二分图的最大匹配经典之匈牙利算法
匈牙利算法解决二分图最大匹配

匈⽛利算法解决⼆分图最⼤匹配预备知识 匈⽛利算法是由匈⽛利数学家Edmonds于1965年提出,因⽽得名。
匈⽛利算法是基于Hall定理中充分性证明的思想,它是⼆分图匹配最常见的算法,该算法的核⼼就是寻找增⼴路径,它是⼀种⽤增⼴路径求⼆分图最⼤匹配的算法。
⼆分图 ⼆分图⼜称作⼆部图,是图论中的⼀种特殊模型。
设G=(V,E)是⼀个⽆向图,如果顶点V可分割为两个互不相交的⼦集(A,B),并且图中的每条边(i,j)所关联的两个顶点 i 和 j 分别属于这两个不同的顶点集(i in A,j in B),则称图G为⼀个⼆分图。
匹配 在图论中,⼀个图是⼀个匹配(或称独⽴边集)是指这个图之中,任意两条边都没有公共的顶点。
这时每个顶点都⾄多连出⼀条边,⽽每⼀条边都将⼀对顶点相匹配。
例如,图3、图4中红⾊的边就是图2的匹配。
图3中1、4、5、7为匹配点,其他顶点为⾮匹配点,1-5、4-7为匹配边,其他边为⾮匹配边。
最⼤匹配 ⼀个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最⼤匹配。
图 4 是⼀个最⼤匹配,它包含 4 条匹配边。
任意图中,极⼤匹配的边数不少于最⼤匹配的边数的⼀半。
完美匹配 如果⼀个图的某个匹配中,所有的顶点都是匹配点,那么它就是⼀个完美匹配。
显然,完美匹配⼀定是最⼤匹配,但并⾮每个图都存在完美匹配。
最⼤匹配数:最⼤匹配的匹配边的数⽬。
最⼩点覆盖数:选取最少的点,使任意⼀条边⾄少有⼀个端点被选择。
最⼤独⽴数:选取最多的点,使任意所选两点均不相连。
最⼩路径覆盖数:对于⼀个DAG(有向⽆环图),选取最少条路径,使得每个顶点属于且仅属于⼀条路径,路径长可以为0(即单个点)定理1:Konig定理——最⼤匹配数 = 最⼩点覆盖数定理2:最⼤匹配数 = 最⼤独⽴数定理3:最⼩路径覆盖数 = 顶点数 - 最⼤匹配数匈⽛利算法例⼦ 为了便于理解,选取了dalao博客⾥找妹⼦的例⼦: 通过数代⼈的努⼒,你终于赶上了剩男剩⼥的⼤潮,假设你是⼀位光荣的新世纪媒⼈,在你的⼿上有N个剩男,M个剩⼥,每个⼈都可能对多名异性有好感(惊讶,-_-||暂时不考虑特殊的性取向) 如果⼀对男⼥互有好感,那么你就可以把这⼀对撮合在⼀起,现在让我们⽆视掉所有的单相思(好忧伤的感觉,快哭了),你拥有的⼤概就是下⾯这样⼀张关系图,每⼀条连线都表⽰互有好感。
运筹学匈牙利法

运筹学匈牙利法运筹学匈牙利法(Hungarian Algorithm),也叫匈牙利算法,是解决二部图最大(小)权完美匹配(也称作二分图最大权匹配、二分图最小点覆盖)问题的经典算法,是由匈牙利数学家Kuhn和Harold W. Kuhn发明的,属于贪心算法的一种。
问题描述在一个二分图中,每个节点分别属于两个特定集合。
找到一种匹配,使得所有内部的节点对都有连边,并且找到一种匹配方案,使得该方案的边权和最大。
应用场景匈牙利算法的应用场景较为广泛,比如在生产调度、货车调度、学生对导师的指定、电影的推荐等领域内,都有广泛的应用。
算法流程匈牙利算法的伪代码描述如下:进行循环ɑ、选择一点未匹配的点a作为起点,它在二分图的左边β、找出a所有未匹配的点作为下一层节点ɣ、对下一层的每个节点,如果它在右边未匹配,直接匹配ɛ、如果遇到一个已经匹配的节点,进入下一圈,考虑和它匹配的情况δ、对已经匹配的点,将它已经匹配的点拿出来,作为下一层节点,标记这个点作为已被搜索过ε、将这个点作为当前层的虚拟点,没人配它,看能否为它找到和它匹配的点ζ、如果能匹配到它的伴侣,令它们成对被匹配最后输出最大权匹配。
算法优缺点优点:相比于暴力求解二分图最大权匹配来说,匈牙利算法具有优秀的解决效率和高效的时间复杂度,可以在多项式时间(O(n^3))内解决二分图最大权匹配问题。
缺点:当二分图较大时,匈牙利算法还是有很大的计算复杂度,复杂度不佳,算法有效性差。
此时就需要改进算法或者使用其他算法。
总结匈牙利算法是一个常见的解决二分图最大权匹配问题的算法,由于其简洁、易用、效率优秀等特性,广泛应用于学术和实际问题中。
匈牙利算法虽然在处理较大规模问题时效率不佳,但仍然是一种值得掌握的经典算法。
匈牙利算法 描述

匈牙利算法一、算法概述匈牙利算法是一种解决二分图最大匹配问题的经典算法,由匈牙利数学家DénesKőnig于1931年提出。
二分图是指图中的节点可以分为两个互不相交的集合,并且图中的边只能连接两个集合中的节点。
最大匹配问题是在二分图中找到最大的边集合,使得每个节点都只与一条边相连。
匈牙利算法通过不断寻找增广路径来寻找最大匹配。
增广路径是指一条路径,其起点和终点都不属于当前的匹配边集合,并且路径中的边交替属于匹配边和非匹配边。
通过不断寻找增广路径,匈牙利算法可以将非匹配边转化为匹配边,从而逐步增大匹配边集合的大小,直到无法找到增广路径为止。
二、算法步骤匈牙利算法的基本思路是通过深度优先搜索来寻找增广路径。
具体步骤如下:1. 初始化将所有节点的匹配状态设为未匹配。
2. 寻找增广路径从一个未匹配节点开始,进行深度优先搜索,寻找增广路径。
在搜索过程中,每次选择一个未匹配的邻接节点进行继续搜索,直到找到一条增广路径或者无法继续搜索为止。
3. 更新匹配边集合如果找到了增广路径,就将路径中的非匹配边转化为匹配边,同时将原来的匹配边转化为非匹配边。
然后回到第2步,继续寻找下一个增广路径。
4. 输出最大匹配当无法找到增广路径时,算法结束。
此时,最大匹配就是匹配边集合中的边。
三、算法示例为了更好地理解匈牙利算法,下面以一个具体的示例来说明。
假设有一个二分图,左侧的节点集合为A,右侧的节点集合为B,边集合为E。
图中的边表示两个节点之间的关系。
A = {a1, a2, a3}B = {b1, b2, b3}E = {(a1, b1), (a1, b2), (a2, b1), (a3, b2), (a3, b3)}初始时,所有节点的匹配状态都为未匹配。
1. 寻找增广路径从一个未匹配的节点开始,进行深度优先搜索,寻找增广路径。
假设从节点a1开始,我们找到了一条增广路径:a1-b1-a2-b2-a3。
2. 更新匹配边集合将路径中的非匹配边转化为匹配边,同时将原来的匹配边转化为非匹配边。
二分图的最大匹配完美匹配和匈牙利算法

二分图的最大匹配完美匹配和匈牙利算法匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名。
匈牙利算法是基于Hall定理中充分性证明的思想,它是二部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法。
这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm);不讲带权二分图的最佳匹配。
二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。
准确地说:把一个图的顶点划分为两个不相交集U 和V ,使得每一条边都分别连接U、V 中的顶点。
如果存在这样的划分,则此图为一个二分图。
二分图的一个等价定义是:不含有「含奇数条边的环」的图。
图 1 是一个二分图。
为了清晰,我们以后都把它画成图 2 的形式。
匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。
例如,图3、图4 中红色的边就是图 2 的匹配。
我们定义匹配点、匹配边、未匹配点、非匹配边,它们的含义非常显然。
例如图 3 中1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。
最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。
图 4 是一个最大匹配,它包含4 条匹配边。
完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。
图 4 是一个完美匹配。
显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。
但并非每个图都存在完美匹配。
举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。
是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。
二分图匹配(匈牙利算法和KM算法)

前言:高中时候老师讲这个就听得迷迷糊糊,有一晚花了通宵看KM的Pascal代码,大概知道过程了,后来老师说不是重点,所以忘的差不多了。
都知道二分图匹配是个难点,我这周花了些时间研究了一下这两个算法,总结一下1.基本概念M代表匹配集合未盖点:不与任何一条属于M的边相连的点交错轨:属于M的边与不属于M的边交替出现的轨(链)可增广轨:两端点是未盖点的交错轨判断M是最大匹配的标准:M中不存在可增广轨2.最大匹配,匈牙利算法时间复杂度:O(|V||E|)原理:寻找M的可增广轨P,P包含2k+1条边,其中k条属于M,k+1条不属于M。
修改M 为M&P。
即这条轨进行与M进行对称差分运算。
所谓对称差分运算,就是比如X和Y都是集合,X&Y=(X并Y)-(x交Y)有一个定理是:M&P的边数是|M|+1,因此对称差分运算扩大了M实现:关于这个实现,有DFS和BFS两种方法。
先列出DFS的代码,带注释。
这段代码来自中山大学的教材核心部分在dfs(x),来寻找可增广轨。
如果找到的话,在Hungarian()中,最大匹配数加一。
这是用了刚才提到的定理。
大家可以想想初始状态是什么,又是如何变化的view plaincopy to clipboardprint?第二种方法BFS,来自我的学长cnhawk核心步骤还是寻找可增广链,过程是:1.从左的一个未匹配点开始,把所有她相连的点加入队列2.如果在右边找到一个未匹配点,则找到可增广链3.如果在右边找到的是一个匹配的点,则看它是从左边哪个点匹配而来的,将那个点出发的所有右边点加入队列这么说还是不容易明白,看代码吧view plaincopy to clipboardprint?3.最佳匹配加权图中,权值最大的最大匹配KM算法:概念:f(v)是每个点的一个值,使得对任意u,v C V,f(u)+f(v)>=w[e u,v]集合H:一个边集,使得H中所有u,v满足f(u)+f(v)=w[e u,v]等价子图:G f(V,H),标有f函数的G图理论:对于f和G f,如果有一个理想匹配集合M p,则M p最优。
二分图匹配(匈牙利算法)

设G=(V,{R})是一个无向图。
如顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属两个不同的子集。
则称图G为二分图。
v给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。
v选择这样的边数最大的子集称为图的最大匹配问题(maximal matching problem)v如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。
最大匹配在实际中有广泛的用处,求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。
但是这个算法的复杂度为边数的指数级函数。
因此,需要寻求一种更加高效的算法。
匈牙利算法是求解最大匹配的有效算法,该算法用到了增广路的定义(也称增广轨或交错轨):若P是图G中一条连通两个未匹配顶点的路径,并且属M的边和不属M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M 的一条增广路径。
由增广路径的定义可以推出下述三个结论:v 1. P的路径长度必定为奇数,第一条边和最后一条边都不属于M。
v 2. P经过取反操作(即非M中的边变为M中的边,原来M中的边去掉)可以得到一个更大的匹配M’。
v 3. M为G的最大匹配当且仅当不存在相对于M的增广路径。
从而可以得到求解最大匹配的匈牙利算法:v(1)置M为空v(2)找出一条增广路径P,通过取反操作获得更大的匹配M’代替Mv(3)重复(2)操作直到找不出增广路径为止根据该算法,我选用dfs (深度优先搜索)实现。
程序清单如下:int match[i] //存储集合m中的节点i在集合n中的匹配节点,初值为-1。
int n,m,match[100]; //二分图的两个集合分别含有n和m个元素。
bool visit[100],map[100][100]; //map存储邻接矩阵。
bool dfs(int k){int t;for(int i = 0; i < m; i++)if(map[k][i] && !visit[i]){visit[i] = true;t = match[i];match[i] = k; //路径取反操作。
二分图匹配--匈牙利算法

⼆分图匹配--匈⽛利算法⼆分图匹配--匈⽛利算法⼆分图匹配匈⽛利算法基本定义:⼆分图 —— 对于⽆向图G=(V,E),如果存在⼀个划分使V中的顶点分为两个互不相交的⼦集,且每个⼦集中任意两点间不存在边 ϵ∈E,则称图G为⼀个⼆分图。
⼆分图的充要条件是,G⾄少有两个顶点,且所有回路长度为偶数。
匹配 —— 边的集合,其中任意两条边都不存在公共顶点。
匹配边即是匹配中的元素,匹配点是匹配边的顶点,同样⾮匹配边,⾮匹配点相反定义。
最⼤匹配——在图的所有匹配中,包含最多边的匹配成为最⼤匹配 完美匹配——如果在⼀个匹配中所有的点都是匹配点,那么该匹配称为完美匹配。
附注:所有的完美匹配都是最⼤匹配,最⼤匹配不⼀定是完美匹配。
假设完美匹配不是最⼤匹配,那么最⼤匹配⼀定存在不属于完美匹配中的边,⽽图的所有顶点都在完美匹配中,不可能找到更多的边,所以假设不成⽴,及完美匹配⼀定是最⼤匹配。
交替路——从⼀个未匹配点出发,依次经过⾮匹配边,匹配边,⾮匹配边…形成的路径称为交替路,交替路不会形成环。
增⼴路——起点和终点都是未匹配点的交替路。
因为交替路是⾮匹配边、匹配边交替出现的,⽽增⼴路两端节点都是⾮匹配点,所以增⼴路⼀定有奇数条边。
⽽且增⼴路中的节点(除去两端节点)都是匹配点,所属的匹配边都在增⼴路径上,没有其他相连的匹配边,因此如果把增⼴路径中的匹配边和⾮匹配边的“⾝份”交换,就可以获得⼀个更⼤的匹配(该过程称为改进匹配)。
⽰例图Fig1_09_09.JPG注释:Fig3是⼀个⼆分图G=(V,E),V={1,2,3,4,5,6,7,8},E={(1,7),(1,5),(2,6),(3,5),(3,8),(4,5),(4,6)},该图可以重绘成Fig4,V可分成两个⼦集V={V1,V2},V1={1,2,3,4},V2={5,6,7,8}。
Fig4中的红⾊边集合就是⼀个匹配{(1,5),(4,6),(3,8)}Fig2中是最⼤匹配Fig1中红⾊边集合是完美匹配Fig1中交替路举例(4-6-2-7-1-5)Fig4中增⼴路(2-6-4-5-1-7)匈⽛利树匈⽛利树中从根节点到叶节点的路径均是交替路,且匈⽛利树的叶节点都是匹配点。
二分图的最大匹配—匈牙利算法

⼆分图的最⼤匹配—匈⽛利算法【基本概念】:⼆分图:⼆分图⼆分图⼜称作⼆部图,是图论中的⼀种特殊模型。
设G=(V,E)是⼀个⽆向图,如果顶点V可分割为两个互不相交的⼦集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为⼀个⼆分图。
⽆向图G为⼆分图的充分必要条件是,G⾄少有两个顶点,且其所有回路的长度均为偶数。
最⼤匹配最⼤匹配:给定⼀个⼆分图G,在G的⼀个⼦图M中,M的边集中的任意两条边都不依附于同⼀个顶点,则称M是⼀个匹配. 选择这样的边数最⼤的⼦集称为图的最⼤匹配问题,如果⼀个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配.最⼩覆盖:最⼩覆盖要求⽤最少的点(X集合或Y集合的都⾏)让每条边都⾄少和其中⼀个点关联。
可以证明:最少的点(即覆盖数)=最⼤匹配数最⼩路径覆盖:⽤尽量少的不相交简单路径覆盖有向⽆环图G的所有结点。
解决此类问题可以建⽴⼀个⼆分图模型。
把所有顶点i拆成两个:X结点集中的i 和Y结点集中的i',如果有边i->j,则在⼆分图中引⼊边i->j',设⼆分图最⼤匹配为m,则结果就是n-m。
增⼴路(增⼴轨):(增⼴轨):增⼴路若P是图G中⼀条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的⼀条增⼴路径(举例来说,有A、B集合,增⼴路由A中⼀个点通向B中⼀个点,再由B中这个点通向A中⼀个点……交替进⾏)。
增⼴路径的性质:1 有奇数条边。
2 起点在⼆分图的左半边,终点在右半边。
3 路径上的点⼀定是⼀个在左半边,⼀个在右半边,交替出现。
(其实⼆分图的性质就决定了这⼀点,因为⼆分图同⼀边的点之间没有边相连,不要忘记哦。
)4 整条路径上没有重复的点。
5 起点和终点都是⽬前还没有配对的点,⽽其它所有点都是已经配好对的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Doctor的图论计划之——二分图最大匹配
第一讲二分图的最大匹配经典之匈牙利算法
二分图,顾名思义就是分成了两个部分的图……很白痴的解释(自己吐槽了先),但吐槽的同时我们也要发现一些二分图的基本性质!
性质1
二分图之所以分成了两个部分,那是因为单独的一个部分中的任意两点不连通!
性质2
二分图匹配——匈牙利算法中我们只需记录集合1到集合2的单向边就可以了(注意看上边的图,箭头是单向的)思考这是为什么!
但是!二分图确实是无向图!!!只不过匈牙利算法只是从一个集合另一个集合走一遍罢了!!!!
性质3
树是一种特殊的二分图!
紫色的结点构成集合1,绿色的结点构成集合2,换句话说,儿子和爸爸打仗时爷爷和
孙子站在同一战线!(也可以认为是儿子和爸妈吵架时总是爷爷奶奶护着,小时候有这样的记忆没有?反正我没有!)
PS:树就是无回路懂不?
性质3
对于任意二分图,其包含的环一定全部是偶环!(充要可证)
可以证明,含有奇数条边的环一定有两个在相同集合内的点有边相连!
也就是说——二分图的bfs子树一定不含奇环!
接下来说一下二分图求最大匹配的算法——匈牙利算法
【例1】传说中的多米诺骨牌覆盖问题
在一个n*m的棋盘上,摆放一些1*2大小的多米诺骨牌,但棋盘某些地方是坏
掉的,即不能将骨牌置于这些坏掉的格子上,求最多能摆上的骨牌数量
【例2】传说中的猎人打鸟问题
猎人要在n*n的格子里打鸟,他可以在某一行中打一枪,这样此行中的所有鸟都被
打掉,也可以在某一列中打,这样此列中的所有鸟都打掉.问至少打几枪,才能打光
所有的鸟?
【例3】传说中的搞对象问题
一保守教师想带学生郊游, 却怕他们途中谈恋爱,他认为满足下面条件之一的两
人谈恋爱几率很小:
(1)身高差>40 (2) 性别相同(3) 爱好不同类型的音乐(4) 爱好同类型的运动
告诉你每个同学的信息,问老师最多能带多少学生?
这样的问题如何解决?搜索?怎么搜?会不会超时?答案很简单,三道题中的元素都可以用很简单的方式分成两个互不相干的部分,因此可以用二分图匹配来解决这个问题:形象的说,我们规定搞基和百合都是不允许的,已知一群男人和女人,他们可以看做图中的顶点,男人构成了集合A,女人构成了集合B,边表示这名男人和这名女人互相有好感(可以配成一对)不考虑个人因素,现在希望为这些饥渴的男男女女找到最多的配对数(脚踏两只船也是不允许的!)为了解决这样的问题我们才引入了二分图的匹配算法——匈牙利算法!
匈牙利算法是一种用增广路求二分图最大匹配的算法。
它由匈牙利数学家Edmonds于1965年提出,因而得名。
如果暴搜的话那么无疑时间复杂度将成为O(2^E)!无法快速实现,于是我们就提出了更为高效的算法,这种算法是从网络流演变而来,但这里我们抛开所有网络流的知识,但从这一算法的角度来进行阐释!
解释一些常用的名词
交错轨:所谓交错轨,还有一种更为文雅的说法叫增广轨,这种说法让人不禁联想到蛋疼的网络流算法,所以我更喜欢用一种与网络流无关的说法来称呼它,下面我们来举几个交错轨的例子:
以上就是一种正确的交错轨,其特点显而易见,黑色表示不连通(虚线找不到就没用)红色表示实线,这样的一虚一实交错的dfs路线称作交错轨
交错轨有以下特点
-交错轨一定是连接AB两个集合,任意两条相邻的边呈相反状态
-交错轨的长度一定为奇数,这是为什么呢?
-交错轨的意义就在于实线联通的两个节点满足“不脚踏两只船”的条件,也就是说被实现连起来的点对满足一种匹配,那么最大匹配也属于一条交错轨!
-将交错轨上的虚实翻转,这样就能使得匹配数+1,这就是为什么交错轨的长度必为奇数!
-还要强调的是,位于交错轨两端的边必须同为虚(这样翻转时才能自增1)
匈牙利算法的实现过程(类似DFS):
1、置已匹配的边集为空
2、由某一集合中的节点X1出发寻找一条交错轨!
3、取反!使得匹配边集变大!
4、继续2过程,对X中的所有元素进行相同操作!
写成伪代码之后就如下:
bool寻找从k出发的对应项出的可增广路
{
while(从邻接表中列举k能关联到顶点j)
{
if(j不在增广路上)
{
把j加入增广路;
if(j是未盖点或者从j的对应项出发有可增广路)
{
修改j的对应项为k;
则从k的对应项出有可增广路,返回true;
}
}
}
则从k的对应项出没有可增广路,返回false;
}
void匈牙利hungary()
{
for i->1 to n
{
if(则从i的对应项出有可增广路)
匹配数++;
}
输出匹配数;
}
流程图表示!
该算法的复杂度分析:
时间复杂度:邻接矩阵:O(N^3)邻接表:O(N*M)
空间复杂度:邻接矩阵:O(N^2)邻接表:O(N+M)
关于前面例题的点拨:
例1:将棋盘染色,成为国际象棋棋盘一样的颜色,然后将相邻的且两色块都可以放骨牌的顶点用边连起来,可以通过性质证明得到了一张二分图,然后对该二分图求最大匹配!
例2:猎人的目的是打到所有的鸟,言外之意不就是说所有有鸟的方格都要有子弹经过吗?方格是什么?方格不就是由行和列来唯一确定的吗?那么问题是不是就可以转化为用多少颗子弹能把所有的行和列都穿过,如果我们再联想一下,把子弹看作是边,那么问题是不是就变成了最少用多少条边可以把所有的行和列相连,把行看作是一部分点,列看作另一部分点(注意行和列只考虑有鸟的方格)这样,最大匹配数即猎人要打的枪数。
标准代码(pascal):(只贴出匈牙利算法的标程,其余自行脑补!)
Ps:红色部分为关键部分!
const
MXN=1000;
var
g:array[1..MXN,1..MXN] of boolean;
p:array[1..MXN] of longint;
vis:array[1..MXN] of boolean;
n,m,k,i,ans,x,y:longint;
function find(i:longint):boolean;
var
j:longint;
begin
for j:=1 to m do
if (g[i,j]) and (not vis[j]) then begin
vis[j]:=true;
if (p[j]=0) or (find(p[j])) then begin
p[j]:=i;
exit(true);
end;
end;
exit(false);
end;
begin
assign(input,'work.in');reset(input);
assign(output,'work.out');rewrite(output);
readln(n,m,k);
for i:=1 to k do begin
readln(x,y);
g[x,y]:=true;
end;
for i:=1 to n do begin
fillchar(vis,sizeof(vis),0);
if find(i) then inc(ans);
end;
writeln(ans);
//for i:=1 to n do if p[i]>0 then writeln(p[i],' -----> ',i); close(input);close(output);
end.。