线性代数期中试卷2011s
11级线性代数试卷A答案

中南大学考试试卷答案2011——2012学年第二学期(2012.4) 时间:100分钟《线性代数》 课程 32 学时 2 学分 考试形式:闭卷专业年级:2011级 总分:100分一、填空题(本题15分,每题3分)1、0;2、8132(练习册P99); 3、3-; 4、⎪⎪⎪⎪⎭⎫ ⎝⎛=--12333212312113311n n A ;5、12+⎪⎪⎭⎫⎝⎛λA (练习册P113)。
二、选择题(本题15分,每题3分)1、D ;2、B (练习册P106);3、C ;(教材P55)4、D ;5、A (练习册P120)。
三、(本题10分) (练习册P102)解:解: D n ====+++c c c c c c n 131121000120012201222=2n –1, 设D n 展开式中正、负项总数分别为x 1, x 2, 则x 1+x 2=n !,x 1–x 2=2n –1,于是正项总数为x 1=1221(!)n n -+。
四、(本题10分)(典型题解P121)解:由X A E AX +=+2,得:E A X E A -=-2)(,)(,010********E A E A -∴≠-==- 可逆,故⎪⎪⎪⎭⎫⎝⎛=+=201030102E A X ;由于09≠=X ,()⎪⎪⎪⎭⎫⎝⎛===∴---*-201030102911)(1111X X X X X 。
五、(本题14分)解:将矩阵()4321,,,αααα化为最简形阶梯形矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000011003101032001000011001030101121306014211035271,(1)()3,,,4321=ααααR ;(2)321,,ααα为所求的一个最大线性无关组,且32143132αααα++=。
六、(本题14分)解:()0311********--=-⎪⎪⎪⎭⎫ ⎝⎛----==λλλααA E A T,(1)A 的特征值为0,0,3;由0=AX 得对应0的特征向量为⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛101011l k ,l k ,为不全为零的任意常数,由0)3(=-X A E 得对应3的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111c ,c 为任意非零常数。
线性代数考试题及答案

2011级材料 学院《线性代数》期中考试试卷时间:120分钟 满分:100分一、单项选择题 (共10小题,每小题3分,共30分)1. 在下列构成5阶行列式展开式的各项中,取“-”的为 ( )(A) 5144322315a a a a a (B) 5344322511a a a a a (C) 3442155321a a a a a (D) 2544133251a a aa a2. 已知矩阵34 6 2 4 2 1 6 3 1 1 2 3- 0 21 1 1 1 1 =A ,则.)(=A r;1 )(A;2 )(B;3 )(C5 )(D3. 设四阶行列式111201110011111------=x D ,则其中x 的一次项的系数为 ( )(A) 1 (B) -1 (C) 2 (D) -24. 行列式0=nD 的一个必要条件是 ( )(A) D n 中各行元素之和等于零 (B) D n 中有一行(列)元素全为零(C) D n 中有两行(列)元素对应成比例 (D) 系数行列式为D n 的齐次线性方程组有非零解5. 设A , B 皆为n 阶方阵,且A 可逆,则下列运算一定正确的是 ( ) (A)kk kBA AB =)( (B)AA -=- (C)))((22A B A B AB-+=- (D)1**1)()(--=A A6. 设A , B 皆为n 阶方阵,则必有 ( )(A)BAAB = (B)AB B A -=- (C)BA B A +=+ (D)BA B A ⋅=⋅7. 设分块矩阵⎪⎪⎭⎫ ⎝⎛=231A AO AA ,其中的子块A 1, A 2为方阵,O 为零矩阵,若A 可逆,则 ( )(A) A 1可逆,A 2不一定可逆 (B) A 2可逆,A 1不一定可逆 (C) A 1,A 2都可逆(D) A 1,A 2都不一定可逆 8. 用初等矩阵⎪⎪⎪⎭⎫ ⎝⎛01100001左乘矩阵⎪⎪⎪⎭⎫ ⎝⎛=642113112A ,相当于对A 进行如下何种初等变换( )(A)21r r ↔ (B)32r r ↔ (C)21c c ↔ (D)32c c ↔9. 设A 为5×3矩阵,且2)(=A R ,下三角矩阵⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=424212347437221P ,则)(PA R 等于 ( )(A) 1 (B) 2 (C) 3 (D) 5 10. 非齐次线性方程组bx A=⨯55在以下哪种情形下有无穷多解. ( )(A)5),( ,4)(==b A A R R (B)4),( ,3)(==b A A R R (C)4),( ,4)(==b A A R R (D)5),( ,5)(==b A A R R二、填空题 (共5小题,每空3分,共15分)1. 设x 1,x 2,x 3,x 4是四次方程0234=+++c bxaxx的根,则行列式=0752340000014321x x x x ________.2. 若n 阶下三角行列式1111111111=nD)2(≥n ,则所有..元素的代数余子式之和等于_____.3. 设A , B 皆为n 阶方阵,2=A ,3=B,则=-1*3BA_____.4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=004300002000010A ,则=-1A.5. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=n n n n n n b a b a b a b a b a b a b a b a b a212221212111A ,且02121≠n n b b b a aa ,则________)(=A R .三、计算题 (共5小题,每小题6分,共30分)1.yy x x x y y xyy x =+++x2. 设五次多项式1111111111111111111111111)(+++++=x x x x x x f ,求:①x 5的系数;②x 4的系数;③常数项.3. 设四阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=1612841296386424321A ,求A 99=__________4. 设⎪⎪⎪⎭⎫ ⎝⎛--=21110001A ,⎪⎪⎪⎭⎫ ⎝⎛-=322154B ,利用矩阵的初等变换.......求矩阵X ,使得AX =B .5. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=k k 12115210611A 的秩等于2,求k 的值.四、证明题 (共2小题,每小题6分,共12分)1. 已知TTA ααββ=+,Tα为α的转置,Tβ为β的转置.(1)求证2≤)(A R ;(2)若,αβ线性相关,则2<)(A R .2. 设A 为n 阶矩阵,且AA =2,证明:n R R =-+)()(A E A .五、解答题 (13分)用克莱姆法则解方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x xx x x x x x x x x x x x x x一、单项选择题 (10×3=30分) 1. (D);解:选项(A)和(B)的行标排列为标准次序,列标排列的逆序数分别为8和4(偶排列);选项(C)的行标、列标排列都不是标准次序,调整相乘元素的次序,使行标排列为标准次序,则列标排列的逆序数为6(偶排列);选项(D)的列标排列为标准次序,行标排列的逆序数分别为7(奇排列),故选项(D)正确。
线性代数期终考试卷

线性代数期终考试卷一、 试卷一1)填空题(每小题4分,共20分)(1)设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300220111,则A T A= (2)在分块矩阵A=⎥⎦⎤⎢⎣⎡O C B O 中,已知1-B 、1-C 存在,则=-1A(3)设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡963042321,B 为三阶非零矩阵,满足AB=O ,则r(B)= (4)若⎥⎦⎤⎢⎣⎡3152X=⎥⎦⎤⎢⎣⎡-1264,则X= (5)三次代数方程321842184211111x x x--=0的根是2)选择题(每小题3分,共15分)(1)设A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231332221131211a a a a a a a a a ,B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++133312321131131211232221a a a a a a a a a a a a P 1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,P 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001,则必有( ) (A)AP 1P 2=B (B)AP 2P 1=B(C)P 1P 2A=B (D)P 2P 1A=B(2)设A 是三阶矩阵,A*是其转置伴随矩阵,又k 为常数k ≠0,1±,则(kA)*=( ) (A)kA* (B)k 2A* (C)k 3A* (D)31A* (3)若r(A)=r<n,则n 元线性代数方程Ax=b ( ) (A ) 又无穷多个解 (B)有唯一解 (C)无解 (D)不一定有解(4)下列说法中正确的是( )(A )对向量组kαα,,1Λ,若有全不为零的数k c c ,,1Λ使011=++k k c c ααΛ,则k αα,,1Λ线性无关(B) 若有全不为零的数k c c ,,1Λ使011≠++k k c c ααΛ,则kαα,,1Λ线性无关(C)若向量组kαα,,1Λ线性相关,則其中每个向量皆可由其余向量线性表示 (D)任何n+2个n 维向量必线性相关(5)矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100的特征值是( ) (A)1,1,0 (B)-1,1,1 (C)1,1,1 (D) 1,-1,-13)(每小题6分,共12分)(1)计算行列式D= ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+y y x x1111111111111111 (2)已知q 1=T⎥⎦⎤⎢⎣⎡313131,q 2=T⎥⎦⎤⎢⎣⎡-21021,求q 3,使Q=[]321q q q为正交阵。
浙江财经学院10线性代数期中试卷A解答

浙江财经学院2011~2012学年第一学期 《 线性代数 》课程期中考试试卷 ( A 试卷)适用专业、班级:一.填空题 (每题3分)1 .若1112132122233132331a a a D a a a a a a ==则 1111121312121222331313233423423423a a a a D a a a a a a a a -=-=-12)3(4333231232221131211-=-⨯a a a a a a a a a 2. 由数码1,2,,1,2n n n + 构成的一个排列2,1,21,2,1,n n n n -+ 的逆序数是 (2n-1)+(2n-3)+…+1=n 23.11 n n i i x a aa x aD A a a x===∑ 则1)(0000001111--=--=n a x ax a x a a a x a a a a x a a a (其中11i i A D a 是中元素的代数余子式1,2,i n = )4. 若方程组123123230020x x x x x x x x x λλ++=⎧⎪+-=⎨⎪-+=⎩有非零解,则λ=-1或4 0)4)(1(1121111=-+=--λλλλ5 ()()()3 1,1,0,1,3,1,5,3,t ααα==-=12若向量组线性相关,则t =1 035131011=-t()()()3 1,2,1,1,2,0,,0, 2t ααα=-=126. 若向量组=0,-4,5,-2的秩为,则t=37.若向量组123,,ααα与向量组12ββ,等价,则向量组123, , ααα线性 相关8.若 m n ⨯矩阵A 的n 个列向量线性无关,则r(A)= n9 3,,ααα12设是某四元非齐次线性方程组的三个解向量,方程组的系数矩阵为A ,()()122330123T αααα+=+=T r(A)=3,1,0,1,,,,,,则该方程组的全部解为T T c c )0,1,1,1()23,21,0,21()(23121--+=-++αααα10.设矩阵34()ij A a ⨯=,()2r A =且则它在初等变换下的等价标准形为⎪⎪⎭⎫⎝⎛000000100001⎪⎪⎪⎭⎫ ⎝⎛--↓⎪⎪⎪⎭⎫ ⎝⎛---00030011020120151402021t t二.计算行列式(每题6分)22404135 D=31232051-----71305100461211203840553002112-----=-----= 2707135102-=----==n 111222D a an nn a++=+ a n nn a a n n a n n a n n ++++++++=2222)1(2)1(2)1( 12)1(00001112)1(2221112)1(-⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡++=++⎥⎦⎤⎢⎣⎡++=n a a n n aa a n n a n n n a a n n122110000100000001nn n xx x xa a a a a x----=-+n D nn n n n n n n n n nn n n nn n n n n nn n n n n a x a x a x a x a x a x a x a x a x x a a x a x a D x a x a D x a a xD x a xD a D x ++++++=++++++=++++=++=++=+=--+-=----------------+-12322111232221133221221211112)(][)1()1()1(nn n n n nn n n n n a x a x a x a x xx x x x a xx x a x x x a x xx a +++++=---++----++---+----=----+-+122112112221100000010001)1)((1000000010001)1(1000000010000)1(1000000010001)1(三.确定向量间线性关系(每题8分)1.设向量组()()()()1231,4,0,2, 2,7,1,3, 0,1,1,, =3,10,b,4a αααβ===- 问(1)当, b a 取何值时,β不能由123,,ααα线性表示。
线性代数专科2011级期中试题讲评

杉达专科2011级线性代数期中考试讲评一、单项选择题(在每小题的四个备选答案中选出一个正确答案,每小题2分,共16分。
)1. 设D=|a ij |为5阶行列式,问D 的展开式中,下列哪一项取负号 ( )A 、a 15a 24a 33a 42a 51B 、a 12a 23a 34a 45a 51C 、a 11a 23a 34a 45a 52D 、a 51a 42a 33a 24a 15【讲评】考点:D=|a ij |的展开式中项a 1j 1 a 2j 2 …a nj n 的符号为 (-1)N(j 1,j 2,…,j n ),排列的逆序数的计算。
N(j 1,j 2,…j n )=m 1+m 2+…+m n ,其中m k 表示数码k 前面比k 大的数码的个数。
本题:N(54321)=4+3+2+1+0=10, N(23451)=4+0+0+0+0=4,N(13452)=0+3+0+0+0=3, D 与A 一样。
选:C 。
2.三阶行列式 ⎪⎪⎪⎪⎪⎪20 40 40201 401 399 1 2 3= ( ) A 、-20 B 、70 C 、-70 D 、20【讲评】考点:行列式计算的性质。
行列式可依行(列)提出公因子;将行列式某行(列)乘以一个数加到另一行(列)上去,行列式的值不变。
本题:D=⎪⎪⎪⎪⎪⎪20 40 40201 401 399 1 2 3=20×⎪⎪⎪⎪⎪⎪1 2 21 1 -11 2 3=20×(3-2+4 –2-6+2)= -20 选:A 。
3. 行列式⎪⎪⎪⎪⎪⎪b 0 0 a0 b a 00 a b 0a 0 0 b = ( )A 、a 4- b 4B 、(b 2-a 2)2C 、b 4- a 4D 、a 4b 4 【讲评】考点:四阶行列式计算无对角线法则,必须用展开与降阶的方法。
本题:第一行展开⎪⎪⎪⎪⎪⎪b 0 0 a 0 b a 00 a b 0a 0 0 b = b ⎪⎪⎪⎪⎪⎪b a 0a b 00 0 b - a ⎪⎪⎪⎪⎪⎪0 b a 0 a b a 0 0=b 2(b 2-a 2) – a 2(b 2-a 2)= (b 2-a 2)2 选:B 。
线性代数期中测试题及答案

一、填空题(每小题5分,共30分)1、三阶方阵A=1230 0 0 0 0 0λλλ⎛⎫ ⎪⎪ ⎪⎝⎭(其中1230 λλλ≠)的逆矩阵A -1 = 。
2、已知A= 3 5 01-1 -2 02 0 0 2⎛⎫ ⎪ ⎪ ⎪⎝⎭,A*是矩阵A 的伴随矩阵,则 (A*)-1 = 。
3、n 阶方阵A ,B 满足A+B=AB ,则B-E 可逆且(B-E )-1 = 。
4、A 为三阶方阵, 1A =,则 1*(2) A A -- =________ 。
5、A 为n 阶可逆方阵,将A 的第i 行和第j 行对调得到矩阵B ,则 AB -1 = 。
6、111213212223313233a a a A a a a a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,121111132221212332313133 a a a a B a a a a a a a a +⎛⎫ ⎪=+ ⎪ ⎪+⎝⎭,10 1 01 0 00 0 1P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2 1 0 10 1 00 0 1P ⎛⎫⎪= ⎪ ⎪⎝⎭,则B = 。
(用12,,A P P 表示B )答案:1、⎪⎪⎪⎭⎫ ⎝⎛0 0 /10 1/ 0 1/ 0 0 123λλλ 2、⎪⎪⎪⎭⎫⎝⎛-2 0 0 0 2- 1-0 5 3 2 3、A-E 4、-1/8 5、E n (i,j ) 6、A P 2P 1二、(30分)1、计算行列式123410123110125D =--- (10分)解:7014101231107-25D =---327 1 4 (1)(1) 1 1 2 7 -2 -5+=-- 6 0 21 1 2 9 0 -1=226 2(1)-249 -1+=-=2、计算行列式D n = a a a b a a b aa b a a b a a a----(a ≠-b ) (10分)解:将第2、3、…、n 列同时加到第一列,并提取公因子,得n 1 a a b 1 a b aD [(n 1)a b] .................................1 b a a 1 a a a--=---0 0 0 -b-a 0 0 -b-a 0[(n 1)a b] .................................0 -b-a 0 0 1 a a a=--n(n 1)n 1n 12(1)(1)(b a)[(n 1)a b]---=--+--(n 1)(n 2)n 12(1)(a b)[(n 1)a b]-+-=-+--3、求下列矩阵的逆矩阵(10分)11000130000020********001A ⎛⎫⎪- ⎪⎪=- ⎪⎪ ⎪⎝⎭答案: 341400014140000012000001200001-⎛⎫⎪⎪ ⎪-⎪- ⎪ ⎪⎝⎭三、(40分)1. 已知011111010A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,112113B -⎛⎫⎪= ⎪ ⎪⎝⎭,且满足AX +B =X ,用初等变换法求X (10分) 解:由AX +B =X 知 B =X -AX =(E -A )X()100011111010111101001010011E A --⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭且10E A -=≠所以E -A 可逆,由此得1()XE A B -=-()111111012101113E A B ---⎛⎫ ⎪-=- ⎪⎪⎝⎭010121012101113---⎛⎫⎪−−→-⎪⎪⎝⎭ 010121002200101---⎛⎫ ⎪−−→⎪ ⎪⎝⎭ 100220101200101⎛⎫ ⎪−−→ ⎪⎪⎝⎭2、已知矩阵A =0 1 01 2 00 0 -1⎛⎫ ⎪ ⎪ ⎪⎝⎭,A *是矩阵A 的伴随矩阵,若矩阵B 满足(B-E )-1 =A *-E , 求矩阵B 。
11-12 线代期中考试卷及答案详解x

2011《线性代数》期中考试试卷及答案详解一、单项选择题 (每小题4分,共20分)1. 在下列构成5阶行列式展开式的各项中,取“+”的为⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )(A) 5345342112a a a a a (B) 2554134231a a a a a (C) 2534511342a a a a a (D) 4223155134a a a a a解 答案为(C).根据行列式的定义,对于行列式的一般项,若行标排列是标准排列,则符号取决于列标排列的逆序数的奇偶性;若列标排列是标准排列,则符号取决于行标排列的逆序数的奇偶性;若行标、列标排列都不是标准排列,则符号取决于行标排列与列标排列的逆序数之和的奇偶性(或者,交换一般项中的元素,使行标成为标准排列,再根据列标排列的逆序数判断)选项(A)的行标排列是标准排列,列标排列的逆序数为t (21453)=3,故(A)取“-”。
选项(B)的列标排列是标准排列,行标排列的逆序数为t (34152)=5,故 (B)取“-”。
选项(C)行标和列标排列都不是标准排列,方法一:行标和列标排列的逆序数之和t (41532)+t (23145)=6+2=8,得符号为“+”;方法二,交换相乘的元素,使行标成为标准排列,得a 13a 25a 34a 42a 51,此时列标排列的逆序数为t (35421)=8,故取“+”。
同理可得,(D)应取“-”。
2.设n 阶行列式D =1,将D 上下翻转得D~,则D~的值为⋅⋅⋅⋅⋅⋅⋅ ( )(A) -1 (B) (-1)n(C) (-1)n /2(D) (-1)n (n -1)/2解 答案为(D).参见教材习题一第7题的解答。
3. 设A , B 均为n 阶方阵,下列结论正确的是⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )(A) 若A ≠B ,则∣A ∣≠∣B ∣ (B) 若AB =O ,则A =O 或B =O (C) A 2-B 2=( A +B )( A -B ) (D) ∣AB ∣=∣BA ∣ 解 答案为(D).选项(A)错误,反例:⎪⎪⎭⎫ ⎝⎛≠⎪⎪⎭⎫ ⎝⎛10011112, 但1011112=。
线性代数(2010-2011年度所有线性代数试题及部分答案)

全国2011年1月自学考试线性代数试题课程代码:02198说明:本卷中,A T 表示矩阵A 转置,det(A )表示方阵A 的行列式,A -1表示方阵A 的逆矩阵,(α,β)表示向量α,β的内积,E 表示单位矩阵.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A 是4阶方阵,且det(A )=4,则det(4A )=( )A .44B .45C .46D .472.已知A 2+A +E =0,则矩阵A -1=( )A .A +EB .A -EC .-A -ED .-A +E 3.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( )A .A -1CB -1B .CA -1B -1C .B -1A -1CD .CB -1A -14.设A 是s×n 矩阵(s≠n),则以下关于矩阵A 的叙述正确的是( )A .A T A 是s×s 对称矩阵B .A T A =AA TC .(A T A )T =AA TD .AA T 是s×s 对称矩阵5.设α1,α2,α3,α4,α5是四维向量,则( )A .αl ,α2,α3,α4,α5一定线性无关B .αl ,α2,α3,α4,α5一定线性相关C .α5一定可以由α1,α2,α3,α4线性表出D .α1一定可以由α2,α3,α4,α5线性表出6.设A 是n 阶方阵,若对任意的n 维向量X 均满足AX =0,则( )A .A =0B .A =EC .秩(A )=nD .0<秩(A )<n7.设矩阵A 与B 相似,则以下结论不正确...的是( ) A .秩(A )=秩(B )B .A 与B 等价C .A 与B 有相同的特征值D .A 与B 的特征向量一定相同8.设1λ,2λ,3λ为矩阵A=⎪⎪⎪⎭⎫ ⎝⎛200540093的三个特征值,则1λ2λ3λ=( )A .10B .20C .24D .309.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A .1B .2C .3D .4 10.设A ,B 是正定矩阵,则( )A .AB 一定是正定矩阵B .A +B 一定是正定矩阵C .(AB )T 一定是正定矩阵D .A -B 一定是负定矩阵二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[4]
(b) Give an example of a subset of R2 that is closed under addition but not closed under scalar multiplication. Justify your answer.
Mห้องสมุดไป่ตู้TH 136 - Midterm
UNIVERSITY OF WATERLOO MIDTERM SPRING TERM 2012
Student Name (Print Legibly) (family name) Signature Student ID Number (given name)
COURSE NUMBER COURSE TITLE DATE OF EXAM TIME PERIOD DURATION OF EXAM NUMBER OF EXAM PAGES (Including this sheet) INSTRUCTORS/SECTIONS 001 Sean Speziale (11:30) 002 Ting Kei Pong (8:30) 003 Andrew Beltaos (12:30) EXAM TYPE ADDITIONAL MATERIALS ALLOWED
MATH 136 - Midterm
Spring Term 2012
Page 10 of 10
You may use the space below for rough work (in which case you may tear off this page), or to continue any other question that you have run out of space answering. In this case, be sure to indicate clearly, in the original location, that the work continues here.
MATH 136 - Midterm
Spring Term 2012
Page 8 of 10
[8]
7. Consider the linear system x1 + hx2 = 2 5x1 + x2 = k Find all values for h and k (if any) such that the system has (i) no solutions; (ii) a unique solution; (iii) infinitely many solutions.
[4]
(b) With V , W , and V + W defined as in part (a), suppose that the vectors v1 , . . . , vp and w1 , . . . , wq are such that V = Span{v1 , . . . , vp } and W = Span{w1 , . . . , wq }. Prove that V + W = Span{v1 , . . . , vp , w1 , . . . , wq }.
Notes: 1. Fill in your name, ID number, section, and sign the paper. Don’t write formulas on this page. 2. Answer all questions in the space provided. The last page is for rough work. 3. Check that there are 10 sheets. 4. Your grade will be influenced by how clearly you express your ideas, and how well you organize your solutions.
MATH 136 Linear Algebra 1 For Honours Mathematics Monday, June 4, 2012 19:00 - 20:50 110 minutes 10
(please indicate your section) Closed Book NONE (NO CALCULATORS)
MATH 136 - Midterm
Spring Term 2012
Page 3 of 10
2. Consider the linear system x1 − 2x2 + x3 = 0 2x2 − 8x3 = 8 −4x1 + 5x2 + 9x3 = −9 [1] [4] [2] [1] [2] (a) Write the augmented matrix for the system. (b) Row reduce the augmented matrix into Reduced Row Echelon Form. Make sure to indicate the elementary row operations you are using. (c) Find the general solution of the system, if it exists. (d) What is the rank of the augmented matrix? (e) Find the general solution of the corresponding homogeneous system (that is, the homogeneous system with the same coefficients as the given system).
Marking Scheme: Question 1 2 3 4 5 6 7 8 Total Mark Out of 10 10 11 9 8 9 8 10 75
MATH 136 - Midterm
Spring Term 2012
Page 2 of 10
3 3 1. Let v = 0 and w = 3 . 0 0 [1] [3] [3] [3] (a) Find ||w||. (b) Find the angle between the vectors v and w (you may give your answer in radians or degrees). (c) Find v × w. (d) Find projw (v ).
Spring Term 2012
Page 7 of 10
[3]
[3]
[3]
1 −1 6. Let a = 1 and b = 2 . −2 3 −1 (a) Let x = 5 . Is x ∈ Span{a, b}? If so, find the coefficients that make x a linear 5 combination of a and b. −1 (b) Let y = 5 . Is y ∈ Span{a, b}? If so, find the coefficients that make x a linear 4 combination of a and b. −2 (c) Let c = 10 . Is the set{a, b, c} linearly independent? Prove why or why not. 8
MATH 136 - Midterm
Spring Term 2012
Page 6 of 10
[4]
5. (a) Let S = {v1 , v2 , v3 } and assume that S is an orthogonal set. Prove that ||v1 + v2 + v3 ||2 = ||v1 ||2 + ||v2 ||2 + ||v3 ||2 . Hint: Recall that ||x||2 = x · x.
MATH 136 - Midterm
Spring Term 2012
Page 4 of 10
3. Let P be the plane in R3 containing the points A = (0, 1, 1), B = (1, −1, 1), and C = (1, 0, 1). Let L be the line perpendicular to P , containing the point A. Let U = (1, −1, 0). Find the following: [4] [3] [4] (a) a scalar equation for the plane P . (b) a vector equation for the line L. (c) The point on the line L which is closest to the point U .
MATH 136 - Midterm
Spring Term 2012
Page 9 of 10
[5] [5]
8. (a) Prove that any set which is the span of some vectors in Rn is a subspace of Rn . That is, let S = Span{v1 , . . . , vk }, where v1 , . . . , vk ∈ Rn . Prove that S is a subspace of Rn . (b) Prove the following statement: The set {v1 , v2 } is linearly dependent if and only if one of the vectors is a scalar multiple of the other.