光速测量
对光速的四种测量方法(一)

对光速的四种测量方法(一)对光速的四种测量引言光速是自然界中的一个重要常数,也是物理学中的一个关键概念。
为了准确测量光速,科学家们利用了多种方法,并不断改进测量技术。
本文将介绍四种常用的光速测量方法,并对每种方法进行详细说明。
1. 法拉第干涉法•法拉第干涉法是通过测量光在不同介质中传播的速度来间接测量光速的方法。
•该方法利用了法拉第效应的原理,即光在不同介质中的折射率不同。
•通过测量光传播过程中的相位差,可以计算出光速的值。
2. 经典迈克尔逊干涉仪法•经典迈克尔逊干涉仪法是一种直接测量光速的方法。
•该方法利用了迈克尔逊干涉仪的原理,通过调节镜面的位置,使得两路光线相遇时产生干涉条纹。
•通过测量干涉条纹的移动速度,可以得到光速的准确数值。
3. 散斑法•散斑法也是一种直接测量光速的方法。
•该方法利用了散斑的特性,即由于光的波长很小,散斑的大小和形状对光速具有较高的敏感性。
•通过测量两个连续瞬时散斑的位置差,可以计算出光速的值。
4. 吸收法•吸收法是一种间接测量光速的方法,适用于有较高浓度的吸收材料。
•该方法利用了材料对光的吸收特性,通过测量光在材料中传播的距离和时间,可以计算出光速的值。
•由于材料的吸收特性对光速的测量具有一定的误差,因此该方法常常与其他测量方法结合使用。
结论通过以上四种测量方法,科学家们不断改进光速测量技术,为光速的准确确定做出了重要贡献。
不同的测量方法在不同领域具有不同的适用性,科学家们将继续探索更准确、更精确的光速测量方法,推动科学研究的发展。
注意:本文全部采用markdown格式,不含html字符、网址、图片和电话号码内容。
1. 法拉第干涉法•法拉第干涉法是利用法拉第效应测量光速的一种间接方法。
•法拉第效应是指当光通过不同介质时,光的传播速度会发生改变。
•通过测量光在不同介质中的传播速度差异,可以计算出光速的值。
•这种方法的优点是测量精度较高,但需要较为复杂的实验装置和较长的测量时间。
测光速的方法

测光速的方法
一、什么是测光速?
测光速就是测量物体在当前空间中运动的速度,它是光在特定物质中传播的速度。
二、测光速的方法
1、干涉法
干涉法是最常用的测量光速的方法,它通过观察干涉图形来计算光速。
干涉法通常使用双灰色条,在一端发射一束平行光,并在另一端用两个对比板把其分割以产生一组干涉条纹。
纹线的间距可以被用于计算光速。
2、瞬变方法
瞬变方法同样也通常被用来测量光速。
它是在测量观察物体的距离时发出一束光,并以某种方式将光源在观测物体之前和之后做比较,然后得到光源的速度。
3、Pulse Propagation Method
这是一种检测物体运动方向和速度的方法,它使用一个精确的电脉冲在焦点发射,然后用接收器探测反射回来的电脉冲。
发射时间和反射电脉冲接收到时间的差值可以利用海神公式运算出物体运动的
速度。
三、总结
从上面的介绍来看,想要测量光速,可以采用干涉法、瞬变方法和脉冲传播法。
每种方法都有它自己的优缺点,因此应根据实际情况
选择不同的方法。
光速测量方法

光速测量方法光速是一个非常重要的物理常量,它不仅仅是基本物理学理论的重要组成部分,而且也应用在许多高科技领域中。
测量光速的方法越来越受到物理学家和工程师们的关注。
下面,我们就来介绍一些光速测量方法。
1. 蒙特卡罗方法蒙特卡罗方法是一种基于随机模拟的计算方法,被广泛应用于物理、计算机科学、金融等领域。
测量光速的蒙特卡罗方法是基于对光速测量误差的统计分析,通过大量模拟数据得到更为准确的测量结果。
2. 干涉法干涉法是一种基于光波干涉原理的测量方法。
它利用两束波之间光程差的变化来确定光速的大小。
干涉法的优点是测量精度高,但需要专业的光学仪器。
3. 光栅衍射法光栅衍射法是一种基于光栅衍射原理的测量方法。
它利用光栅的衍射效应来测量光的波长,并根据公式v=fλ计算出光速。
这种方法也需要专业的光学仪器。
4. 电光效应法电光效应法是一种基于电子和光的相互作用原理的测量方法。
它利用电场对光的速度产生影响,从而测量光速。
这种方法可用于研究光在各种介质中的传播速度特征。
5. 等时间差法等时间差法是一种基于光时间差原理的测量方法。
它利用控制不同路径的光通过时间差和空间距离,测量光的速度。
等时间差法的优点是可以获得更高的测量精度。
除了上述提到的光速测量方法,还有一些其他的方法可以用来测量光速。
激光测距法、偏振测量法、闪烁法等等。
这些测量方法在不同的领域和应用中发挥着重要的作用。
激光测距法是一种基于激光束传播时间的原理来测量距离的方法,它可以通过计算时间和速度的乘积来得到光速。
这种方法应用于地球和卫星之间的距离测量,是卫星导航和地理测量中必不可少的技术手段之一。
偏振测量法是一种基于光偏振的原理来测量光速的方法,它通过测量光的传播速度来确定光速。
这种方法广泛应用于晶体和液体中的光学研究中,以及生物医学领域的某些实验中。
这些光速测量方法的发展和应用将推动我们对光学的深入研究和认识。
它们也为我们研发高精度、高速度的光学设备提供了重要的支撑。
几种测量光速的方法

几种测量光速的方法引言: 光速的测定在光学的发展史上具有非常特殊而重要的意义。
它不仅推动了光学实验, 也打破了光速无限的传统观念;在物理学理论研究的发展里程中, 它不仅为粒子说和波动说的争论提供了判定的依据, 而且最终推动了爱因斯坦相对论理论的发展。
摘要: 光速的测定, 经过了几百年的历史, 最初的光速是由惠更斯根据丹麦科学家罗曼的理论测出的, 但是很不精确。
随后的科学家为了的到更精确的结果, 便发明并运用不同的方法去测定光速, 其中最先较精确的结果是法国科学家菲索旋转齿轮法, 接着的是迈克尔逊的旋转镜和干涉仪的测法, 还有生活中运用微波炉测定光速的方法。
关键字: 光速的测定一.正文:二.惠更斯的测定的光速丹麦青年科学家罗默。
罗默生于奥尔胡斯, 在哥本哈根受过教育, 后来移居巴黎。
在罗默来巴黎的30年前, 意大利天文学家卡西尼应路易十四聘请也来到巴黎,他对木星系进行了长期系统的观察和研究。
他告诉人们, 木星和地球一样也是围绕着太阳运行的行星, 但它绕太阳运行的周期是12年。
在它的周围有12颗卫星, 其中有4颗卫星特别亮, 地球上的人借助于望远镜就可以看清楚它们的位置。
由于这些卫星绕木星运行, 隔一段时间就会被木星遮食一次, 其中最近木星的那颗卫星二次被木星遮食的平均时间间隔为42小时28分16秒。
罗默在仔细观察和测量之后发现, 这个时间间隔在一年之内的各个时间里并不是完全相同的, 并且当木星的视角变小时, 这个时间间隔要大于平均值。
1676年9月, 罗默向巴黎科学院宣布, 原来预计11月9日上午5点25分45秒发生的木卫食将推迟10分钟。
巴黎天文台的天文学家们虽然怀疑罗默的神秘预言, 但还是作了观测并证实了木卫食的推迟。
11月22日罗默在解释这个现象时说, 这是因为光穿越地球的轨道需要时间, 最长时间可达22分钟。
后来惠更斯利用罗默的数据和地球轨道直径的数据, 第一次计算出光速为2×108米/秒。
初中物理光学-光速的测量

初中物理光学-光速的测量
光速是物理学中最重要的基本常数之一,也是所有各种频率的电磁波在真空中的传播速度.狭义相对论认为:任何信号和物体的速度都不能超过真空中的光速.在折射率为n的介质中,光的传播速度为:v=c/n.在光学和物理学的发展历史上,光速的测定,一直是许多科学家为之探索的课题.许多光速测量方法那巧妙的构思、高超的实验设计一直在启迪着后人的物理学研究.历史上光速测量方法可以分为天文学测量方法、大地测量方法和实验室测量方法等
一、光速测定的天文学方法
1.罗默的卫星蚀法
光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默(16441710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的时钟,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间(上图中地球运行到轨道上的A。
实验十九 光速的测量

【实验目的】 实验目的】
1. 理解光拍频概念及其获得。 2.掌握光拍法测量光速的技术。
【实验原理】 实验原理】
1.光拍 1.光拍 设有两列振幅相同的光波: E1 = E0 cos(ω1t − kx + φ1 )
E 2 = E 0 cos(ω 2 t − kx + φ 2 )
这两列波叠加后:
E = E1 + E2 = 2E0 cos[ 2
实验十九 光速的测量
南昌航空大学大学物理实验中心
前言
1.光速测量的意义 光速测量的意义 光速是物理学中重要的常数之一。对光速进行精确 的测量,能证实光的电磁本性,而且光速的测量与 物理学中许多基本的问题有密切的联系,如天文测 量,地球物理测量,以及空间技术的发展等计量工 作,对光速的精确测量显得更为重要,它已成为近 代物理学中的重点研究对象之一。
假设空间两点的光程差为∆X ′ ,对应的光拍信号的位相 ∆X ′ ∆X ′ 差∆ϕ ′ ,即 ∆ϕ ′ = ∆ω ⋅ = 2π∆F c c …………(1) 光拍信号的同位相诸点的位相差满足下列关系 …………(2) ∆ϕ = n ⋅ 2π
c 由(1)(2)式可推导出: = ∆F ∆X n
…………(3)
近、远程光光路图
近程光光电信号
远程光光电信号
【实验步骤】 实验步骤】
4.接通斩光器电源开关,示波器上将显示相位不同 的两列正弦波形。
近程光和远程光的光电信号
【实验步骤】 实验步骤】
5.移动滑动平台,改变两光束的光程差,使两列光拍 信号同相(位相差为2π),此时的光程差即为光拍频 波波长。
同相位的近、远程光的光电信号
式中 ∆ω 是光拍频的角频率。可见光检测器输出的光电 流包含有直流成份和光拍信号成份。如果接收电路把直 流成份滤掉,检测器将输出频率为拍频 ∆F,而相位与空 间位置有关的光拍信号。
光速测量的方法完整版

光速测量的方法完整版光速是光在真空中传播的速度,它是物理学中一个重要的常数。
光速的准确测量对于科学研究和工程应用具有重要意义。
本文将介绍几种常见的测量光速的方法,并详细阐述每种方法的原理和步骤。
一、费朗菲法测量光速费朗菲法是一种基于光的干涉现象的测量方法,利用两束相干光的叠加干涉现象来测量光的传播速度。
实验步骤:1.准备一块平行的玻璃板或光路径较长的介质,将光源照射到板上,使光线经过一定的路径后反射回来。
2.调整光源和板之间的距离,使得反射回来的光线与来自光源的光线在其中一点上相干叠加。
3.在相干叠加的区域中放置一个可调节的半透明平板,通过调节平板的倾斜角度,使得反射光和透射光之间的光程差达到最小值。
4.测量半透明平板在达到最小光程差时的倾斜角度。
5.根据半透明平板的倾斜角度和反射回来的光线与来自光源的光线的夹角,可以计算出光在材料中的传播速度。
二、福克频率法测量光速福克频率法利用声波和光波之间的相互作用来测量光速。
通过测量声波在介质中的传播速度以及光在介质中的折射率,可以计算出光速。
实验步骤:1.准备一个声波源和一个光源,将它们放置在介质中。
2.通过控制声波源的频率和光源的发光频率,使得声波和光波在介质中产生共振现象。
3.通过改变声波源和光源之间的距离,测量共振现象的频率。
4.根据声波的频率和声速以及光的频率和折射率,可以计算出光速。
三、飞行时间法测量光速飞行时间法是一种基于光速和时间的测量方法,通过测量光传播的时间和光线的路程来计算光速。
实验步骤:1.准备一个脉冲激光器和一个光传感器,将它们放置在一条直线上。
2.由脉冲激光器发射一束激光,光线经过一段距离后被光传感器接收到。
3.测量激光从发射到被接收的时间差。
4.根据测得的时间差以及光线传播的路程,可以计算出光速。
综上所述,费朗菲法、福克频率法和飞行时间法是几种常见的测量光速的方法。
每种方法都有其独特的原理和实验步骤,通过合理设计实验,并使用精密的测量装置可以测量出光的传播速度。
光速测量方法完整版

一、 伽 利 略 测 量 光 速
1607年伽利略最早做了测定光速的尝 探 索 试:让两个实验者在夜间每人各带一 盏遮蔽着的灯,站在相距约1.6km的 光 两个山顶上,第一个实验者先打开灯, 同时记下开灯的时间,第二个实验者 速 看到传来的灯光后,立刻打开自己的 旅 灯,第一个实验者看到第二个实验者 之 的灯光后,再立刻记下时间.然后根 据记下的时间间隔和两山顶间的距离 计算出光的传播速度.
三、 • 当一束由光导纤维的入射端耦合到光导纤维内 光 部之后,会在光纤内同时激励起传导模式和辐 纤 射模式,但经过一段传输距离,辐射模的电磁 场能量沿横向方向辐射尽后,只剩下传导模式 中 沿光纤轴线方向继续传播,在传播过程中只会 光 因光导纤维纤芯材料的杂质和密度不均引起的 速 吸收损耗和散射损耗外,不会有辐射损耗。目 的 前的制造工艺能使光导纤维的吸收和散射损耗 测 做到很小的程度,所以传导模式的电磁场能在 量 光纤中传输很远的距离。
• 1928年,卡娄拉斯和米太斯塔德首先提出利用 四、 克尔盒法来测定光速。1951年,贝奇斯传德用 这种方法测出的光速是299793千米/秒。 新 • 探 方 1950年,艾森提出了用空腔共振法来测量光速。 索 法 这种方法的原理是,微波通过空腔时当它的频 率为某一值时发生共振。根据空腔的长度可以 测 光 求出共振腔的波长,在把共振腔的波长换算成 量 光在真空中的波长,由波长和频率可计算出光 速。 速 光 • 旅 速 当代计算出的最精确的光速都是通过波长和频 之 率求得的。1958年,弗鲁姆求出光速的精确值: 299792.5±0.1千米/秒。1972年,埃文森测得 了目前真空中光速的最佳数值: 299792457.4±0.1米/秒。
光 速 测 量 经 典 方 法
一、迈克尔孙的光速测量方法 二、光拍测量光速 三、光纤中光速的测量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光速测量
地面测量法
直到1849年,法国物理学家斐索(Fizeau,1819-1896)才利用非天文方法在地面上第一次成功地测量了光速,斐索的仪器是非常精巧的。
斐索的方法被称为“旋转齿轮”法,它的核心是一个快速旋转的并可调整转速的齿轮,利用这个齿轮我们可以精确地测量时间。
由于当时电灯尚未发明,斐索使用的光源其实是蜡烛,它发出的光波射到8公里远的镜子上并返回。
假设齿轮不转动,那么蜡烛发出的光将从相邻两个齿之间穿过,然后又回来射到观察者的眼睛里。
斐索的方法被称为“旋转齿轮”法,它的核心是一个快速旋转的并可调整转速的齿轮,利用这个齿轮我们可以精确地测量时间。
由于当时电灯尚未发明,斐索使用的光源其实是蜡烛,它发出的光波射到8公里远的镜子上并返回。
假设齿轮不转动,那么蜡烛发出的光将从相邻两个齿之间穿过,然后又回来射到观察者的眼睛里。
现在假设齿轮开始转动,但转速较慢,当光被镜子反射回来的时候正好被相邻的齿挡住,因此没有光射到观察者的眼睛里。
如果加快齿轮的转速,使光被反射回来的时候恰好转过一个齿轮,那么光又可以射到观察者的眼睛里。
于是斐索知道当齿轮恰好转过一个齿的时间,就对应的是光传播16公里所需要的时间。
斐索得到的光速是313111公里/秒,考虑到他所利用仪器的局限,这个结果已经相当精确了。
1850年法国物理学家傅科(Foucault,1819-1868)利用旋转镜法首次实现了在实验室里对光速的测定。
傅科使用快速旋转的镜片替代了斐索的齿轮,快速旋转的镜片会使出射光线偏转一个角度θ,1862年傅科的测量结果是29.8万公里/秒。
更精确的测量是由美国物理学家迈克尔逊(Michelson,1852-1931)在1926年完成的,他改进了傅科的方法,使用一个多面的旋转镜,将光波分成不连续的光束。
类似于斐索的实验,这些光束将被反射到35公里远的镜子上,然后再被反射回来。
如图,我们使用一个六面镜,该镜由电动机转动,可以任意调节旋转速度。
假设镜子不转动,并且处在如图的位置,光恰好可以被观察者看到。
如果多面镜旋转起来,并且旋转速度不快时,多面镜的位置将不能使光束被反射到观察者的眼睛里。
但当逐渐加快多面镜旋转速度,并恰好使相邻镜面恰好处于前一个镜面原先的位置时,即多面镜转了1/6圈时,观察者将可重新看到被反射的光束。
迈克尔逊在实验中使用了8面镜,12面镜和16面镜。
他把旋转镜安置在加州的威尔逊山上,反射镜则安装在35公里外的圣安东尼奥山上。
美国海岸与大地测量局(Coastal and Geodetic Survey)为迈克尔逊专门精确地测量了这段距离,其误差小于5厘米。
迈克尔逊1926年的测量结果是299796公里/秒,误差不超过4公里/秒。
这是当时的最佳结果。
天文方法
测量光速对实验物理学家来说是个巨大的挑战,因为光的速度太快了,在我们的日常经验里光速就是无穷快的,我们一开灯,光瞬间就会充满整个房间。
所以即使光速是有限的,它也会非常非常快,因此要成功地测量光速,我们需要精确地测量时间,或有个足够大的实验室。
近代物理学的奠基人伽利略(1564-1632)曾尝试测量光速。
他在一个漆黑的夜晚,让一个助手在约4.8公里远的小山顶上,放一个可用桶罩住的发光手灯,他自己也有一个这样的手灯。
当两人都准备好以后,伽利略去掉罩在手灯上的桶,灯光会以光速传播到他的助手那里,助手一看见灯光,也立即拿掉罩在手灯上的桶,灯光也同样以光速传到伽利略那里。
伽利略记录了从他第一次拿去手灯上的瞳到看见助手灯光的这一段时间,再根据事先精确测定的两地间的距离,便可以计算出光速。
可惜伽利略的实验失败了,因为人看到灯光到作出反应至少需要0.1秒的时间,而我们现在知道光速每秒是30万公里,显然4.8公里太短了。
但伽利略的另一项发明——望远镜,为光速的测量奠定了基础。
1610年,伽利略用自己发明的望远镜首次发现了木星的四个卫星,并且发现木星的卫星围绕木星旋转一周的时间都是固定的,即我们通过望远镜可以确定木星卫星的公转周期。
历史上第一次成功地测量光速,就是利用了木星卫星的掩蚀现象,所谓木星卫星的掩蚀
指的是地球、木星和木星的卫星基本成一直线,木星的卫星恰好被木星遮挡,我们在地球上将观察不到木星的卫星,即木星的卫星被掩蚀。
但由于木星和地球之间有相当长的一段距离,所以地球上的观察者会滞后一段时间观察到木星的卫星被木星遮挡。
如果我们测量出木星的卫星绕木星公转的周期,我们将精确地预测每次木星的卫星被掩蚀的时间。
1675年,丹麦天文学家罗默(Olaf Roemer, 1644-1710)对木星的第一颗卫星(Io,木卫一)进行了观测,当地球位于如下图A位置时,观测到木卫一公转周期是约42.5小时,由于公转周期是不变的,因此我们可预测下一次掩蚀发生的时间是42.5小时之后,再下一次应是85小时之后等等。
但是,罗默发现这个预言并不准确。
当地球由A逐渐向C运动时,下一次掩蚀发生的时间要比预测的推迟一点点,当过了大约半年时间,地球运行到C位置,而木星则由J1位置运行到J2位置(由于木星绕太阳运转周期比地球周期长得多,因此木星的运动在这里几乎可以忽略不计),此时木卫一发生掩蚀的时间已经比预言推迟了1000秒。
罗默很快意识到,如果认为光速是有限的话,这1000秒时间恰好对应光穿过地球轨道直径所需要的时间。
那个时代,地球轨道直径被认为是大约2.76亿公里(正确值是约3.0亿公里),因此罗默得到的光速比正确值略小,但作为对光速的第一次成功测量,罗默的方法被载入了史册。
在17-18世纪,利用天文现象,即使用足够大的实验室远比精确地测量时间要来得容易。
在罗默之后,英国的布雷德利(James Bradley,1693-1762)又利用另外一种天文现象——光行差现象,对光速进行了测量。
为了理解光行差现象,我们可以假设自己在雨中行走,假设没有风,雨滴是垂直落下的,如果静止,我们应当把伞放在与地面垂直的方向上。
假设我们向前运动,我们会感觉雨滴不是垂直落下的,而是倾斜地迎面落下的,倾斜的角度与我们运动的速度有关,当然也与雨滴下落的速度有关,如果我们改变自己运动速度的方向和大小,雨滴下落的倾角也相应会发生变化。
如果我们承认光速是有限的,遥远恒星发出的光就好像雨滴一样从天空中落下,如果地球是运动的,那么垂直落下的星光就会变成倾斜落下的。
我们知道,地球围绕太阳以大约30公里/秒的速度公转,其运动方向在不断地改变着,这意味着星光落下的方向也在不断改变,这就是所谓光行差。
1728年,布雷德利对天龙座γ星(Gamma Draconis)进行了观测,发现在6个月的时间里,它的方向改变了40秒角度,由此他可计算出光速为约31万公里/秒。
布雷德利的结果不太精确,但他提供了光速是有限的独立证据。
并且光行差现象本身也是导致狭义相对论产生的重要实验。