任意的n维行向量α,令T(α)=αA, α∈V.事实上, 设α, β∈V,因为T(α+ β) = (α+ β)A= αA+ βA= T(α) + T( β).T(kα) = ( kα)A = k (αA)= k T( α)故T是R n中线性变换.例2设V 是一向量空间,λ∈R . 对任意的α∈V ,令T (α) = λα,则T 是V 中的一个线性变换.所以T 是V 中的线性变换. 称这种变换为数乘变换.E (α) = α, O (α) = 0.上一页事实上, 设α, β∈V ,k ∈R ,因为T (α+ β) = λ(α+ β)= λα+ λβ= T (α) + T ( β).T (k α) = λ( k α)= k (λα)= k T (α)特别地,当λ= 1 时,T (α) = α,T 称为恒等变换,记为E ;当λ= 0时,T (α) = 0,T 称为零变换,记为O ,即例3R 3 中σ( x , y , z ) = (x , y , 0) 是线性变换.事实上, 设α= ( x 1, y 1, z 1) , β=( x 2, y 2, z 2)σ(α+ β) = σ( x 1+ x 2, y 1 + y 2, z 1+ z 2 )= ( x 1+ x 2, y 1 + y 2, 0)= ( x 1, y 1, 0) + ( x 2, y 2, 0)= σ(α) + σ( β).证σ(k α) = σ(k x 1, k y 1, kz 1 )= ( k x 1, k y 1, 0)= k (x 1, y 1, 0)= k σ( α).故σ( x , y , z ) = (x , y , 0) 是R 3 中线性变换,称之为R 3 中向xOy 面的投影变换.x y z ( x , y , z )(x , y , 0)0上一页例4在R 2 中,设0≤ θ<2π, 令σ:(x , y )→(x cos θ-y sin θ, x sin θ+ y cos θ)则σ是R 2的一个线性变换.称线性变换σ是绕原点按逆时针方向旋转θ角的旋转变换.xy ( x , y )0θ事实上,由σ( (x , y )+(x 1 , y 1))=σ(x +x 1, y +y 1)证上一页)cos sin ,sin cos (θθθθy x y x k +-=)cos sin ,sin cos (θθθθky kx ky kx +-=),()),((ky kx y x k σσ=).,(),(11y x y x σσ+=)cos sin ,sin cos (θθθθy x y x +-=)cos sin ,sin cos (1111θθθθy x y x +-+)]cos )(sin )(,sin )(cos )[(1111θθθθy y x x y y x x ++++-+=二、线性变换的性质和运算§5 线性变换定理1设T 是V 中的线性变换,则(1)T 把零向量变到零向量,把α的负向量变到α的像的负向量,即T ( 0 ) = 0, T ( -α) = -T (α).(2)T 保持向量的线性组合关系不变,即)(2211s sk k k ααα+++ T = k 1T (α1)+k 2T (α2)+…+k s T (αs )(3)T 把线性相关的向量组变为线性相关的向量组,即若α1, α2, …, αs 线性相关,则T (α1 ), T (α2), …, T (αs )也线性相关.定义2设L(V) 是向量空间V中的全体线性变换的集合,定义L(V)中的加法、数乘与乘法如下:(1)加法:(T+S)α= T ( α) +S (α) ;(2)数乘:(k T)α= k T (α) ;(3)乘法:(T S)α= T (S (α)) ,其中,α∈V,k∈R,T ,S ∈L(V).易验证,T +S,T S 以及k T 都是V 中的线性变换.§5 线性变换三、线性变换的矩阵设V 是一个m 维向量空间,α1,α2,…,αm 是V 的一组基.T 是V 的一个线性变换.(1)T (α1)=a 11α1+ a 21α2 + … a m 1αm ,T (α2)=a 12α1+ a 22α2 + … a m 2αm ,……………T (αm ) = a 1m α1+ a 2m α2 + … a mm αm ,可用矩阵形式表示为:设则设,,2211m m k k k V ααααα+++=∈∀ (k 1α1+k 2α2+…+ k m αm )= k 1T (α1)+k 2T (α2)+…+k m T (αm )因此,若已知基向量α1,α2, …,αm 在线性变换T 下的像,就可知道V 中任意向量在线性变换T 下的像了.= (α1, α2, …, αm )(T (α1), T (α2), …, T (αm ))⎪⎪⎪⎪⎪⎭⎫ ⎝⎛mm m m m m a a a a a a a a a 212222111211A (T (α1), T (α2), …, T (αm ) ) = (α1, α2, …, αm ) A.称矩阵A 为线性变换T 在基α1, α2, …, αn 下的矩阵.记T (α1, α2, …, αm ) = (T (α1), T (α2), …, T (αm ) )则有T (α1, α2, …, αm ) = (α1, α2, …, αm )A因此,取定V 的一组基后,对于V 的线性变换T 有唯一确定的m 阶方阵A 与它对应.T A在给定基下一一对应(1)V 中的全体线性变换组成的集合L (V ) 与全体实m 阶方阵所成集合R m X m 之间存在一一对应关系.注意:(2)线性变换的和、数乘和乘法对应于相应的矩阵之间的和、数乘和乘法.(3)线性变换可逆(即存在V 的一个变换S ,使得TS =E )当且仅当T 对应的矩阵A 可逆,且T 的逆变换对应的矩阵就是A -1.例2例1R n 中恒等变换E (α) = α在每一组基下的矩阵为n 阶单位阵.R n 中零变换O (α)=0在任意基下的矩阵为零矩阵.R n 中线性变换T (α) = k α,k ∈R . T 在每一组基下的矩阵为数量矩阵k E n .例3求R 3 中的线性变换T (x 1, x 2, x 3)在标准基下的矩阵.T (e 1) = T (1, 0, 0 ) = (a 1 , b 1, c 1) = a 1e 1+b 1e 2+c 1e 3解所以T 在标准基下的矩阵为),,(332211332211332211x c x c x c x b x b x b x a x a x a ++++++=T (e 2) = T (0, 1, 0 ) = (a 2 , b 2, c 2) = a 2e 1+b 2e 2+c 2e 3T (e 3) = T (0, 0, 1 ) = (a 3 , b 3, c 3) = a 3e 1+b 3e 2+c 3e 3.321321321⎪⎪⎪⎭⎫ ⎝⎛=c c c b b b a a a A练习求R 2 中旋转变换σ(x , y ) = (x cos θ-y sin θ, x sin θ+ y cos θ)在标准基e 1= (1, 0), e 2= (0, 1)下的矩阵.σ(e 1) = (cos θ, sin θ) = cos θ⋅e 1+ sin θ⋅e 2,,σ(e 2) = (-sin θ, cos θ) = -sin θ⋅e 1+cos θ⋅e 2,,,.cos sin sin cos ),())(),((2121⎪⎪⎭⎫ ⎝⎛-=θθθθe e e e σσ解若设(x , y )的象σ(x , y )在e 1, e 2下的坐标为(x ', y ')则x ' = x cos θ-y sin θy ' = x sin θ+ y cos θ.cos sin sin cos ''⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛y x y x θθθθ四、象与原象的坐标变换公式设α1,α2, …, αn 是向量空间V 的一组基,线性变换σ在基α1, α2, …, αn 下的矩阵为A. 如果ξ与σ(ξ)在该基下的坐标分别为(x 1, x 2, …, x n ) 和(y 1, y 2, …, y n ),则(3)§5 线性变换得由n n y y y αααξ+++= 2211)(σ),,,(21n ααα =.21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n y y y nn x x x αααξ+++= 2211).()()()(2211n n x x x ασασασξσ+++=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n x x x 2121))(,),(),((ααασσσ),,,(21n ααα =.21⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x A 将(3)与(4)比较得.2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y α的坐σ(α)的坐σ的矩(4)定理2设α1,α2,…,αn 是向量空间V 的一组基,线性变换σ在基α1,α2,…,αn 下的矩阵为A .如果ξ与σ(ξ)在该基下的坐标分别为(x 1,x 2,…,x n )和(y 1,y 2,…,y n ),则.2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x A y y y例4设σ是R 4的一个线性变换,对∀(x 1,x 2,x 3,x 4)∈R 4,σ(x 1,x 2,x 3,x 4)=(2x 1+x 2,3x 1-x 3,x 3,x 1+x 4),求σ在标准基ε1,ε2,ε3,ε4下的矩阵.σ(ε1) = σ(1, 0, 0, 0) = (2, 3, 0, 1)=2ε1+ 3ε2+ε4,σ(ε2) = σ(0, 1, 0, 0)= (1, 0, 0, 0)=ε1,,σ(ε3) = σ(0, 0, 1, 0) = (0, -1, 1, 0)=-ε2 + ε3,σ(ε4) = σ(0, 0, 0, 1) = (0, 0, 0, 1)=ε4.解因为))(),(),(),((4321εεεεσσσσ.1001010001030012),,,(4321⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=εεεε所以σ在ε1, ε2, ε3, ε4下的矩阵为.1001010001030012⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=A 上一页定理3设α1,α2,⋯,αm 和β1,β2,⋯,βm 是向量空间V 的两组基.线性变换σ在这两组基下的矩阵分别为A 与B ,从基α1,α2,⋯,αm 到基β1,β2,⋯,βm 的过渡矩阵是C ,则五、同一线性变换在不同基下的矩阵B =C -1AC .§5 线性变换线性变换与矩阵的对应关系是在取定了空间的一组基的情况下建立的.如果取不同的基,同一线性变换对应的矩阵一般是不相同的.于是得B =C -1AC.●●●由 证,),,(),,(2121A m m αααααα =σ,),,(),,(2121B m m ββββββ =σ.),,,(),,(2121C m m αααβββ =),,(21m βββ σ[][]C C m m ),,,(),,,(2121αααααα σσ==AC m ),,(21ααα =.),,,(121AC C m -=βββ (线性变换保持线性关系)定义4设A,B为两个n阶矩阵,如果存在可逆矩阵C,使得B=C-1AC,则称A与B相似,记作A~B.由定理3知线性变换在不同基下的矩阵是相似的;反之,若两矩阵相似,那么它们可以看作同一线性变换在不同基下的矩阵.定理设B=C-1AC,如果线性变换σ在基α1,α2,⋯,αn下的矩阵为A,且则σ在基β1, β2, ⋯, βn 下的矩阵为B.(β1, β2, ⋯, βn) = (α1, α2, ⋯, αn )C.σ基α1, α2, ⋯, αn下Aσ基(β1, ⋯, βn) = (α1, ⋯, αn)CBB = C-1AC.下上一页*相似是矩阵之间的一种关系,它具有下面三个性质:1. 反身性:A~A;2. 对称性:如果A ~B, 则B ~A;3. 传递性:如果A~B, B ~C, 则A~C.例2线性变换σ在基β1, β2下的矩阵为上一页设α1,α2与β1 , β2 是向量空间V 的两组基,由基α1,α2到基β1, β2的过渡矩阵为C ,线性变换σ在基α1,α2下的矩阵为求线性变换σ在基β1, β2下的矩阵B.,2111⎪⎪⎭⎫ ⎝⎛--=C ,0112⎪⎪⎭⎫ ⎝⎛-=A 解AC C B 1-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=-2111011221111⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=11011112.1011⎪⎪⎫ ⎛=定理4设σ是欧氏空间的一个线性变换,则下面几个命题等价:六、正交变换(1) σ是正交变换;§5 线性变换定义5设σ为欧氏空间V 中的线性变换, 如果对于任意的α, β∈V , 都有),,(),(βασβσα=则称σ为V 中的正交变换.(2) σ保持向量的长度不变,即对于任意的;)(,αασα=∈V 的标准正交基;也是的标准正交基,则是如果V V m m )(,),(),(,,,)3(2121ασασασααα (4) σ在任一组标准正交基下的矩阵都是正交矩阵.B =C -1AC .例6定义映射上述映射显然为一个线性变换,σ在标准正交基下的矩阵为(,)(cos sin ,sin cos ).x y x y x y σθθθθ=-+.cos sin sin cos ⎪⎪⎭⎫⎝⎛-=θθθθA .,为正交矩阵即且满足A E AA A A T T ==故坐标旋转变换是一个正交变换,它保持向量的长度不变.七、线性变换的特征值与特征向量§5 线性变换给定V 中的一个线性变换σ,是否存在V 的一组基,使σ在此组基下的矩阵为对角矩阵?事实上,的特征向量的属于特征值也是,非零实数的特征向量,则对任意的属于特征值是如果.λσξλσξk k 定义6设σ是向量空间V 的一个线性变换,如果存在实数λ和V 中一非零向量ξ,使得λξξ=)(σ那么λ称为σ的一个特征值, ξ称为σ的属于特征值λ的一个特征向量.1.线性变换的特征值与特征向量的概念例7设σ是数乘变换:σ(α)=λα, α∈V,则λ是σ的特征值,V中非零向量都是σ的属于特征值λ的特征向量.2. 线性变换可对角化的条件定理5设V为m维向量空间,为V中的一个线性变换.那么存在V的一组基,使得σ在这组基下的矩阵为对角矩阵的充要条件是σ有m个线性无关的特征向量.设σ可对角化, 则存在V 的一组基α1, α2, ⋯αm , 使σ在此基下的矩阵为对角形矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m Λλλλ 21即σ(α1, α2, …, αm ) = (α1, α2, …, αm )Λ证则mi i i i ,2,1,)(==ααλσ反之,如果σ有m 个线性无关的特征向量,就取它们为基,则σ在此基下的矩阵就是对角形矩阵.因此α1,α2,⋯αm 就是σ的m 个线性无关的特征向量.上一页注意:从以上证明可知,如果线性变换σ在某一组基下的矩阵为对角阵A ,则这组基由σ的特征向量组成,且矩阵A 的对角元就是线性变换σ的特征值.方阵与线性变换是一一对应的,可类似引入方阵的特征值与特征向量的概念.3.矩阵的特征值与特征向量的概念定义1设A 是一个m 阶实方阵, 如果存在实数λ和非零的m 维列向量ξ, 使得λξξ=A 那么λ称为方阵A 的一个特征值, ξ称为A 的属于特征值λ的一个特征向量.(1)设m 阶方阵A 是m 维向量空间V 上线性变换σ在一组基下的矩阵,则λ是σ的特征值的充要条件是λ为矩阵A 的特征值.结论:从线性变换与矩阵的对应关系可得如下结论.设R m 中线性变换σ在基α1, α2, …, αm 下的矩阵为A . 即的特征向量于特征值的属是矩阵是的特征向量的充要条件征值的属于特是线性变换则为下的坐标中非零向量,它在基为..),,,(,,,2121λλσξαααξA X x x x X V Tm m =(2)m 阶矩阵A 可对角化的充要条件是A 有m 个线性无关的特征向量.即m 阶矩阵A 相似于对角矩阵的充要条件是A 有m 个线性无关的特征向量.σ的特征值= A 的特征值ξ= (α1, α2, …, αm ) XA 的属于λ的特征向量σ的属于λ的特征向量练习设R 2 的线性变换σ为σ: (x 1, x 2)→(2x 1+ 4x 2, -x 1),求σ在基α1= (1, -1), α2= (-1, 2) 下的矩阵.上一页σ在标准基ε1, ε2下的矩阵为,0142⎪⎪⎭⎫ ⎝⎛-=A 而由ε1, ε2 到α1, α2 的过渡矩阵为,2111⎪⎪⎭⎫ ⎝⎛--=C 解那么σ在α1, α2 下的矩阵为B =C -1AC ⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=-2111014221111⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=211101421112.73135⎪⎪⎭⎫ ⎝⎛--=。

高等代数线性变换分解

高等代数线性变换分解

则h(A) = f(A)+g(A), p(A) = f(A)g(A)。特别地, f(A)g(A)=g(A)f(A),
线性变换 (1) (2) (3) (4)
§1 线性变换的定义
例1 判断下列所定义的变换 A 是否为线性变换。 在线性空间V中,A x = x+a,a为V中一固定向量; 在线性空间V中,A x = a,a为V中一固定向量; 在P [x]中,A f (x) = f (x+1) ; 在P [x]中,A f (x) = f (x0),x0为P中一固定数;
线性变换
Байду номын сангаас
§2 线性变换的运算
四、线性变换的多项式
线性变换的幂 设 A∈L(V),由于线性变换的乘法满足结合律,
因此对任意取定的正整数n,n个A 的乘积AA…A是一个确定的
线性变换,记为: An。
-n -1 n 0
若A是可逆的,定义A = (A ) 。对任意的A∈L(V),定义A =E。
根据线性变换幂的定义,其指数运算规律为:
例2 在P 3中,下面定义的变换 A 是否为线性变换。 (1) A( x1 , x2 , x3 ) ( x1 x2 , x2 x3 , x3 x1 ) (2) A( x1 , x2 , x3 ) (1, x1 x2 x3 ,1) (3) A( x1 , x2 , x3 ) (0, x1 x2 x3 , 0)
2 ) (4) A( x1, x2 , x3 ) ( x12 , x2 x3 , x3
线性变换
§1 线性变换的定义
二、线性变换的性质
性质1 设 A 是V的线性变换,则 A (0) 0, A ( ) A ( )
性质2 线性变换保持线性组合与线性关系式不变。

第五章 线性变换 S2 线性变换的矩阵

第五章 线性变换 S2 线性变换的矩阵
522522的过渡矩阵为m即14由线性变换在同一基底下矩阵的唯一性可知这就是线性变换在不同基底下的矩阵之间的关系15矩阵间bm1am这种关系可以用一个新的概念来描述性质ii对称性iii传递性定义设ab为两个n阶矩阵
第五章 线性变换
第二节 n维线性空间中线性 变换的矩阵
只讨论n维线性空间V上的线性变换T. 研究线性变换T和n阶矩阵之间的关系.
x11 x2 2
xn n
又T是线性变换,(保持线性组合不变)必有
2
T T ( x1 1 x2 2 x1T 1 x2T 2
xn n ) xnT n
(1)
这说明当已知 T 1 ,T 2 , ,T n 时,每个向量的象 由(1)确定,即线性变换被完全确定.
T x2 x 3 x3 x1
求T在基底
1 0 0 e1 0 , e2 1 , e3 0 0 0 1
下的矩阵A.
解:由T的定义知 1 0 1
T [T 1 , T 2 , x2 ,T n ] [T 1 , T 2 , x n
xnT n
,T n ]X
(3)
T [T 1 , T 2 ,
(2)代入(3)得到
, T n ] X ( 1 , 2 ,
T ( 1 , 2 ,
, n M ) (T 1 , 2 ,
, n ) M
[T 1 ,T 2 ,
1 ,2 ,
,T n ]M 1 , 2 ,
,n M AM
1
, n AM

线性变换定义

线性变换定义

线性变换定义
线性变换也叫线性映射( linear mapping)是从一个向量空间v到另一个向量空间w 的映射且保持加法运算和数量乘法运算,而线性变换(linear transformation)是线性
空间v到其自身的线性映射。

关于线性变换和特征值的理解
线性变换数学定义在通常的高等代数学书中都可以找出。

a(a+b)=aa+ab,aka=kaa。


中a,b就是v中的线性空间。

这个定义就是说把空间中的元素(特定地想为三维空间的
向量)经过一个转换,而这种转换就是具备线性的特性的。

那么这种转换的从一个元素转
型至另外一个元素的对应关系,我们可以用前面的一个矩阵去则表示,称作线性变换矩阵。

在三维空间中,我们有一个球心在原点(xoyz和x’oy’z’的坐标系具有不为零的
三个欧拉角)的球面,球面上的每一个点当然都有一个空间矢量,我们让这个球开始沿着x’oy’z’的三个主轴方向变化,假设x’,z’方向膨胀,y’方向收缩,那么我们可以
想见,只有这三个方向的位置矢量是沿着原来的方向变化着的,其它的位置矢量在新的位
置都会和原来的位置矢量有一个夹角。

容易直观的理解,这样的变换是线性变换。

线性变换的相关知识点总结

线性变换的相关知识点总结

线性变换的相关知识点总结一、线性变换的定义线性变换是指一个向量空间V到另一个向量空间W的一个函数T,满足以下两条性质:1.加法性质:对于向量空间V中的任意两个向量x和y,有T(x+y)=T(x)+T(y)。

2.数乘性质:对于向量空间V中的任意向量x和标量a,有T(ax)=aT(x)。

根据以上的定义,我们可以得出线性变换的几个重要性质:1. 线性变换保持向量空间中的原点不变;2. 线性变换保持向量空间中的直线和平面不变;3. 线性变换将线性相关的向量映射为线性相关的向量;4. 线性变换将线性无关的向量映射为线性无关的向量。

二、线性变换的矩阵表示在研究线性变换时,我们通常会使用矩阵来表示线性变换。

设V和W分别是n维和m维向量空间,选择它们的一组基{v1, v2, ..., vn}和{w1, w2, ..., wm}。

线性变换T可以用一个m×n的矩阵A来表示,假设向量x在基{v1, v2, ..., vn}下的坐标为[x],向量T(x)在基{w1, w2, ..., wm}下的坐标为[T(x)],则有[T(x)]=[A][x]。

由此可见,矩阵A中的每一列都是T(vi)在基{w1, w2, ..., wm}下的坐标,而T(vi)可以写成基{w1, w2, ..., wm}的线性组合,所以矩阵A的列向量就是线性变换T对基{v1, v2, ..., vn}下的坐标系的映射。

另外,矩阵A的行空间也是线性变换T的像空间,而零空间是T的核空间。

线性变换的基本性质在矩阵表示下也可以得到进一步的解释,例如线性变换的复合、逆变换等都可以在矩阵表示下进行研究。

因此,矩阵表示是研究线性变换的重要工具。

三、特征值和特征向量特征值和特征向量是线性代数中的一个非常重要的概念,它们在研究线性变换的性质时有非常重要的应用。

设T是一个n维向量空间V上的线性变换,那么存在一个标量λ和一个非零向量v,使得Tv=λv。

这里的λ就是T的特征值,v就是T的特征向量。

线性变换性质 (2)

线性变换性质 (2)

性质一 对原系统做如式x P x =的线性变换,不论非奇异线性变换矩阵P 如何选取,则变换前后系统的特征值不变。

证明 变换前系统的特征值为特征方程0I A λ-=的根
变换后系统的特征值为特征方程0I A λ-=的根 又因为1A P AP -=,固有
11111 ()I A I P AP P P P AP
P I A P P I A P I A λλλλλλ------=-=-=-=-=-
因此,线性变换前后系统的特征值不变。

性质二 对原系统做如式x P x =的线性变换,则变换前后系统的传递函数矩阵不变。

证明 变换前系统的传递函数矩阵()G s 可表示为
()1
()G s C sI A B D -=-+ 变换后系统的传递函数矩阵()G s 可表示为 ()1
()G s C sI A B D -=-+ 因为,AP P A 1-=B P B 1-=,CP C =,D D =,固有
()()()()()1
1111111111() ()G s C sI A B D CP sI P AP P B D CP P sI A P P B D CPP sI A PP B D
C sI A B
D G s -----------=-+=-+⎡⎤=-+⎣⎦=-+=-+=
因此,线性变换前后系统的传递函数矩阵不变。

对系统进行线性变换的目的在于使A 阵规范化,以便于揭示系统特性及分析计算,由上面介绍的两个性质可知,线性变换并不会改变系统的原有性质,故有等价变换之称。

待获得所需结果之后,再引人反变换关系x P x 1-=,换算回原来的状态空间中去,得出最终结果。

线性变换的定义和性质

线性变换的定义和性质
线性变换的定义和性质
汇报人:XX
• 线性变换的基本概念 • 线性变换的基本性质 • 线性变换的矩阵表示 • 线性变换的应用举例 • 线性变换与空间结构的关系
01
线性变换的基本概念
定义与性质
线性变换定义
保持原点不动
保持向量共线性
保持向量比例不变
线性变换是一种特殊的映射, 它保持向量空间中的加法和数 乘运算的封闭性。即对于向量 空间V中的任意两个向量u和v 以及任意标量k,都有 T(u+v)=T(u)+T(v)和 T(kv)=kT(v)。
矩阵性质
线性变换的矩阵表示具有一些特殊的性质。例如,两个线性变换的复合对应于它们矩阵的乘积;线性变换的可逆 性对应于矩阵的可逆性;线性变换的特征值和特征向量对应于矩阵的特征值和特征向量等。
02
线性变换的基本性质
线性变换的保线性组合性
线性组合保持性
对于任意标量$a$和$b$,以及向量 $mathbf{u}$和$mathbf{v}$,线性 变换$T$满足$T(amathbf{u} + bmathbf{v}) = aT(mathbf{u}) + bT(mathbf{v})$。
通过引入复数和极坐标等 概念,可以将某些函数图 像进行旋转。
微分方程中的线性变换
变量代换
通过适当的变量代换,可以将某些非线性微分方 程转化为线性微分方程,从而简化求解过程。
拉普拉斯变换
将时间域内的微分方程通过拉普拉斯变换转换到 频域内,从而方便求解和分析。
傅里叶变换
将时间域内的函数通过傅里叶变换转换到频域内 ,可以分析函数的频率特性和进行滤波等操作。
数乘保持性
对于任意标量$k$和向量$mathbf{v}$,线性变换$T$满足$T(kmathbf{v}) = kT(mathbf{v})$。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

称 ������(������ሻ =
������21(������ሻ ⋮
������22(������ሻ ⋮
⋯ ⋱
������2������(������ሻ ⋮
为 ������ 的多项式矩阵,
������������1(������ሻ ������������2(������ሻ ⋯ ������������������(������ሻ
CQU 注:行变对应于左乘、列变对应于右乘一个矩阵。
8
Jordan 标准型
定义(P47) 若多项式矩阵������(������ሻ通过有限次初等变换变为
������(������ሻ,称������(������ሻ与������(������ሻ等价,记为A(������ሻ ≅ ������(������ሻ。
阶子式为。
������ − 2 0 1 1
−1 0 0 1 ������ − 4 −1
1 0
= − ������ − 4 2
0
0 0 ������ − 4
这两个子式的公因式为1,故������4(������ሻ = 1, ⇒ ������1(������ሻ =
������2(������ሻ = ������3(������ሻ = 1。
0 −1 1 0 0 ������ − 3
第1-4行与第1、2、4、5列交叉的元素形成的四阶子式为。
������ − 2 −1 1 0
−1 ������ − 2
1 1
1 0 −1 ������ − 3
1
1 0
= (������ − 2ሻ(3������ − 4ሻ
−1
CQU
18பைடு நூலகம்
Jordan 标准型
第1、2、3、5行与1、3、4、5列交叉的元素形成的四
(2)写出各Jordan块矩阵(一个初等因子对应一个Jordan块矩
������������ 0
0
阵) ������ − ������������ ������������ → ������������(������������ሻ = 1
������������ ⋱
⋱ ⋱
0

0
1 ������������ ������������������������
CQU
3
Jordan 标准型
一、 Jordan标准形的定义与存在定理
任何方阵A均可通过某一相似变换化为如下Jordan标准形:
������1(������1ሻ
0
������ =
������2(������2ሻ
.

0
������������(������������ሻ
������������
其中������������(������������ሻ = 1
CQU
16
Jordan 标准型
������1
0
(3) 合成Jordan矩阵:������ =
������2 ⋱

0
������������
2 1 0 −1 −1 0
1 2 0 0 −1 1
例:求矩阵������ =
−1 0
−1 −1
4 0
1 3
0 1
−1 0
的Jordan标准形。
0 000 4 0 1 0 0 0 −1 3
������������ 1

称为Jordan块矩阵,������1, ������2, ⋯ , ������������是
1 ������������ A的特征值,可以是多重的。
CQU
4
Jordan 标准型
说明: ������������(������������ሻ中的特征值全为������������,但是对于不同的i,j,有可能������������ =
������6(������ሻ = ������ − 2 2 ������ − 4 3
CQU
20
Jordan 标准型
初等因子组为 ������ − 2 , ������ − 2 2, ������ − 4 3。相应的
Jordan块为
2

2 1
0 2

4 1 0
0 4 1
0 0。
4
2
0
2
Jordan标准形为
,������0
������
= 1。。
CQU
12
Jordan 标准型
定理3.3.13 若A(������ሻ ≅ ������(������ሻ,则������(������ሻ与������(������ሻ有相同的秩和 行列式因子。
于是,求������(������ሻ 的Smith标准型既可以通过有限次初等变 换得到,又可采用通过行列自因子得到不变因子:
定理3.3.10 两个������ × ������的多项式矩阵������(������ሻ、 ������(������ሻ等价的
充分必要条件是存在可逆������阶������(������ሻ阵和n阶Q(������ሻ阵,使得
������ ������ ������ ������ Q ������ = ������ ������ 。
CQU
17
Jordan 标准型
解:(方法一)写出特征矩阵
������ − 2 −1 0
−1 ������ − 2 0
(������������ − ������ሻ =
1 0
1 ������ − 4
1
0
0
0
0
−1 0
0
1 0 −1 ������ − 3 0 0
1 1 0 −1 ������ − 4 1
其中矩阵元素������������������ (������൯为������的多项式。 定义3.13 若������矩阵������(������ሻ有一个r (������ ≥ 1)级子式不恒为0,而所有
CQU 的������ + 1级子式全为0,则称������(������ሻ的秩为r,记为rank������(������ሻ=r(A)=r。
定理3.3.9:一个n级������方阵������(������ሻ可逆的充分必要条件是|������ ������ |
为非零常数。
注:逆阵唯一。
CQU
7
Jordan 标准型
三、多项式矩阵的初等变换 初等变换的目的是为了在保持矩阵原有属性的前提下形
式上变得简单。 互换两行(列) 以非零常数乘以某行(列) 将某行(列)乘以������的多项式加到另一行(列)。
第1、2、3、4、6行与第1、2、4、5、6列交叉的元素
形成的五阶子式为
CQU
19
Jordan 标准型
������ − 2 −1 1 1 0
−1 ������ − 2 0 1 −1
1
1 −1 0 1 = 4 ������ − 2 3
0
1 ������ − 3 −1 0
−1 0
0 1 ������ − 3
注2:对于数字矩阵A,������������ − ������的初等因子就是A的初等因
子。例8-9见教材
CQU
14
Jordan 标准型
定理3.3.14 若������(������ሻ与������(������ሻ都是������ × ������ 的多项式矩阵,则下
列命题等价。
(1) A ������ ≅ ������ ������
其它五阶子式均含 ������ − 2 因式,故������5(������ሻ = (������ − 2ሻ。
特征值行列式为������6(������ሻ = ������ − 2 3 ������ − 4 3,从而有
������1(������ሻ = ������2(������ሻ = ������3(������ሻ = ������4(������ሻ = 1,������5(������ሻ = (������ − 2ሻ,
定理3.3.11 设A和B是两个数字方阵,则������~������的充分必要
条件是������������ − A ≅ ������������ − ������。
CQU
9
Jordan 标准型
定理3.3.12(*) 任意一个秩为r的������ × ������ 的多项式矩阵������(������ሻ
CQU 再根据不变因子得出������(������ሻ 的Smith标准型。例7见教材。
13
Jordan 标准型
将每个不变因子化为不可约因式,这些不可约因式称
为������(������ሻ的初等因子,全体初等因子称为初等因子组。例如:
������1(������ሻ = ������ − 2 2(������ − 3ሻ → ������ − 2 2和(������ − 3ሻ ������2(������ሻ = ������ − 2 2 ������ − 3 5 → ������ − 2 2和 ������ − 3 5 注1:初等因子有可能相同,如上应包括两个 ������ − 2 2。
证明:(略)
注:多项式矩阵的标准形式不随所采用的初等变换而变,
故称������������ ������ 为不变因子。
CQU
11
Jordan 标准型
例6.(P48)用初等变化求出������矩阵������(������ሻ 的Smith标准型。
为了更加灵活地求出������矩阵的Smith标准型,给出如下
都可以通过初等变换化为一个多项式对角矩阵,即:
������1(������ሻ
0
������2(������ሻ

������(������ሻ →
相关文档
最新文档