化学动力学基础_

合集下载

第7章 化学动力学基础

第7章 化学动力学基础

例:有一化学反应aA+bB=C在298K时,将AB溶液按
不同浓度混合。得到下列数据。
A的初始浓度 B的初始浓度 1.0 1.0 2.0 1.0 4.0 1.0 1.0 1.0 1.0 2.0 1.0 4.0 求其速率方程? 初始速度(mol/l· s) 1.2×10-2 2.3×10-2 4.9×10-2 1.2×10-2 4.8×10-2 1.9×10-1
( H O ) C (H O ) C (H O ) v t t
2 2 2 2 2 1 2 2
作出H2O2的 c — t 的曲线,得到 0 — 40
min的平均速率:
v 0.20 0.80 0.20 0.80 0.015mol dm 3 min 1 t 40
求该反应的反应级数m+n和速度常数k?
解:由速度方程v=k[CO]m· 2]n [Cl 得:v1=k[CO]m· 2]1n v2=k[CO]m· 2]2n [Cl [Cl
n v1 [Cl 2 ]1 v2 [Cl 2 ]n 2
2 v1 1.2 10 lg lg v2 4.26 10 3 0.45 1.5 n [Cl 2 ]1 0.10 0.30 lg lg [Cl 2 ]2 0.050 v1 1.2 10 2 lg lg v3 6.0 10 3 1 m [CO ]1 0.10 lg lg [CO ]3 0.050
解:由v=k[A]m· n [B] v1=k×1m×1n=k=1.2×10-2
v2=k×2m×1n=k×2m=2.3×10-2
v1 1 1.2 10 2 1 m 2 v2 2 2.3 10 2
v4=k×1m×1n=1.2×10来自2 v5=k×1m×2n=4.8×10-2 ∴k×2n=4.8×10-2 2n=4.8×10-2/k=4=22 ∴n=2

05 第五章 化学动力学基础

05 第五章  化学动力学基础
(0.7 1.0) rN 2 0.1(mol L-1 s -1 ) 3 1
(2.1 3.0) rH 2 0.1(mol L-1 s -1 ) 3 3
rNH 3 (0.6 0) 0.1(mol L-1 s -1 ) 3 2
化学与材料科学学院
r kc ( NO)c(O2 )
2
化学与材料科学学院
殷焕顺
2.应用速率方程的注意事项
①反应物是气体时,可用分压代替浓度。
如基元反应:
2 NO( g ) O2 (g) → 2 N O2 (g)
r kc ( NO)c(O2 ) rp k p p ( NO) p(O2 )
2
2
②固体或纯液体不写入速率方程。
mol· -1· -1 L min
化学与材料科学学院
殷焕顺
1.1 平均速率
对任一化学反应:
aA bB
选用产物表示时, 取 + 号;选用反 应物表示时,取 - 号,目的是使 反应速率为正值。
在时间间隔△t内,其平均速率为:
c( A ) rA t c( B ) rB t
化学与材料科学学院
化学与材料科学学院
殷焕顺
1. 速率方程
如任意反应:aA + bB = dD + eE
速率可表示为:
r k c c
x A
y B
k 为反应速率常数;
x、y 分别为反应物A、B的反应级数;
x + y为反应的总级数。
化学与材料科学学院
殷焕顺
质量作用定律-古德贝格(Guldberg)
质量作用定律
描述:在一定温度下,对简单反应(或复合反应中 的基元反应), 化学反应的速率与以反应方程式中 化学计量数为指数的反应物浓度的乘积成正比。

物理化学第9章 化学动力学基础

物理化学第9章 化学动力学基础
表示反应速率和浓度关系的方程 r = f (c),或 者表示浓度和时间关系的方程 c = f (t),都称为化 学反应的速率方程,前者是微分形式,后者是积 分形式。也称动力学方程。
速率方程必须由实验来确定
四、反应级数 若反应的速率方程可以表示为浓度的幂乘积形式:
r = k[A][B]…
则各浓度项的方次、、…分别称为组分A、B …的
例 1、P165例题
某金属钚的同位素进行β放射,14 d 后,同位
素活性下降了6.85%。试求该同位素的:
(1) 蜕变常数,(2) 半衰期,(3) 分解掉90%所需时间
解:
(1)
k1
=
1 t
ln
a
a
x
=
1 14d
ln
100 100 6.85
=
0.00507d-1
(2) t1/2 = ln 2 / k1 = 136.7d (3) t = 1 ln 1 = 1 ln 1 = 454.2d
例如:
例如,恒容反应器中,氯代甲酸三氯甲酯分解为光气
ClCOOCCl(g) 2COCl2(g)
t = 0 p0
0
t = t p酯
p光气=2( p0 – p酯)
p总 = p酯 + p光气 = 2 p0 –p酯
∴ p酯 = 2p0 – p总
或 p光气 = 2(p总– p0)
三、反应速率 r 的经验表达式
2、适用范围
ln k = Ea B RT
k = AeEa / RT
3、A意义:称指前因子
二、活化能的概念 1、对简单反应:
那些能量高到能发生反应的分子称为“活化分子” 活化能:活化分子的平均能量与反应物分子平 均能量之差值。

普通化学——化学动力学基础PPT课件

普通化学——化学动力学基础PPT课件

(产物取正,生成物取负)
显然,两种方法定义的数值不一样,它们之间的关系为: r ri 1 dci vi vi dt
式中,vi为反应系数,符号一律取正)
||
||
5
3.1.2 反应动力学方程
1 积分形式的动力学方程
描述反应体系中某组分浓度与时间的关系的函数称为积分形式的动 力学方程:
ci = g(t)
||
||
10
3.2 简单级数的反应的动力学方程
常见的简单级数的反应有零级反应、一级反应和二级反 应,三级反应的例子不多。 零级反应(准)——气、固相催化反应,酶催化反应 一级反应——同位素衰变反应,部分取代反应 二级反应——水解反应,部分取代反应
||
||
11
3.2.1 一级反应
一级反应:A → P dc kc dt
t
图3.2 一级反应
||
||
13
一级反应计算示例
例3.1 从考古发现的某古书卷中取出的小块纸片,测得 其中 14C/12C 的比值为现在活的植物体内 14C/12C 的比值 的0.795 倍。试估算该古书卷的年代。
解: 已知 1 4 7 1 4 7 - 0 1 e - , t 12 5730a
可用式(2.34)求得此一级反应速率常数k
第三章 化学动力学基础
第三章 化学动力学基础
化学热力学为我们提供了判断反应能否自发进行的依据。 但是一个热力学自发的反应不一定能够进行,例如:
H2(g)+O2(g) = H2O(g) 298.15K时标准摩尔反应吉布斯函数变为–457kJ·mol-1,但 在此温度下,不点燃或无撞击的情况下几天甚至几月都 观察不到水分子的产生。
2 微分形式的动力学方程

北理无机化学第3章-化学动力学基础

北理无机化学第3章-化学动力学基础
例:
基元反应
§3.2 浓度对反应速率的影响
NO2(g)+CO(g) NO(g)+CO2(g)
v=kc(NO2)c(CO)
反应级数 n = 2
基元反应 2NO(g)+O2(g)2NO2(g)
v=kc(NO)2c(O2)
反应级数 n = 3
第三章 化学动力学基础
3.注意
§3.2 浓度对反应速率的影响

lg{k}
Ea 2.303RT
lg{k0}
k: 反应速率常数,由反应的性质和温度决定;
Ea:实验活化能,单位为kJ·mol-1,是表示反应特性 的常数;
k0:指数前因子,频率因子,对指定反应为一常数。
第三章 化学动力学基础
§3.3 温度对反应速率的影响
3.3.2 Arrhenius 方程式的应用
vB ΔcB Δt
vC
ΔcC
t
vD ΔcD Δt
浓度的单位:mol·L-1 时间的单位:s(h、min)
第三章 化学动力学基础
例:
起始浓度/(mol·L-1)
§3.1 反应速率的意义
N2 + 3H2 → 2NH3
13
0
2秒后浓度/(mol·L-1)
0.8 2.4 0.4
同一反应,可用不同物质的浓度的变化表示反应速率,其 值可能不同。
vN2
-
(0.8-1) 2
0.1mol
L-1
S-1
vH2
-
(2.4- 3) 2
0.3 mol
L-1
S-1
vNH3
(0.42
0)
0.2 mol
L-1
S-1
第三章 化学动力学基础

化学动力学基础一111化学动力学的任务和目的ΔmΔm

化学动力学基础一111化学动力学的任务和目的ΔmΔm

量纲:压力·时间-1
(2)对多相催化反应
r=
1 dξ Q dt
Q 为催化剂的量,如 m, V, A
1 dξ ⎧ ⎪rm = m dt ⎪ 1 dξ ⎪ ⎨rV = V dt ⎪ 1 dξ ⎪ ⎪rA = A dt ⎩
催化剂的比活性 单位体积催化剂上的反应速率 单位面积催化剂上的反应速率
二、反应速率的测定 c~t 1、化学方法:骤冷、冲稀、加阻化剂或除去催化剂 2、物理方法:利用与物质浓度有关的物理量(如旋光度、电导、折射率、电动势、V、P、光谱等)进行连 续监测,获得一些原位反应的数据。即:物理量~ci 优点: (1)可进行原位分析(2)连续跟踪
2 4 8
二级反应(例题) 1. 某二级反应,反应物消耗 1/3 需时间 10min,若再消耗 1/3 还需时间为: ( (A)10min(B)20min(C)30min( 5 个与 NO 有关的三级反应,类型有:
A + B+C → P 2A + B → P 3A → P
当 x → a 时,t → ∞,反应不能进行到底。 2.k1 量纲:时间-1 3.半衰期: t 1 =
2
1 a ln k1 a − a
= 2
ln 2 k1
与初始浓度 a 无关
4.一级反应的特征 (1)以 ln(a-x)对 t 作图为一直线,斜率为-k1
(2)k1 量纲:时间-1
11-3
(3)对于一给定反应, t 1 是一个常数,与初始浓度 a 无关
2
H + HBr → H2 + Br
Br + Br + M → Br2 + M
k[H 2 ][Br2 ] 2 r3 = [HBr] 1 + k' [Br2 ]

化学动力学

化学动力学

RT
1
k2dA 2BLRT Me
2
eEa
RT
1
A2dA2BLRTMe 2
1
A2dA2BLRM T 2
kkB hTcθ1nexp R Sm θ exp R H Tm θ
适用范围:凝聚相反应
kkB h T R pT 1nexp R Sm θ exp R H Tm θ
Carbon Dioxide Fixation into Chemicals Methyl Formate at High Yields by Surface Coupling over a Pd/Cu/ZnO Nanocatalyst
Gm θRTlnKcθ
G m θRTlnKc

n1
Gm θ RT
lnKc

n1

K n1 c
expRG Tm θ
Kc cθ 1nexpRG Tm θ
k
kBT h
K
c
kkBT h

1nexpR G Tm θ
G
m
标准摩尔反应活化Gibbs自由能变
G m θ H m θT Sm θ
kkB h Tcθ1nexp R Sm θ exp E aR T R T
kkB hTcθ1nexp R Sm θ exp R T R TE a
kkBTcθ h
1nexp R Sm θexp1R E T a
kkBTecθ h
1nexp R Sm θexp R E Ta
rk2KccAcBC
根据过渡状态理论的假设活化络合物只 进行一次非对称伸缩振动就能断裂发生 反应因此反应速率为
k2
rr K cccAcBC

4第四章 化学动力学基础-2007

4第四章 化学动力学基础-2007

2NO(g) + O2 (g) → 2NO2 (g)
r = kc ( NO
)
2
c(O2 )
2+1 2+1 2+1 2+2 1+1 1+3
( 2NO g) + 2H2 (g) → N2 (g) + H2O(g) r = kc2 ( NO) c ( H2 )
2 S2 O 8 (aq ) + 3I (aq ) →
B
2. 化学反应速率方程
r = k∏c
B
nB B
k ---反应速率系数,比速常数,其物理意义是 反应速率系数, 反应速率系数 比速常数, 各反应物的浓度均等于单位浓度时的反应速率。 各反应物的浓度均等于单位浓度时的反应速率。 k的量纲与反应级数有关,为[浓度1-n 时间-1]。 的量纲与反应级数有关, 浓度 的量纲与反应级数有关 。
t/s p / kPa 0 20 50 80 100 120 150 180 200 50.65 46.60 41.03 35.43 33.43 30.39 26.85 23.81 21.78
作图, 作 ln p~ t 作图, k1 = - m = 4.2×10-3 s-1 ×
t1/ 2
ln 2 = = 165 s k1
S2 O + 3I → 2SO + I k1 2 ① S2 O8 + I 2S2 O8 I3 (慢 ) → 3 2 ② 2S2 O8 I + I → 2SO 4 + I 2 (快) ③ I + I 2 → I3 (快)
2 8
2 4
3
二、化学反应速率的表示
1. 反应速率:——单位体积反应体系中反应进度 反应速率: 单位体积反应体系中反应进度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
r(rate) ≡ △ni / △t (7—1) r(rate)≡ △Ci /△t (7—2)
单位:mol·L-1·t-1
2N2O5 (g)
4NO2 (g) + O2 (g)
r (N2O5) = - ΔC(N2O5) Δt
r (NO2) = - ΔC(NO2) Δt
r (O2) = ΔC(O2) Δt
lim cB dcB
t0 t dt
r = dCi/ dt
(7—3)
d indicates an infinitesimally small change,各速率表示式之 间有如下关系(以上式为例):
2N2O5 (g)
4NO2 (g) + O2 (g)
1
-dC(N2O5) = 1
例:2N2O5(CCl4)
2N2O4 (CCl4) + O2(g)
t1= 0 s t2=300 s
c1(N2O5) = 0.200 mol·L-1 c2(N2O5) = 0.180 mol·L-1
mol L-1 3.3105 mol L-1 s-1
充满氧气的广口瓶中
铁丝变红 铁丝燃烧
恒温下,通常反应物质浓度↑,单位体积内反应分子数↑, 反应速度↑
2—1 化学反应速率方程式和速率常数 (rate equation and rate constant)
early works 1850年,wilhelmy从蔗糖水解反应得到最早的速率方程:
r = - dn/dt = k n(k为常数) r `= dc/dt = k`c(k为常数)
第7章 化学动力学基础
NO,CO
NO和CO是汽车尾气中的有毒成分, 它们能否相互反应生成无毒的N2和CO2? 2NO (g) + 2CO(g) → N2 (g) + 2CO2 (g)
第7章 化学动力学基础
Chapter 7 Chemical kinetics foundation
化 反应方向、限度 学 能量变化
热力学-注意体系 的初始态
反 应
反应速率 反应机理
动力学-反应进行的 具体途径、所需时间
第7章 化学动力学基础
7-1 化学反应速率的概念 7-2 浓度对反应速率的影响
—速率方程式 7-3 温度对反应速率的影响
—Arrhenius方程式 7-4 反应速率理论和反应机理简介 7-5 催化剂和催化作用
7-1 化学反应速率的概念
N2O5
dt
2
7--2 浓度对反应速率的影响 —速率方程式
Dependence of rate on concentration
7.2.1 化学反应速率方程式
7.2.3 速率常数
7.2.4 反应级数
7.2.4 由实验确定反应速率方程的
简单方法—初始速率法
7.2.5 利用速率方程进行计算
铁丝Βιβλιοθήκη 酒精灯上加热7.29 105
300 1.15 0.180
6.46 105
600 2.18 900 3.11 1200 3.95 1800 5.36
0.161 0.144 0.130 0.104
5.80 105
5.21105
4.69 105
3.79 105
2400 6.5 3000 7.42 4200 8.75
① 测不同时间时的某组份浓度 ② 作C—t图→curve slope = dC(N2O5)
dt
③ r = 曲线上任一点斜率的负值
requirement:反应比较慢, 以利于浓度的测定。
瞬时速率 v 1 dC(N2O5) 1 (0.22) 0.11mol L1 min 1
ξ≡ (ni—nio)/υi = △ni /υi
1 dξ = dni
υi
dξ 1
r=
=
dni =
1
dCi
dt υi Vdt
υi Vdt
(7—5) (7—6) (7—7)
请注意化学计量数 的数符规定
1-4 Experimental determination of reaction rate
reaction rate is determined by experiments and making a drawing .
7.1.1 概述 7.1.2 平均速率与瞬时速率
7.1.1 概述

爆炸反应

中和反应
应 化





钢铁生锈 食物腐败 人体衰老
应 石油的分解
废塑料的分解
被人类充分应用
不易被察觉 造成的损失巨大 希望控制速度减缓进程
希望控制速度 加快反应进程
7.1.2 平均速率与瞬时速率
1. 平均速率 某一有限时间间隔内浓度的变化量。
dC(NO2) dC(O2) =
2 dt
4 dt
dt
For common equation aA + bB = dD + eE
-dC(A) -dC(B) dC(D) dC(E)
=
=
=
dt
dt
dt
dt
(7—4)
1-3 反应进度 extent of reaction(物理化学课程继续学习)
aA + bB = dD + eE
0.084 0.068 0.044
3.04 105 2.44 105 1.59 105
5400 9.62 6600 10.17
0.028 0.018
1.03105
7800 10.53 0.012
11.2 0.0000

说明: ① 以反应物浓度减小表示加负号; ② 也可用分压的变化来表示; ③ 绝大部分化学反应是非等速的; ④ 表示式不同,数值不一定相同,但存在一定比例关系; ⑤ Δ是一个宏观改变量
2 300 s
40 C, 5.00mLCCl 4中N2O5的分解速率 ο
2N 2O5 CCl 4 2N 2O4 CCl 4 O2 g
t/s
VSTP O2 /mL cN2O5 / mol L1
/ mol L1 s1
0
0.000 0.200
r=
Lim △Ci △t→0 △t
dCi = dt
二、instantaneous rate 瞬时反应速率
instantaneous rate是Δt趋近于零时(某一瞬间)的反应速 率,又叫authentic rate真实反应速率
Lim r=
△Ci
△t→0 △t
dCi = dt
时间间隔Δt趋于无限小时的平均速率的极限。
相关文档
最新文档