K0+132.5~195.5空心板梁满堂支架计算书终0

合集下载

满堂支架施工受力计算书

满堂支架施工受力计算书

满堂支架施工受力计算书一、支架材料(1)木胶板木胶板作模板面板时根据《木结构设计规范》4.2规定抗弯强度设计值13N/mm2,弹性模量为9.0*103N/mm2,挠度极限值L/400。

由于桥梁施工处于露天环境,根据规范的要求进行调整,f m=13╳0.9=11.70N/mm2,E=9.0*103*0.85=7.65*103 N/mm2。

(2)第一层木楞:宽100mm,长100mm抗弯强度:13N/mm^2,抗剪强度:1.3N/mm^2,弹性模量:10000N/mm^2(3)第二层木楞:宽150mm,长150mm抗弯强度:13N/mm^2,抗剪强度:1.3N/mm^2,弹性模量:10000N/mm^2(4)48mm×3.2mm 钢管:惯性矩I=11.36cm^4,截面模量W=4.732cm^3,截面积 A=4.504cm^2,回转半径 i=1.588cm,钢管自重: 3.54kg/mQ235钢抗拉、抗压和抗弯强度设计值: f=215N/mm^2,弹性模量: E=2.06×10^5N/mm^2。

二、计算荷载1、箱梁混凝土容重26.5KN/m3。

2、模板自重:侧模及排架4.0KN/m2 内模及底模1.5KN/m23、人群及机具荷载荷载按2.5KN/㎡计算。

4、倾倒和振捣混凝土荷载按4.0KN/㎡计算。

5、恒载分项系数1.2,活载分项系数1.4。

三、受力计算3.1.计算假设支架横断面构造图如下所示由于箱梁横向不均匀分布,根据箱梁横断面的形状,为了使支架受力比较合理,对称中线的一半横向分为中间部分(宽3.0米)、腹板部分(宽1.7米)和翼板部分(宽2.65米),各部分的宽度内均按照均匀荷载进行假设。

3.2.荷载计算3.2.1箱梁各部分荷载(1)翼缘混凝土荷载2=q m⨯KN•+2.0(=)⨯655.11.260583.1.0翼(2)腹板混凝土荷载2KN•q m3⨯=⨯=26.48.1835.05腹(3)底板混凝土荷载2=KN•q m⨯⨯=)+(6.033.395.26.1056.0底(4)内模及底模荷载2KN•=q m5.1内(5)外膜及排架荷载20.4q m KN •=外(6)人群及机具荷载25.2q m KN •=人(7)倾倒和振捣混凝土荷载20.4q m KN •=倾3.2.2底模面板计算箱梁横断面由于腹板下底模受力最大,以腹板下底模面板做控制计算 腹板下组合荷载为:m 28.1090.45.248.832.1q •=++⨯=KN )(腹组面板为20mm 厚木胶板模板次楞(横向分配梁)间距300mm ,计算宽度1000mm 。

满堂支架计算书(最终版)

满堂支架计算书(最终版)

满堂支架专项施工方案1 工程概况本标段桥梁较多,均为预应力混凝土连续箱梁支架现浇法施工。

包括K31+547.127天桥、K32+660.342天桥及K33+177.087即威路分离立交,K34+237.402即墨互通立交桥。

跨度最大结构形式为25+40+40+25。

现浇主梁为C50砼,现以K31+547天桥为例,箱梁横断面图如下图1:图1、箱梁断面结构尺寸2 编制范围K31+547.127天桥、K32+660.342天桥及K33+177.087即威路分离立交,K34+237.402即墨互通立交桥。

3 编制依据《公路桥涵钢结构及木结构设计规范》 JTJ025-86《公路桥涵地基与基础设计规范》JTJ024-85《建筑结构荷载规范》GB50009-2001《公路工程质量检验评定标准》 JTG F080/1-2004《公路工程施工安全技术规程》JTJ076-95《公路桥涵施工技术规范》JTG TF50-2011《建筑施工模板安全技术规范》JGJ162-2008《建筑施工碗扣式钢管脚手架安全技术规范》JGJ_166-2008《桥涵施工计算手册》设计院提供设计图纸4、施工工艺流程及整体设计4.1 工艺流程施工准备→基础处理→测量放线→水平扫地杆搭设→立杆搭设→横杆搭设→剪刀撑搭设→顶托安装4.2 整体设计支架采用碗扣式满堂支架形式,行车道预留通道。

通道口宽5米,高5米,采用C15混凝土条形基础,基础尺寸宽80cm,高80cm,横桥向通长设置,通道采用Φ426钢管搭设,钢管横向间距1.5m,基础顶根据钢管间距预埋与钢管联接钢板。

钢管上横桥向并排铺I32工字钢两根,顺桥向上铺I50工字钢间距60cm。

钢管间采用钢筋或钢管焊接连接成一个整体,并在钢管中灌砂以增强钢管整体稳定性。

碗扣式满堂支架的横向间距采用90cm,纵向间距60cm,步距120cm。

支架通过60cm可调顶托和50cm可调底托调整高度,确保顶底托深入钢管内深度不小于15cm。

满堂支架计算.(DOC)

满堂支架计算.(DOC)

满堂支架计算简介满堂支架是一种用于建筑中支撑结构的装置,主要用于建筑施工中的临时支撑、拆除撑和开挖撑等作用。

在使用满堂支架时需要进行详细的计算和设计,以确保施工的安全性和稳定性。

本文将介绍满堂支架计算的基本原理和方法。

基本原理满堂支架的作用是通过承载扭矩和弯曲力来支撑建筑的结构,防止结构发生变形和倒塌。

因此,在计算满堂支架的承载能力时需要考虑以下因素:•支架材料的强度和刚度•支架的外形尺寸和结构形式•施工现场的荷载和环境条件根据上述因素,可以通过力学方法进行满堂支架的计算。

计算方法计算流程•确定支架荷载。

在计算中需要将支架的分量按荷载分别处理,包括垂直、水平、剪切和扭矩四个方向上的荷载。

•计算支架的扭转刚度。

扭转刚度是指支架在受力作用下的扭转变形程度,需要根据支架材料的强度和形状进行计算。

•计算支架的弯曲刚度。

弯曲刚度是指支架在受力作用下的弯曲变形程度,同样需要根据支架材料的强度和形状进行计算。

•计算支架的承载能力。

支架的承载能力是指支架在荷载作用下的最大承载能力值,需要根据支架的构造和受力情况进行计算。

计算公式•支架荷载计算公式:支架荷载 = 分量荷载 + 载荷作用 + 摩擦力•支架的扭转刚度计算公式:Kt = GJ / L其中G为材料的剪切模量,J为截面扭转常数,L为支架的长度。

•支架的弯曲刚度计算公式:Kb = EI / L其中E为材料的弹性模量,I为截面惯性矩,L为支架的长度。

•支架的承载能力计算公式:P = Mx / Y + My / X其中Mx和My分别为支架在垂直和水平方向上的扭转力矩,X和Y分别为支架在垂直和水平方向上的截面模量。

结论满堂支架计算是建筑安全工作中不可或缺的环节,需要根据实际情况进行详细的计算和设计。

本文介绍了满堂支架计算的基本原理和方法,希望对读者了解和掌握这一领域有所帮助。

满堂支架计算书1

满堂支架计算书1

XXX桥XXX连续梁满堂支架计算书计算:复核:技术负责人:单位:[二〇一六年五月二十一日]目录一、计算依据 (1)二、设计概述 (1)1、满堂支架布置方式 (1)2、底模 (1)3、纵梁 (1)4、横梁 (1)5、立杆 (1)6、支架搭设注意事项 (1)7、横向布置图 (2)三、材料参数 (2)四、荷载参数 (3)1、标准荷载及组合系数 (3)2、风荷载标准值 (3)3、横纵梁自重荷载计算 (4)五、底模验算 (4)1、计算模型图 (5)2、弯矩图 (5)3、剪力图 (5)4、下缘应力图 (5)5、变形图 (5)7、计算结果表 (5)六、纵梁验算 (5)1、计算模型图 (5)2、弯矩图 (6)3、剪力图 (6)4、下缘应力图 (6)5、变形图 (6)6、支座反力图 (6)7、计算结果表 (6)七、横梁验算 (6)1、计算模型图 (6)2、弯矩图 (6)3、剪力图 (7)4、下缘应力图 (7)5、变形图 (7)6、支座反力图 (7)7、计算结果表 (7)八、立杆验算 (7)1、第1号立杆受力计算: (7)2、立杆计算汇总 (10)一、计算依据1、《铁路混凝土梁支架法现浇施工技术规程》TB110-20112、《公路桥涵施工技术规范》JTG/T F50-20113、《建筑施工模板安全技术规范》JGJ162-20084、《建筑施工碗扣式钢管脚手架安全技术规范》JGJ166-20085、《混凝土结构设计规范》GB50010-20106、《建筑结构荷载规范》GB 50009-20017、《钢结构设计规范》GB 50017-20038、《建筑结构可靠度统一标准》(GB50068)9、《冷弯薄壁型钢结构技术规范》GB50018-200210、《公路桥涵地基与基础设计规范》JTG D63-200711、《混凝土模板用竹胶合板》LY/T 1574-2000二、设计概述1、满堂支架布置方式采用碗扣式满堂支架,横纵梁布置形式:先横后纵。

满堂支架计算书总体施工方案

满堂支架计算书总体施工方案

满堂支架总体施工方案本工程有现浇梁13联,取代表性3种不同梁高、桥跨进行设计和验算。

B=25.5m、标准跨径(30m+30m+30m)等高斜腹板预应力混凝土连续梁、B=25.5m、标准跨径(30m+45m+45m+30m)变高度斜腹板连续梁、B=25.5m、(35+50+35)m变高度斜腹板连续梁分别进行验算。

采用碗扣式满堂支架施工,支架搭设完成后对其预压,预压用砂袋按箱梁荷载(一期恒载+施工荷载)的1.2倍预压,在预压过程中,消除非弹性变形与基础沉降后即可卸除荷载,调整支撑。

一、B=25.5m、标准跨径(30m+30m+30m)等高斜腹板预应力混凝土连续梁箱体外模一次性立模成型,底模和内模采用1.5cm厚竹胶板,底模纵桥向采用10cm×10cm方木,间距22.5cm,方木下面横桥向为10cm×15cm方木,与支架一起组成现浇梁支撑体系。

侧模采用1.5cm 厚竹胶板和定型钢模板混合使用。

碗口支架作为支撑。

二、构架搭设主线桥工程现浇梁一共13联,以(30m+30m+30m)、(30 m +45 m +45 m +30 m)为标准联,因此验算(30m+30m+30m)、(30 m +45 m +45 m +30 m)为例进行分析。

箱梁模板支架采用碗扣式满堂支架,支架立杆长度分为2.4m、1.2m、0.9m、0.6m、0.3m几种,用以调整不同的高度,步距 1.2m。

支架立杆上下端分别安装可调式顶托和底座。

其单根最大荷载为30KN。

箱梁端(中)横梁纵向3m范围内腹板处按0.6m×0.6m间距布置立杆,跨中纵向24.3m范围内和腹板处按照0.6m ×0.6、0.6m×0.9m m间距布置立杆,翼缘板部分按0.9m×0.9m间距布置立杆。

支架上荷载计算及说明部分参照:《建筑施工碗口式钢管脚手架安全技术规范》JGJ166-2016、《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011、《建筑施工模板安全技术规范》JGJ162-2008。

屋面满堂脚手架的计算书

屋面满堂脚手架的计算书

屋面满堂脚手架的计算书为了便于安装网架考虑在屋面以上搭设钢管满堂脚手架,采用φ48×3.5㎜钢管,横间为1M,纵向为1.2M,施工层铺设竹挑板,网架自重、槽钢轨道的重量为20T,由四条轨道支承此部分的荷载,即中间的轨道承受的力最大q=4900N/m1、荷载的计算:恒载:NG1=4.9×1.2×1.05=6.174KN网架及槽钢:脚手架钢管自重:查表得:NG2=2.81KN脚手架自重:NG3=0.35×1×1.2=0.42KN活载:NQ=1×1×1.2=1.2KN2、整体稳定性η=1.2/10.838=0.11 γη=1.59×1+0.11/1+1.17×0.11=1.564N=(6.174+2.81+42)×1.2+1.4×1.2=12.96查表:μ=1.55 L0=1.55×1.8=2.79 λ=L0/i=2.79/15.8=17.66查表:φ =0.954 A=489㎜2∵0.9N/φA=0.9×12960/0.954×489=25N/㎜2<f c/γη΄=205/1.564=131N/㎜2∴满足要求3、扣件抗滑移的计算已知扣件抗滑移承载力设计值Rc=8.0KN由上图计算的R B的支座反力最大为9.072KN,所以R B支座必须设置双扣件才能满足抗滑移要求。

4、小横杆的计算由管面得知:N=1.2×(0.42+6.174)+1.4×1.2=9.6KNfc=pa2b2/3ElL=9.6×(0.7)2×(0.3)2/3×2.06×12.19×106×1=5.62N/㎜2<fc=205 N/㎜2∴强度满足要求5qL4/384EL=5×9.6×(1)3/384×206×12.19×106=5.0㎜<L/150=1000/150=6.667㎜∴挠度满足要求5、大横杆的计算脚手板自重:G k=0.35×1.2/3=0.14KN/m施工荷载:Q k=1×1.2/3=0.4 KN/mq=1.2×0.14+1.4×0.4=0.728 KN/mM Gk=0.1×0.14×1.2×1.2=0.02 KN.mM Qk=0.1×0.4×1.2×1.2=0.057 KN.mM=1.2×0.02+1.4×0.057=0.104 KN.mM x/5.08×103=0.104/5.08×103=0.02 KN/㎜2<fc=0.205 KN/㎜2∴抗弯强度满足要求0.99qL4/100EI=0.99×(1.2×0.14+1.4×0.4)×1.24/100×2.06×106×12.19=0.06㎜<1200/150=8㎜∴挠度满足要求6、立杆计算荷载由管面计算得:N=13.0KNN/A w=13/489=26.6N/㎜2<fc=205N/㎜2因为步距为1.8m,回转半径i=15.8 λ=1.8/15.8=114查表数:φ=0.489则:N/φA=13000/0.489×489=54.365N/㎜2<fc=205N/㎜2∴满足要求。

满堂支架计算书(调整)

满堂支架计算书(调整)

满堂支架 (碗扣式支架) 及模板计算书支撑架的计算依据《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。

一、综合说明由于其中模板支撑架高在6~8.5米范围内,按8.5米高计算,为确保施工安全,编制本专项施工方案。

设计范围:现浇梁高按1.5m设计,采用18mm厚竹胶板组拼。

二、搭设方案(一)基本搭设参数模板支架高H为8.5m,立杆步距h(上下水平杆轴线间的距离)取1.2m,立杆纵距l a 取0.9m,横距lb取0.9m。

立杆伸出顶层横向水平杆中心线至模板支撑点的自由长度a取0.1m。

模板底部的水平分配梁采用2[10槽钢,竖向内楞采用10cm×10cm方木,间距拟定300mm。

(二)材料及荷载取值说明本支撑架使用Φ48 ×3.5钢管,钢管上严禁打孔;采用的扣件,不得发生破坏。

模板支架承受的荷载包括模板及支架自重、新浇混凝土自重、钢筋自重,以及施工人员及设备荷载、振捣混凝土时产生的荷载等。

三、板模板支架的强度、刚度及稳定性验算荷载首先作用在板底模板上,按照“底模→底模方木→分配梁→可调托座→立杆→基础”的传力顺序,分别进行强度、刚度和稳定性验算。

其中,取与底模方木平行的方向为纵向。

(一)板底模板的强度和刚度验算(1)荷载计算,按单位宽度折算为线荷载,相关参数如下。

混凝土自重(γc)为26KN/m3,强度等级C50,坍落度为15 3cm,采用汽车泵泵输送入模,浇筑速度为1 m/h,用插入式振捣器振捣。

模板(竹胶板,厚度18mm)力学性能f w=13.5 N/mm2 (抗弯),f v=2.1 N/mm2 (抗剪),f c=10 N/mm2 (抗拉)W= bh2/6 =1000×182/6 = 5.4×104mm2 (截面最大抵抗矩)/每米宽I= bh3/12 =1000×183/12 = 4.86×105mm4 (截面惯性矩)E=8000N/mm2 (弹性模量)[w]=L/400=0.75mm10cm×10cm方木截面特征为:I=bh3/12=1004/12 mm4W=bh2/6=1003/6 mm3E=9000 N/mm2;φ48×3.5钢管材料力学特性:A=489 mm2 f =205 N/mm2I=12.19×104 mm4 W=5.08×103mm2XE=2.06×105 N/mm22 [10槽钢组合截面材料力学特性:A=2549 mm2 f =205 N/mm2=7.932×104mm3I=3.966×106 mm4 WXE=1.96×105 N/mm2模板按三跨连续梁计算,如图所示:=0.3×1 =0.3kN/m;模板自重标准值:x1=1.5×26×1 =39kN/m;新浇混凝土自重标准值:x2=2.5×1 =2.5kN/m;施工人员及设备活荷载标准值:x3振捣混凝土时产生的荷载标准值:x=2×1=2kN/m。

满堂脚手架计算书-终版

满堂脚手架计算书-终版
钢管类型 钢管截面惯性矩I(cm4) 钢管抗压强度设计值 [f](N/mm2)
Φ48×2.7 9.891 205
钢管截面抵抗矩 W(cm3) 钢管弹性模量E(N/mm2) 纵向钢管验算方式
4.121 206000 三等跨连续梁
G1k=g1k= G2k=g2k×lb/(n+1)= Q1k=q1k×lb/(n+1)= Q2k=q2k×lb/(n+1)=
钢管类型 钢管的净截面A(cm2) 立柱布置形式 每米立杆承受结构自重标准值gk(kN/m)
Ф48×2.7 钢管截面回转半径i(cm)
3.84
钢管抗压强度设计值
2 [f](N/mm )
单立杆 立杆计算长度系数μ
1.6 205 2.176 0.164
NG1=gk×H+g1k×la×n+g1k×a= NG2=g2k×la×lb= NG3=g3k×la= NG4=g4k×la= NQ1=q1k×la×lb= NQ2=q2k×la×lb= NQ3=F1+F2=
1.755 kN 0.547 kN 0.213 kN 0.125 kN 2.344 kN 1.25 kN
0.7 kN
考虑风荷载时,立杆的轴向压力设计值 N=1.2×(NG1+NG2+NG3+NG4)+0.9×1.4× (NQ1+NQ2+NQ3)=
支架立杆计算长度 L0=kμh=
长细比λ= L0/i= 满足设计要求!
满足设计要求!
6.934 kN 27.736 kPa
素填土 0.96 0.25

fg=fa×kc= 115 kPa
风压高度变化系数μz 风荷载标准值ωk(kN/m2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

封家湾至太阳庙公路高边坡施工方案封家湾至太阳庙公路K0+164.5中桥整体式预应力混凝土简支空心板满堂支架设计验算书编制:审核:复核:盘县捷通公路工程建设有限公司2017年4月CCEED 中国建筑第八工程局K0+164.5中桥整体式预应力混凝土简支空心板满堂支架设计验算书K0+164中桥为2*25m 整体式预应力现浇简支空心板梁桥,梁高1.3m ,桥面宽度:净11+2×0.5m (钢筋混凝土护栏),桥面全宽12.0m ;桥梁全长64.0m 。

空心板梁采用C50混凝土,均采用满堂式扣件支架施工。

满堂支架的基础均在填方段上,为防止流水软化支架地基,浇筑20cm 厚C20砼作为封闭层,设置2%单向横坡,每5~8m 设横向涨缩缝,在桥中心设纵向涨缩缝。

然后上部铺设10cm ×10cm 木方承托支架。

支架最高10m ,采用Φ48mm ,壁厚3.5mm 钢管搭设,使用与立杆配套的横杆及立杆可调底座、立杆可调顶托,现浇箱梁腹板及底板中心位置纵距、横距采用60cm ×60cm 的布置形式,现浇箱梁跨中位置支架步距采用120cm 的布置形式,现浇板梁墩顶位置支架步距采用60cm 的布置形式,立杆顶设12cm ×12cm 方木或钢管调整高度,间距为60cm 。

1、荷载计算根据本桥现浇空心板梁的结构特点,在施工过程中将涉及到以下荷载形式: ⑴ q 1—— 空心板梁自重荷载,新浇混凝土密度取2500kg/m 3。

根据现浇空心板梁结构特点,我们取D-D 截面、E -E 截面两个代表截面进行空心板梁自重计算,并对两个代表截面下的支架体系进行检算,首先分别进行自重计算。

① D-D 截面处q 1计算(尺寸见后附图)根据横断面图,则:q 1 =B W =B A c ⨯γ=(25*(10.8*1.3+2*(0.45+0.25)*0.6*0.5+0.1*0.1*0.5*4*10-0.55*0.55*10)/10.8=26.93Kpa注:B —箱梁底宽,取10.8m ,将箱梁全部重量平均到底宽范围内计算偏于安全。

② E -E 截面处q 1计算(尺寸见后附图) 根据横断面图,则: q 1=BW =B A c ⨯γ=(25*(10.8*1.3+2*(0.45+0.25)*0.6*0.5+0.1*0.1*0.5*2*10+0.17*0.17*0.5*2*10-0.83*0.75*10)/10.8=19.96Kpa注:B —箱梁底宽,取10.8m ,将箱梁全部重量平均到底宽范围内计算偏于安全。

⑵ q 2—— 梁内模、底模、内模支撑及外模支撑荷载,按均布荷载计算,经计算取q 2=1.0kPa (偏于安全)。

⑵ q 3—— 施工人员、施工材料和机具荷载,按均布荷载计算,当计算模板及其下肋条时取2.5kPa (每250公斤的力作用在每平方米上);当计算肋条下的梁时取1.5kPa ;当计算支架立柱及其他承载构件时取1.0kPa 。

⑷ q 4—— 振捣混凝土产生的荷载,对底板取2.0kPa ,对侧板取4.0kPa 。

⑸ q 5—— 新浇混凝土对侧模的压力。

根据规范规定,新浇混凝土对模板的侧压力,当采用内部振捣器时按下列两式计算,并取两式中较小值。

⎩⎨⎧⋅⋅⋅=⋅=v t F HF c c 21022.0ββγγ γc :新浇混凝土的重力密度(k N/m³),取值25 k N/m³;H :混凝土侧压力计算位置至新浇混凝土顶面时的高度(m ),取1.3mt 0:新浇混凝土的初凝时间(h ),可按实测确定。

取4h 。

T :混凝土的温度(°),取28℃。

β1:外加剂影响修正系数,掺具有缓凝作用的外加剂时取1.2。

β2:混凝土坍落度影响修正系数, 50~90mm ,取1.0。

ν:混凝土的浇筑速度,取1.2m/h 。

F=25*1.3=32.5KpaF=0.22*25*4*1.2*1*1.095=28.9Kpa为保证模板的稳定及变形能力,对新浇混凝土对模板的最大侧压力值取F=40kPa 偏于安全。

⑹ q 6—— 倾倒混凝土产生的水平荷载,取2.0kPa 。

⑺ q 7—— 支架自重,取4kPa 。

2、结构检算2.1扣件式钢管支架立杆强度及稳定性验算扣件式钢管脚手架与支架一样,同属于杆式结构,以立杆承受竖向荷载作用为主,但扣件式由于立杆和横杆间为十字扣件相接,对立杆受压后的侧向变形具有较强的约束能力。

本工程现浇箱梁支架立杆强度及稳定性验算,根据《建筑施工扣件式钢管脚手架安全技术规范》有关模板支架立杆的强度及稳定性计算公式进行分析计算(钢管规格为φ48×3.5mm)。

⑴D -D 截面处墩顶4.0m 范围内,扣件式钢管支架体系采用60cm ×60cm ×60cm 的布置结构,如下图2.1-1。

图2.1-1①、立杆强度验算根据立杆的设计允许荷载,当横杆步距为60cm 时,立杆可承受的最大允许竖直荷载为[N ]=40kN (参见公路施工手册-桥涵)。

立杆实际承受的荷载为:N=1.2(N G1K +N G2K )+0.85×1.4ΣN QK (组合风荷载时)N G1K —支架结构自重标准值产生的轴向力; N G2K —构配件自重标准值产生的轴向力 ΣN QK —施工荷载标准值;于是,有:N G1K =0.6×0.6×q 1=0.6×0.6×26.93=9.49KNN G2K =0.6×0.6×q 7=0.6×0.6×4.0=1.44KN ΣN QK =0.6×0.6×(q 2+q 3+q 4)=0.36×(1.0+1.0+2.0)=1.44KN则:N=1.2(N G1K +N G2K )+0.85×1.4ΣN QK =1.2×(9.49+1.44)+0.85×1.4×1.44=15.07KN <[N ]=40KN ,强度满足要求。

图2.1-1 脚手架60cm ×60cm ×60cm 布置图②、立杆稳定性验算根据《建筑施工扣件式钢管脚手架安全技术规范》有关模板支架立杆的稳定性计算公式:N/ΦA+MW/W≤fN—钢管所受的垂直荷载,N=1.2(NG1K +NG2K)+0.85×1.4ΣNQK(组合风荷载时),同前计算所得:N=15.07 KN。

f—钢材的抗压强度设计值,f=205N/mm2参考《建筑施工扣件式钢管脚手架安全技术规范》表5.1.6得。

A—支架立杆的截面积A=489mm2(取φ48mm×3.5mm钢管的截面积)。

Φ—轴心受压杆件的稳定系数,根据长细比λ查表即可求得Φ。

i—截面的回转半径,查《建筑施工扣件式钢管脚手架安全技术规范》附录B得i =15.8㎜。

长细比λ=L/i。

L—水平步距,L=0.6m。

于是,λ=L/i=38,参照《建筑施工扣件式钢管脚手架安全技术规范》查附录C 得Φ=0.893。

MW—计算立杆段有风荷载设计值产生的弯距;M W =0.85×1.4×WK×La×h2/10W K =0.7uz×us×wu z —风压高度变化系数,参考〈〈建筑结构荷载规范〉〉表7.2.1得uz=1.13u s —风荷载脚手架体型系数,查〈〈建筑结构荷载规范〉〉表7.3.1第36b项得:us=1.3w 0—基本风压,查〈〈建筑结构荷载规范〉〉附表D.4 w=0.35KN/m2故:WK =0.7uz×us×w=0.7×1.13×1.3×0.35=0.36KN/ m2La—立杆纵距0.6m;h—立杆步距0.6m, MW =0.85×1.4×WK×La×h2/10=0.009W—截面模量查表〈〈建筑施工扣件式脚手架安全技术规范〉〉附表B得:W=5.08×103mm3则,N/ΦA+MW/W=15.07×103/(0.893×489)+0.009×106/(5.08×103)=36.28N/mm2≤f=205N/mm2计算结果说明支架是安全稳定的。

⑶ E -E 截面处25m 跨中3m ~10m 范围内,扣件式钢管支架体系采用60cm ×60cm ×120cm 的布置结构,如下图。

支架E-E断面图①、立杆强度验算根据立杆的设计允许荷载,当横杆步距为120cm 时,立杆可承受的最大允许竖直荷载为[N ]=30kN (参见公路施工手册-桥涵)。

立杆实际承受的荷载为:N=1.2(N G1K +N G2K )。

+0.85×1.4ΣN QK (组合风荷载时)N G1K —支架结构自重标准值产生的轴向力; N G2K —构配件自重标准值产生的轴向力 ΣN QK —施工荷载标准值;于是,有:N G1K =0.6×0.6×q 1=0.6×0.6×19.96=7.19KNN G2K =0.6×0.6×q 7=0.6×0.6×4.0=1.44KNΣN QK =0.6×0.6×(q 2+q 3+q 4)=0.36×(1.0+2.5+2.0)=1.62KN则:N=1.2(N G1K +N G2K )+0.85×1.4ΣN QK =1.2×(7.19+1.44)+0.85×1.4×1.62=12.28KN <[N ]=30KN ,强度满足要求。

②、立杆稳定性验算根据《建筑施工扣件式钢管脚手架安全技术规范》有关模板支架立杆的稳定性计算公式:N/ΦA+M W /W ≤f图2.1-2 脚手架60cm ×60cm ×120cm 布置图N—钢管所受的垂直荷载,N=1.2(NG1K +NG2K)+0.85×1.4ΣNQK(组合风荷载时),同前计算所得:N=12.28KNf—钢材的抗压强度设计值,f=205N/mm2参考《建筑施工扣件式钢管脚手架安全技术规范》表5.1.6得。

A—支架立杆的截面积A=489mm2(取φ48mm×3.5mm钢管的截面积)Φ—轴心受压杆件的稳定系数,根据长细比λ查表即可求得Φ。

i—截面的回转半径,查《建筑施工扣件式钢管脚手架安全技术规范》附录B 得i=15.8㎜。

长细比λ=L/i。

L—水平步距,L=1.2m。

于是,λ=L/i=76,参照《建筑施工扣件式钢管脚手架安全技术规范》查附录C 得Φ=0.744。

相关文档
最新文档