机械原理课程设计牛头刨床凸轮机构

合集下载

机械原理课程设计——牛头刨床.

机械原理课程设计——牛头刨床.

一:课程设计题目、内容及其目的课题:牛头刨床内容1.对机构进行运动分析已知:曲柄每分钟转数错误!未找到引用源。

,各构件尺寸及质心位置。

作机构1~2个位置的速度多边形和加速度多边形,作滑块的运动线图,以上内容与后面动态静力分析一起画在1号图纸上。

2.对机构进行动态静力分析已知:各构件的重量G(曲柄1、滑块2、和连杆5的重量都可以忽略不计),导杆3的转动惯量错误!未找到引用源。

及切削力错误!未找到引用源。

变化规律如下图。

确定构件一个位置的各运动副反力及应加于曲柄上的平衡力矩。

3、用UG进行模拟运动仿真校核机构运动分析和动态静力分析的结果4、电动机功率的确定与型号的选择5、齿轮减速机构设计目的:1:学会机械运动见图设计的步骤和方法;2:巩固所学的理论知识,掌握机构分析与综合的基本方法;3:培养学生使用技术资料,计算作图及分析与综合能力;4:培养学生进行机械创新的能力。

二:牛头刨床简介和机构的要求1:牛头刨床简介牛头刨床是一种用于平面切削加工的机床,如图1。

电动机经皮带和齿轮传动,经过减速机构减速从而带动曲柄1。

刨床工作时,由导杆3 经过连杆4 带动刨刀5 作往复运动。

刨头左行时,刨刀进行切削,称工作行程,此时要求速度较低并且均匀,以减少电动机容量和提高切削质量,刨头右行时,刨刀不切削,称空行程,此时要求速度较高,以提高生产率。

为此刨床采用有急回作用的导杆机构。

刨刀每切削完一次,利用空回行程的时间,通过棘轮带动螺旋机构(图中未画),使工作台连同工件作一次进给运动,以便刨刀继续切削。

刨头在工作行程中,受到很大的切削阻力(在切削的前后各有一段约0.05H 的空刀距离),而空回行程中只有摩擦阻力。

因此刨头在整个运动循环中,受力变化是很大的,这就影响了主轴的匀速运转,故需安装飞轮来减小主轴的速度波动,以提高切削质量和减小电动机容量。

2:机构的要求牛头刨床的主传动的从动机构是刨头,在设计主传动机构时,要满足所设计的机构要能使牛头刨床正常的运转,同时设计的主传动机构的行程要有急回运动的特性,刨削速度尽可能为匀速运动,以及很好的动力特性。

机械原理课程设计牛头刨床凸轮机构之欧阳家百创编

机械原理课程设计牛头刨床凸轮机构之欧阳家百创编

机械原理课程设计任务书(二)欧阳家百(2021.03.07)姓名柳柏魁专业 液压传动与控制班级液压09-1学号0907240110一、设计题目:牛头刨床凸轮机构设计二、系统简图:三、工作条件已知:摆杆9为等加速等减速运动规律,其推程运动角ϕ,远休止角s ϕ,回程运动角'ϕ,摆杆长度D l 09,最大摆角m ax ϕ,许用压力角[]α(参见表2-1);凸轮与曲柄共轴。

四、原始数据五、要求:1)计算从动件位移、速度、加速度并绘制线图。

2)确定凸轮机构的基本尺寸,选取滚子半径,画出凸轮实际廓线,并按比例绘出机构运动简图。

以上内容作在A2或A3图纸上。

3)编写出计算说明书。

指导教师:开始日期:2011年6月26日完成日期:2011年7月1日目录1. 设计任务及要求------------------------------2. 数学模型的建立------------------------------3. 程序框图---------------------------------------4. 程序清单及运行结果------------------------5. 设计总结---------------------------------------6. 参考文献 --------------------------------------1设计任务与要求已知摆杆9为等加速等减速运动规律,其推程运动角φ=75,远休止角φs =10,回程运动角φ΄=70,摆杆长度l 09D =135,最大摆角φmax =15,许用压力角[α]=42,凸轮与曲线共轴。

要求:(1) 计算从动件位移、速度、加速度并绘制线图(用方格纸绘制),也可做动态显示。

(2) 确定凸轮的基本尺寸,选取滚子半径,画出凸轮的实际廓线,并按比例绘出机构运动简图。

(3) 编写计算说明书。

2数学模型(1) 推程等加速区当2/0ϕδ≤≤时 22max /21ϕδϕ=m (角位移) 2max /4ϕδϕω=(角速度)2max /4ϕϕε=(角加速度)(2) 推程等减速区当ϕδϕ≤<2/时 22max max /)(21ϕδϕϕϕ--=m (角位移)2max /)(4ϕδϕϕω-=(角速度) 2max /4ϕϕε-=(角加速度)(3) 远休止区当s ϕϕδϕ+≤<时 max 1ϕ=m (角位移) 0=ω(角速度)0=ε(角加速度)(4) 回程等加速区当2/ϕϕϕδϕϕ'++≤<+s s 时 22max max /)(21ϕϕϕδϕϕ'---=s m (角位移)2max /)(4ϕϕϕδϕω'---=s (角速度)2max /4ϕϕε'-=(角加速度)(5) 回程等减速区当ϕϕϕδϕϕϕ'++≤<'++s s 2/时 22max /)(21ϕδϕϕϕϕ'-'++=s m (角位移)2max /)(4ϕδϕϕϕϕω'-'++-=s (角速度) 2max /4ϕϕε'=(角加速度)(6) 近休止区01=m (角位移) 0=ω(角速度)0=ε(角加速度)如图选取xOy 坐标系,B1点为凸轮轮廓线起始点。

设计牛头刨床中的凸轮机构方案

设计牛头刨床中的凸轮机构方案

设计牛头刨床中的凸轮机构
1.凸轮机构的设计要求 运动规律为等加速等法
3.摆动从动件盘形凸轮轮廓设计
(1)设计凸轮轮廓依据反转法原理 (2)设计凸轮轮廓的步骤
人有了知识,就会具备各种分析能力, 明辨是非的能力。 所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。 ”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力; 通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣; 通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。

机械原理课程设计牛头刨床机构的课程设计

机械原理课程设计牛头刨床机构的课程设计
构件4的受力分析
FR54×lh1+FI4×lh2+G4×lh3﹣FR34lO4A=0
FR34=[7100x536.05+15.49x399.19+200x32.58]/483.65=7895.49N
再对构件4列力平衡方程,按比例尺μF=10N/mm作力多边形如图所示。求出机架对构件4的反力FR14:
以上两种情况分别为曲柄转过75°和122°时加速度与速度的瞬时分析,这种分析有助于后面的动态静力分析。取任意两点的目的也是为了消除特殊性,使计算更为准确。
3.2动态静力分析(当曲柄位置为75°时)
首先依据运动分析结果,计算构件4的惯性力FI4(与aS4反向)、构件4的惯性力矩MI4(与a4反向,逆时针)、构件4的惯性力平移距离lhd(方位:右上)、构件6的惯性力矩FI6(与aC反向)。
vA4=vA3+vA4A3
大小



方向
⊥O4A
⊥O2A
∥O4A
取极点p,按比例尺μv=0.005(m/s)/mm作速度图(与机构简图绘在同一图样上),如图所示,并求出构件4(3)的角速度ω4和构件4上B点的速度vB以及构件4与构件3上重合点A的相对速度vA4A3。因为
vA4=μvPa4=0.005x124.11m/s=0.62m/s
Lh4= = m=0.180m=118mm
FI6=m6aS6= aS6= ×0.59N=42.0998N
1.取构件5、6基本杆组为示力体(如图所示)
因构件5为二力杆,只对构件(滑块)6做受力分析即可,首先列力平衡方程: 构件5.6的受力分析
构件5.6的受力简图
由于 FR65=—FR56FR54=—FR45
FR54+G4+FI4+FR34+FR14=0

机械原理课程设计-牛头刨床凸轮机构

机械原理课程设计-牛头刨床凸轮机构

机械原理课程设计-牛头刨床凸轮机构
牛头刨床凸轮机构是一种被广泛应用在机械加工中的机构。

它具有较高的效率,能够提供精确而又质量高的加工结果。

牛头刨床凸轮机构由三部分组成:刨床、刀具和传动机构。

刨床主要由主轴、轴类、滑块、变位器杆和机座等组成,其动作是:主轴通过电机传动,带动滑块、变位器杆和刀具同步运动,使加工物把后刀具推向前刀具,达到切削加工的目的。

要保证牛头刨床凸轮机构的良好运行,首先要正确的校正凸轮的定位。

精确的定位可以有效的提高机构的定位精度,从而保证工件的加工精度。

其次,要检查机构的传动装置和同步转向机构的运行状况,排除可能存在的故障。

最后,要定期检查加工质量,以确保良好的加工质量。

此外,在运行牛头刨床凸轮机构时,也需要遵守特定的安全操作规则,并且有一定的操作技巧,以避免出现事故。

出现危险时,需及时警醒,并采取有效的措施,以确保机构的安全运行。

牛头刨床凸轮机构是用于金属加工的一种高效率、高精度的机构,而且在机械加工中应用十分广泛。

当正确、安全地使用时,机构可获得较高的加工效果,同时也可以减少损失。

因此,使用该机构时应非常重视安全,并且要充分了解机构特性,以获得最佳的加工效果。

机械原理课程设计——牛头刨床主体机构

机械原理课程设计——牛头刨床主体机构
for i=1:100 theta2(i)=theta2(1)+dtheta2*(i-1);%角度 end
%刨刀位移分析
LO3A=((LO2O3)^2+(L2)^2-2*LO2O3*L2*cos(theta2+pi/2)).^0.5;%求O3A的长度
for i=1:100
%求θ4、θ5以及SF的长度
主体机构设计
牛头刨床主体机构
主体结构设计
设计要求
(1)刨刀工作行程要求速度比较平稳,空回行程时 刨刀快速退回,机构行程速比系数在1.4左右。
(2)刨刀行程H=300mm或H=150mm。曲柄转速、 切削力、许用传动角等见表1,每人选取其中一组数据。
(3)切削力P大小及变化规律如图1所示,在切削行 程的两端留出一点空程。具体数据如下:
2、导杆的长度L4 H=150mm 则:L4 =﹙H/2﹚/﹙sin(Ψ/2)﹚=289.77mm≈290mm
3、计算O2O3距离 取L2的长度为60mm Lo2o3= L2/sin15° =60/sin15 = 231.82mm≈232mm
主体机构(方案一)
主体机构(方案一)
运动分析
利用矢量方程法求解机构中各个主要构件的位移、 速度、加速度与曲柄L2角位移之间的关系。
SF=L4cosθ₄+L5cosθ5 θ4=arccos(L2cosφ₂/S3) θ5=arcsin[(S2-L4sinθ₄)/L5] S3=[(S1)²+(L2)²+2*S1*L2*sinφ₂]1/2
即可求得θ4、θ5、LO3A、SF四个运动变量
H=0.15; %行程(单位:m) L2=0.06; %O2A的长度 L4=0.29; %O3B的长度 L5=0.08; %BF的长度 LO2O3=0.232; %O2O3的长度 LO3D=0.285; %O3D的长度 W2=2.5*pi/3; %曲柄角速度rad/s theta2=linspace(-15,345,100);%划分 theta2=theta2*pi/180;%转换为弧度制 dtheta2=theta2(2)-theta2(1);%角度间隔

机械原理课程设计牛头刨床设计

机械原理课程设计牛头刨床设计

机械原理课程设计牛头刨床设计机械原理课程设计牛头刨床设计随着科技不断的发展,机械英才的培养已受到各界的高度重视。

机械原理作为机械类专业的重点课程之一,对于学生的综合素质和能力的培养有着至关重要的作用。

为了提高学生的实践能力和专业技能,我在接受机械原理课程设计任务时,选择了一项具有挑战性和实用性的牛头刨床设计任务。

一、课程设计目标通过本次课程设计,主要目标如下:1.让学生了解牛头刨床的基本工作原理及其结构特点;2.提高学生的机械设计和制造能力;3.培养学生的合作精神和创新能力;4.促进学生的动手操作和实验能力的提高。

二、课程设计步骤1.课程设计前期准备在进行具体设计之前,我对牛头刨床的相关资料进行了大量的研究和归纳,学生们也需要认真学习刨床的相关知识。

同时,我还组织了互动的讲座和课堂讨论,以便于学生能够更加深入地理解牛头刨床的工作原理和结构特点。

2.机械设计在机械设计过程中,我们采取的是课堂授课和实际组装相结合的方法,进一步提高了学生的实践能力和设计能力。

课堂授课的内容主要包括刨床的设计思路、工作原理、传动方式等内容,通过实际操作和模拟实验,让学生从多个角度全面了解牛头刨床的结构和特点。

同时,我们还根据实际情况,对课程内容进行了针对性的调整和完善。

3.装配测试在机械设计完成后,我们对刨床进行了装配测试。

通过实际的组装和测试,提高了学生的实验能力和操作技能。

在测试过程中,我们严格按照安全操作规程进行操作,避免了误操作和安全事故的发生。

4.实践操作在实践操作中,我们对刨床的使用方法进行了详细的讲解和演示,让学生可以熟练地操作和使用刨床。

同时,我们组织了一些实践操作题目,让学生能够更好地理解和应用所学的知识。

三、收获通过本次课程设计,学生们都获得了很大的收获。

首先,他们对机械设计的基本原理和方法有了更深入的了解,同时也提高了他们的实践能力和实验能力。

其次,在团队协作方面,学生们也得到了很好的锻炼,提高了他们的合作精神和创新能力。

机械原理课程设计牛头刨床凸轮机构之欧阳歌谷创编

机械原理课程设计牛头刨床凸轮机构之欧阳歌谷创编

机械原理课程设计任务书(二)欧阳歌谷(2021.02.01)姓名柳柏魁专业 液压传动与控制班级液压09-1学号0907240110一、设计题目:牛头刨床凸轮机构设计二、系统简图:三、工作条件已知:摆杆9为等加速等减速运动规律,其推程运动角ϕ,远休止角s ϕ,回程运动角'ϕ,摆杆长度D l 09,最大摆角m ax ϕ,许用压力角[]α(参见表2-1);凸轮与曲柄共轴。

四、原始数据五、要求:1)计算从动件位移、速度、加速度并绘制线图。

2)确定凸轮机构的基本尺寸,选取滚子半径,画出凸轮实际廓线,并按比例绘出机构运动简图。

以上内容作在A2或A3图纸上。

3)编写出计算说明书。

指导教师:开始日期:2011年6月26日完成日期:2011年7月1日目录1. 设计任务及要求------------------------------2. 数学模型的建立------------------------------3. 程序框图---------------------------------------4. 程序清单及运行结果------------------------5. 设计总结---------------------------------------6. 参考文献 --------------------------------------1设计任务与要求已知摆杆9为等加速等减速运动规律,其推程运动角φ=75,远休止角φs =10,回程运动角φ΄=70,摆杆长度l 09D =135,最大摆角φmax =15,许用压力角[α]=42,凸轮与曲线共轴。

要求:(1) 计算从动件位移、速度、加速度并绘制线图(用方格纸绘制),也可做动态显示。

(2) 确定凸轮的基本尺寸,选取滚子半径,画出凸轮的实际廓线,并按比例绘出机构运动简图。

(3) 编写计算说明书。

2数学模型(1) 推程等加速区当2/0ϕδ≤≤时 22max /21ϕδϕ=m (角位移) 2max /4ϕδϕω=(角速度)2max /4ϕϕε=(角加速度)(2) 推程等减速区当ϕδϕ≤<2/时 22max max /)(21ϕδϕϕϕ--=m (角位移)2max /)(4ϕδϕϕω-=(角速度) 2max /4ϕϕε-=(角加速度)(3) 远休止区ϕϕδϕ+≤<1ϕ=m ω0=ε(角加速度)(4) 回程等加速区当2/ϕϕϕδϕϕ'++≤<+s s 时 22max max /)(21ϕϕϕδϕϕ'---=s m (角位移)2max /)(4ϕϕϕδϕω'---=s (角速度)2max /4ϕϕε'-=(角加速度)(5) 回程等减速区当ϕϕϕδϕϕϕ'++≤<'++s s 2/时 22max /)(21ϕδϕϕϕϕ'-'++=s m (角位移)2max /)(4ϕδϕϕϕϕω'-'++-=s (角速度) 2max /4ϕϕε'=(角加速度)(6) 近休止区01=m (角位移) 0=ω(角速度)0=ε(角加速度)如图选取xOy 坐标系,B1点为凸轮轮廓线起始点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械原理课程设计任务书(二)姓名柳柏魁专业液压传动与控制班级液压09-1 学号0907240110五、要求:1)计算从动件位移、速度、加速度并绘制线图。

2)确定凸轮机构的基本尺寸,选取滚子半径,画出凸轮实际廓线,并按比例绘出机构运动简图。

以上内容作在A2或A3图纸上。

3)编写出计算说明书。

指导教师:开始日期:2011 年 6 月26 日完成日期:2011 年7 月 1 日目录1.设计任务及要求------------------------------ 2.数学模型的建立------------------------------ 3.程序框图--------------------------------------- 4.程序清单及运行结果------------------------ 5.设计总结--------------------------------------- 6.参考文献--------------------------------------1设计任务与要求已知摆杆9为等加速等减速运动规律,其推程运动角φ=75,远休止角φs =10,回程运动角φ΄=70,摆杆长度l 09D =135,最大摆角φmax =15,许用压力角[α]=42,凸轮与曲线共轴。

要求:(1) 计算从动件位移、速度、加速度并绘制线图(用方格纸绘制),也可做动态显示。

(2) 确定凸轮的基本尺寸,选取滚子半径,画出凸轮的实际廓线,并按比例绘出机构运动简图。

(3) 编写计算说明书。

2数学模型(1) 推程等加速区当2/0ϕδ≤≤时 22max /21ϕδϕ=m (角位移) 2max /4ϕδϕω=(角速度)2max /4ϕϕε=(角加速度)(2) 推程等减速区当ϕδϕ≤<2/时 22max max /)(21ϕδϕϕϕ--=m (角位移)2max /)(4ϕδϕϕω-=(角速度) 2max /4ϕϕε-=(角加速度)(3) 远休止区当s ϕϕδϕ+≤<时 max 1ϕ=m (角位移) 0=ω (角速度)0=ε(角加速度)(4) 回程等加速区当2/ϕϕϕδϕϕ'++≤<+s s 时 22max max /)(21ϕϕϕδϕϕ'---=s m (角位移)2max /)(4ϕϕϕδϕω'---=s (角速度)2max /4ϕϕε'-=(角加速度)(5) 回程等减速区当ϕϕϕδϕϕϕ'++≤<'++s s 2/时 22max /)(21ϕδϕϕϕϕ'-'++=s m (角位移)2max /)(4ϕδϕϕϕϕω'-'++-=s (角速度) 2max /4ϕϕε'=(角加速度)(6) 近休止区01=m (角位移) 0=ω(角速度)0=ε(角加速度)如图选取xOy 坐标系,B1点为凸轮轮廓线起始点。

开始时推杆轮子中心处于B1点处,当凸轮转过角度时,摆动推杆角位移为,由反转法作图可看出,此时滚子中心应处于B 点,其直角坐标为:()()00cos cos sin sin ϕϕδδϕϕδδ++-=++-=l a y l a x因为实际轮廓线与理论轮廓线为等距离,即法向距离处处相等,都为滚半径rT.故将理论廓线上的点沿其法向向内测移动距离rT 即得实际廓线上的点B(x1,y1).由高等数学知,理论廓线B 点处法线nn 的斜率应为 ()()θθδδθcos /sin ////=-==d dy d dx dy dx tg 根据上式有:()()()()δϕϕϕδδδδϕϕϕδδδd d l a d dy d d l a d dx /1sin sin //1cos cos /00++++-=+++-=可得 ()()()()()()2222////cos ////sin δδδθδδδθd dy d dx d dy d dy d dx d dx +-=+=实际轮廓线上对应的点B(x,y)的坐标为θθsin 1cos 1T T r y y r x x ==此即为凸轮工作的实际廓线方程,式中“-”用于内等距线,“+” 于外等距线。

3程序框图程序清单及运行结果4程序清单及运行结果#include<math.h>#include<dos.h>#include<graphics.h>#include<conio.h>#include<stdio.h>#define l 135.0#define Aa 42#define r_b 40#define rr 8#define K (3.1415926/180)#define dt 0.25float Q_max,Q_t,Q_s,Q_h;float Q_a;double L,pr;float e[1500],f[1500],g[1500];void Cal(float Q,double Q_Q[3]){Q_max=15,Q_t=75,Q_s=10,Q_h=70;if(Q>=0&&Q<=Q_t/2){Q_Q[0]=K*(2*Q_max*Q*Q/(Q_t*Q_t));Q_Q[1]=4*Q_max*Q/(Q_t*Q_t);Q_Q[2]=4*Q_max/(Q_t*Q_t);}if(Q>Q_t/2&&Q<=Q_t){Q_Q[0]=K*(Q_max-2*Q_max*(Q-Q_t)*(Q-Q_t)/(Q_t*Q_t));Q_Q[1]=4*Q_max*(Q_t-Q)/(Q_t*Q_t);Q_Q[2]=-4*Q_max/(Q_t*Q_t);}if(Q>Q_t&&Q<=Q_t+Q_s){Q_Q[0]=K*Q_max;Q_Q[1]=0;Q_Q[2]=0;}if(Q>Q_t+Q_s&&Q<=Q_t+Q_s+Q_h/2){Q_Q[0]=K*(Q_max-2*Q_max*(Q-Q_t-Q_s)*(Q-Q_t-Q_s)/(Q_h*Q_h));Q_Q[1]=-4*Q_max*(Q-Q_t-Q_s)/(Q_h*Q_h);Q_Q[2]=-4*Q_max/(Q_h*Q_h);}if(Q>Q_t+Q_s+Q_h/2&&Q<=Q_t+Q_s+Q_h){Q_Q[0]=K*(2*Q_max*(Q_h-Q+Q_t+Q_s)*(Q_h-Q+Q_t+Q_s)/(Q_h*Q_h)); Q_Q[1]=-4*Q_max*(Q_h-Q+Q_t+Q_s)/(Q_h*Q_h);Q_Q[2]=4*Q_max/(Q_h*Q_h);}if(Q>Q_t+Q_s+Q_h&&Q<=360){Q_Q[0]=K*0;Q_Q[1]=0;Q_Q[2]=0;}}void Draw(float Q_m){float tt,x,y,x1,y1,x2,y2,x3,y3,x4,y4,dx,dy;double QQ[3];circle(240,240,3);circle(240+L*sin(50*K)+4*cos(240*K),240+L*cos(50*K)-4*sin(240*K),3); moveto(240,240);lineto(240+20*cos(240*K),240-20*sin(240*K));lineto(260+20*cos(240*K),240-20*sin(240*K));lineto(240,240);moveto(240+L*sin(50*K)+4*cos(240*K),240+L*cos(50*K)-4*sin(240*K)); lineto(240+L*sin(50*K)+20*cos(240*K),240+L*cos(50*K)-20*sin(240*K)); lineto(255+L*sin(50*K)+20*cos(240*K),240+L*cos(50*K)-20*sin(240*K)); lineto(240+L*sin(50*K)+4*cos(240*K),240+L*cos(50*K)-4*sin(240*K)); for(tt=0;tt<=720;tt=tt+2){Cal(tt,QQ);x1=L*cos(tt*K)-l*cos(Q_a+QQ[0]-tt*K);y1=l*sin(Q_a+QQ[0]-tt*K)+L*sin(tt*K);x2=x1*cos(Q_m*K+40*K)+y1*sin(Q_m*K+40*K);y2=-x1*sin(Q_m*K+40*K)+y1*cos(Q_m*K+40*K);putpixel(x2+240,240-y2,2);dx=(QQ[1]-1)*l*sin(Q_a+QQ[0]-tt*K)-L*sin(tt*K);dy=(QQ[1]-1)*l*cos(Q_a+QQ[0]-tt*K)+L*cos(tt*K);x3=x1-rr*dy/sqrt(dx*dx+dy*dy);y3=y1+rr*dx/sqrt(dx*dx+dy*dy);x4=x3*cos(Q_m*K+40*K)+y3*sin(Q_m*K+40*K);y4=-x3*sin(Q_m*K+40*K)+y3*cos(Q_m*K+40*K);putpixel(x4+240,240-y4,YELLOW);}}void Curvel(){int t;float y1,y2,y3,a=0;for(t=0;t<=360/dt;t++){delay(300);a=t*dt;if((a>=0)&&(a<=Q_t/2)){y1=(2*Q_max*pow(a,2)/pow(Q_t,2))*10;y2=(4*Q_max*(dt*K)*a/pow(Q_t,2))*pow(10,4.8);y3=(4*Q_max*pow((dt*K),2)/pow(Q_t,2))*pow(10,8.5);putpixel(100+a,300-y1,1);putpixel(100+a,300-y2,2);putpixel(100+a,300-y3,4);line(100+Q_t/2,300-y3,100+Q_t/2,300);}if((a>Q_t/2)&&(a<=Q_t)){y1=(Q_max-2*Q_max*pow((Q_t-a),2)/pow(Q_t,2))*10;y2=(4*Q_max*(dt*K)*(Q_t-a)/pow(Q_t,2))*pow(10,4.8);y3=((-4)*Q_max*pow((dt*K),2)/pow(Q_t,2))*pow(10,8.5);putpixel(100+a,300-y1,1);putpixel(100+a,300-y2,2);putpixel(100+a,300-y3,4);line(100+Q_t,300-y3,100+Q_t,300);line(100+Q_t/2,300,100+Q_t/2,300-y3);}if((a>Q_t)&&(a<=Q_t+Q_s)){y1=Q_max*10;y2=0;y3=0;putpixel(100+a,300-y1,1);putpixel(100+a,300-y2,2);putpixel(100+a,300-y3,4);line((100+Q_t+Q_s),300,(100+Q_t+Q_s),300-y3);}if((a>Q_t+Q_s)&&(a<=Q_t+Q_s+Q_h/2)){y1=(Q_max-2*Q_max*pow((a-Q_t-Q_s),2)/pow(Q_h,2))*10;y2=((-4)*Q_max*(dt*K)*(a-Q_t-Q_s)/pow(Q_h,2))*pow(10,4.8);y3=((-4)*Q_max*pow((dt*K),2)/pow(Q_h,2))*pow(10,8.5);putpixel(100+a,300-y1,1);putpixel(100+a,300-y2,2);putpixel(100+a,300-y3,4);line((100+Q_t+Q_s+Q_h/2),300,(100+Q_t+Q_s+Q_h/2),300-y3);line((100+Q_t+Q_s),300,(100+Q_t+Q_s),300-y3);}if((a>Q_t+Q_s+Q_h/2)&&(a<=Q_t+Q_s+Q_h)){y1=(2*Q_max*pow((Q_h-a+Q_t+Q_s),2)/pow(Q_h,2))*10;y2=((-4)*Q_max*(dt*K)*(Q_h-a+Q_t+Q_s)/pow(Q_h,2))*pow(10,4.8); y3=(4*Q_max*pow((dt*K),2)/pow(Q_h,2))*pow(10,8.5);putpixel(100+a,300-y1,1);putpixel(100+a,300-y2,2);putpixel(100+a,300-y3,4);line((100+Q_t+Q_s+Q_h),300-y3,(100+Q_t+Q_s+Q_h),300);line((100+Q_t+Q_s+Q_h/2),300,(100+Q_t+Q_s+Q_h/2),300-y3);}if((a>Q_t+Q_s+Q_h)&&(a<=360)){y1=0;y3=0;putpixel(100+a,300,1);putpixel(100+a,300,2);putpixel(100+a,300,4);}e[t]=y1;f[t]=y2;g[t]=y3;}}main(){int gd=DETECT,gm;int i,t,choice,x_1,y_1,flag=1;double QQ1[3],aa;FILE *f1;if((f1=fopen("liliangliang.txt","w"))==NULL){printf("liliangliang.txt cannot open!\n");exit(0);}initgraph(&gd,&gm," ");cleardevice();for(t=0;!kbhit();t++){for(;t>360;)t-=360;if(flag==1)for(L=l-r_b+70;L<l+r_b;L+=2){Q_a=acos((L*L+l*l-r_b*r_b)/(2.0*L*l));Cal(t,QQ1);aa=atan(l*(1-QQ1[1]-L*cos(Q_a-QQ1[0]))/(L*sin(Q_a+QQ1[0])));/*压力角*/ pr=(pow((L*L+l*l*(1+QQ1[1])*(1+QQ1[1])-2.0*L*l*(1+QQ1[1]*cos(Q_a+QQ1[ 0]))),3.0/2))/*曲率半径*//((1+QQ1[1])*(2+QQ1[1])*L*l*cos(Q_a+QQ1[0])+QQ1[2]*L*l*sin(Q_a+QQ1[ 0])-L*L-l*l*pow((1+QQ1[1]),3));if(aa<=Aa&&pr>rr)flag=0;break;}if(flag==0)Cal(t,QQ1);cleardevice();x_1=240+L*sin(50*K)-l*cos(Q_a+QQ1[0]+40*K);y_1=240+L*cos(50*K)-l*sin(Q_a+QQ1[0]+40*K);circle(x_1,y_1,rr);line(240+L*sin(50*K),240+L*cos(50*K),x_1,y_1);moveto(240+L*sin(50*K),240+L*cos(50*K));lineto(240+L*sin(50*K)+l*cos(Q_a+QQ1[0]+40*K),480+2*L*cos(50*K)-y_1); lineto(140+L+l*cos(Q_a+QQ1[0])*2,480+2*L*cos(50*K)-y_1);delay(1);}getch();cleardevice();line(100,80,100,445);line(70,300,530,300);line(100,80,98,90);line(100,80,102,90);line(520,298,530,300);line(520,302,530,300);setcolor(2);outtextxy(300,150,"The analysis of the worm gear's movement");printf("\n\n\n\n\n Q(w,a)");printf("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\t\t\t\t\t\t\t\tt");Curvel();getch();printf("\n\n\n\n\n\n\n\n\n\n");for(i=0;i<=1440;i=i+20){delay(1000);printf("%d %f %f %f\n",i/4,e[i],f[i],g[i]);fprintf(f1,"%d %f %f %f\n",i/4,e[i],f[i],g[i]);}getch();fclose(f1);closegraph();}运行结果角度10倍角位移104.8倍角速度108.5倍角加速度0 0.000000 0.000000 64.2189875 1.333333 14.683043 64.21898710 5.333333 29.366087 64.21898715 12.000000 44.049033 64.21898720 21.333334 58.732174 64.21898725 33.333332 73.415222 64.21898730 48.000000 88.098267 64.21898735 65.333336 102.781303 64.21898740 84.666664 102.781303 64.21898745 102.000000 88.098267 -64.21898750 116.666664 73.415222 -64.21898755 128.666672 58.732174 -64.21898760 138.000000 44.049133 -64.21898765 144.666672 29.366087 -64.21898770 148.666672 14.683043 -64.21898775 150.000000 0.000000 -64.21898780 150.000000 0.000000 0.00000085 150.000000 0.000000 0.00000090 148.469391 -16.855536 -73.72077995 143.877548 -33.711071 -73.72077995 143.877548 -33.711071 -73.720779100 136.224487 -50.566605 -73.720779105 125.510201 -67.422124 -73.720779110 111.734695 -84.277672 -73.720779115 94.897957 -101.133209 -73.720779120 75.000000 -117.988747 -73.720779125 55.102039 -101.133209 73.720779130 38.256305 -84.277672 73.720779135 24.489796 -67.422142 73.720779140 13.775510 -50.566605 73.720779145 6.122449 -33.711071 73.720779150 1.530612 -16.855536 73.720779155 0.000000 -0.000000 73.720779160-360 0.00000000 0.0000000 0.00000005设计总结通常此次繁忙的机械原理课程设计,让我受益颇多。

相关文档
最新文档