算法学习:图论之二分图的最优匹配(KM算法)

合集下载

图论中的二分图匹配问题及其算法设计思路

图论中的二分图匹配问题及其算法设计思路

图论中的二分图匹配问题及其算法设计思路图论是数学中一个重要的分支,研究图的性质和结构,以及解决与图相关的问题。

其中,二分图匹配问题是图论中的经典问题之一。

本文将介绍二分图匹配问题的定义、特性,并讨论相关的算法设计思路。

一、二分图匹配问题的定义二分图是一种特殊的图结构,其中的顶点可以分为两个互不相交的集合,且每条边都只连接两个集合之间的顶点。

对于一个二分图,如果存在一种边的划分方式,使得每个顶点都与边集中的一条边相连,那么我们称这个边集为二分图的一个匹配。

二分图匹配问题的目标是寻找出一个匹配,使得匹配的边数最大。

这个问题在实际应用中有许多场景,比如婚姻匹配、求职配对等。

为了解决这个问题,人们提出了多种算法,下面将介绍其中两个常用的算法。

二、匈牙利算法匈牙利算法是用于求解二分图最大匹配的一种经典算法,它基于深度优先搜索的思想。

算法的基本思路是从一个没有匹配边的顶点开始,逐个尝试与其相连的顶点进行匹配,如果能成功匹配则将边加入匹配集合中,如果不能成功匹配则继续尝试下一个顶点。

当所有的顶点都尝试过后,即得到一个最大匹配。

以下是匈牙利算法的伪代码:1. 初始化匹配集合为空2. 从一个未匹配的顶点开始,对其进行深度优先搜索3. 如果找到了增广路径,则更新匹配集合4. 重复步骤2和3,直到无法找到增广路径5. 返回最大匹配匈牙利算法的时间复杂度为O(V*E),其中V表示顶点数,E表示边数。

虽然算法的时间复杂度较高,但它在实际应用中仍然具有一定的效率和适用性。

三、Hopcroft-Karp算法Hopcroft-Karp算法是用于求解二分图最大匹配的另一种算法,它是对匈牙利算法的改进和优化。

Hopcroft-Karp算法的核心思想是通过多次的广度优先搜索来寻找增广路径,从而提高算法的效率。

以下是Hopcroft-Karp算法的伪代码:1. 初始化匹配集合为空2. 初始化标记集合为空3. 利用广度优先搜索寻找增广路径4. 如果找到增广路径,则更新匹配集合5. 重复步骤3和4,直到无法找到增广路径6. 返回最大匹配Hopcroft-Karp算法的时间复杂度为O(E*sqrt(V)),相比于匈牙利算法有较大的优势。

KM算法

KM算法

int w[maxn][maxn];
int lx[maxn]={0},ly[maxn]={0}; //顶标
int linky[maxn];
int visx[maxn],visy[maxn];
int lack;
bool find(int x){
visx[x]=true;
现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于:
Min{A[ i ]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。
·改进:
以上就是KM算法的基本思路。但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。实际上KM算法的复杂度是可以做到O(n3)的。我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[ i ]+B[j]-w[i,j]的较小值。这样,在修改顶标时,取所有不在交错树中的Y顶点的slack值中的最小值作为d值即可。但还要注意一点:修改顶标后,要把所有的不在交错树中的Y顶点的slack值都减去d。
2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。
3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。
4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。

Ku二分图最大权匹配(KM算法)hn

Ku二分图最大权匹配(KM算法)hn

Maigo的KM算法讲解(的确精彩)顶点Yi的顶标为B[i],顶点Xi与Yj之间的边权为w[i,j]。

在算法执行过程中的任一时刻,对于任一条边(i,j),A[i]+B[j]>=w[i,j]始终成立。

KM 算法的正确性基于以下定理:* 若由二分图中所有满足A[i]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

这个定理是显然的。

因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。

所以相等子图的完备匹配一定是二分图的最大权匹配。

初始时为了使A[i]+B[j]>=w[i,j]恒成立,令A[i]为所有与顶点Xi关联的边的最大权,B[j]=0。

如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。

我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。

这时我们获得了一棵交错树,它的叶子结点全部是X顶点。

现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:两端都在交错树中的边(i,j),A[i]+B[j]的值没有变化。

也就是说,它原来属于相等子图,现在仍属于相等子图。

两端都不在交错树中的边(i,j),A[i]和B[j]都没有变化。

也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。

X端不在交错树中,Y端在交错树中的边(i,j),它的A[i]+B[j]的值有所增大。

它原来不属于相等子图,现在仍不属于相等子图。

X端在交错树中,Y端不在交错树中的边(i,j),它的A[i]+B[j]的值有所减小。

也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。

现在的问题就是求d值了。

二分图匹配(匈牙利算法和KM算法)

二分图匹配(匈牙利算法和KM算法)

前言:高中时候老师讲这个就听得迷迷糊糊,有一晚花了通宵看KM的Pascal代码,大概知道过程了,后来老师说不是重点,所以忘的差不多了。

都知道二分图匹配是个难点,我这周花了些时间研究了一下这两个算法,总结一下1.基本概念M代表匹配集合未盖点:不与任何一条属于M的边相连的点交错轨:属于M的边与不属于M的边交替出现的轨(链)可增广轨:两端点是未盖点的交错轨判断M是最大匹配的标准:M中不存在可增广轨2.最大匹配,匈牙利算法时间复杂度:O(|V||E|)原理:寻找M的可增广轨P,P包含2k+1条边,其中k条属于M,k+1条不属于M。

修改M 为M&P。

即这条轨进行与M进行对称差分运算。

所谓对称差分运算,就是比如X和Y都是集合,X&Y=(X并Y)-(x交Y)有一个定理是:M&P的边数是|M|+1,因此对称差分运算扩大了M实现:关于这个实现,有DFS和BFS两种方法。

先列出DFS的代码,带注释。

这段代码来自中山大学的教材核心部分在dfs(x),来寻找可增广轨。

如果找到的话,在Hungarian()中,最大匹配数加一。

这是用了刚才提到的定理。

大家可以想想初始状态是什么,又是如何变化的view plaincopy to clipboardprint?第二种方法BFS,来自我的学长cnhawk核心步骤还是寻找可增广链,过程是:1.从左的一个未匹配点开始,把所有她相连的点加入队列2.如果在右边找到一个未匹配点,则找到可增广链3.如果在右边找到的是一个匹配的点,则看它是从左边哪个点匹配而来的,将那个点出发的所有右边点加入队列这么说还是不容易明白,看代码吧view plaincopy to clipboardprint?3.最佳匹配加权图中,权值最大的最大匹配KM算法:概念:f(v)是每个点的一个值,使得对任意u,v C V,f(u)+f(v)>=w[e u,v]集合H:一个边集,使得H中所有u,v满足f(u)+f(v)=w[e u,v]等价子图:G f(V,H),标有f函数的G图理论:对于f和G f,如果有一个理想匹配集合M p,则M p最优。

最大权匹配KM算法

最大权匹配KM算法

最大权匹配KM算法
KM算法(Kuhn–Munkres算法,也称为匈牙利算法)是由Kuhn于
1955年和Munkres于1957年分别提出的,用于解决二分图最大匹配问题。

该算法的核心思想是基于匈牙利算法的增广路径,通过构建一个增广路径
来不断更新匹配,直到无法找到增广路径为止。

算法流程如下:
2.从G的每个未匹配顶点开始,通过增广路径将其标记为可增广点;
3.当存在增广路径时,将匹配的边进行反向操作,直到不存在增广路径;
4. 利用增广路径的反向操作可以修改lx和ly的值,使其满足特定
约束条件;
5.通过相等子图的扩展来实现增广路径的;
6.重复步骤3-5,直到不存在更多的增广路径;
7.返回找到的最大匹配。

具体实现时,对于增广路径的可以利用DFS或BFS等方法进行,当找
到一个增广路径时,通过反向操作修改匹配情况,并更新lx和ly的值。

同时,算法还可以使用增广路径来调整优化标号,以减少匹配时间。

KM算法是一种高效的解决最大权匹配问题的方法,其时间复杂度为
O(V^3),其中V为图的顶点数。

算法的核心思想是利用二分图中的相等子
图来查找增广路径,并通过修改顶点的标号来实现最大匹配。

总之,最大权匹配KM算法是一个解决带权无向二分图最大匹配问题
的高效算法,通过不断寻找增广路径并调整顶点的标号来实现最大权匹配。

它的思想简单而有效,可以广泛应用于各种实际问题中。

二分图匹配――匈牙利算法和KM算法简介.

二分图匹配――匈牙利算法和KM算法简介.

KM算法
对于任意的G和M,可行顶标都是存在的: l(x) = maxw(x,y) l(y) = 0 欲求完全二分图的最佳匹配,只要用匈牙利算法求 其相等子图的完备匹配;问题是当标号之后的Gl无 完备匹配时怎么办?1957年(居然比匈牙利算法 早???),Kuhn和Munkras给出了一个解决该问 题的有效算法,用逐次修改可行顶标l(v)的办法使对 应的相等子图之最大匹配逐次增广,最后出现完备 匹配。
二分图匹配
匈牙利算法和KM算法简介
二分图的概念
二分图又称作二部图,是图论中的一种特殊
模型。 设G=(V,{R})是一个无向图。如顶点集V可分 割为两个互不相交的子集,并且图中每条边 依附的两个顶点都分属两个不同的子集。则 1 2 3 4 5 称图G为二分图。
1
2
3
4
最大匹配
给定一个二分图G,在G的一个子图M中,M
的边集{E}中的任意两条边都不依附于同一个 顶点,则称M是一个匹配。 选择这样的边数最大的子集称为图的最大匹 配问题(maximal matching problem) 如果一个匹配中,图中的每个顶点都和图中 某条边相关联,则称此匹配为完全匹配,也 称作完备匹配。
匈牙利算法
求最大匹配的一种显而易见的算法是:先找出全部 匹配,然后保留匹配数最多的。但是这个算法的复 杂度为边数的指数级函数。因此,需要寻求一种更 加高效的算法。 增广路的定义(也称增广轨或交错轨): 若P是图G中一条连通两个未匹配顶点的路径,并且 属M的边和不属M的边(即已匹配和待匹配的边)在P 上交替出现,则称P为相对于M的一条增广路径。
KM算法
穷举的效率-n!,我们需要更加优秀的算法。 定理: 设M是一个带权完全二分图G的一个完备匹配,给 每个顶点一个可行顶标(第i个x顶点的可行标用lx[i] 表示,第j个y顶点的可行标用ly[j]表示),如果对所 有的边(i,j) in G,都有lx[i]+ly[j]>=w[i,j]成立(w[i,j]表示 边的权),且对所有的边(i,j) in M,都有lx[i]+ly[j]=w[i,j] 成立,则M是图G的一个最佳匹配。证明很容易。

二分图(匈牙利,KM算法详解)

二分图(匈牙利,KM算法详解)
3,假如我们在1,2步过程中找到一条增广路, 那么修改各自 对应的匹配点,转步骤4,若无增广路, 则退出.
4,匹配数+1;
最小点覆盖
最小覆盖: 最小覆盖要求用最少的点(X集 合或Y集合的都行)让每条边都至少和其中一 个点关联。可以证明:最少的点(即覆盖数) =最大匹配数 M
简单的证明如下:
1
4
1
4
2
5 把图中红色线去掉
2
5
蓝色线加上
3
6
3
6
1
4
更改各自的匹配点
找到一个更好的匹配 2
5
3
6
总结
所以流程就是:
1,对于一个未匹配的节点u,寻找它的每条边,如果它的边上 的另一个节点v还没匹配则表明找到了一个匹配,直接转步 骤4;
2,假如节点u它边上的另一个节点v已经匹配,那么就转向跟 v匹配的节点,假设是w,然后再对w重复1,2的步骤,即寻找增 广路.
现在我们假设要求的是最大距离.那么就是求最大权 匹配. 下面我们先介绍一下KM算法
KM算法
基本概念:可行顶标和相等子图
可行顶标:L是一个关于结点的函数,L(x)是顶点x对应 的顶标值。可行顶标对于图中的每条边(x,y)都有 L(x)+L(y)>=w(x,y)
相等子图:只包含L(x)+L(y)=w(x,y)的边的子图
KM算法
定理:如果一个相等子图中包含完备匹配,那 么这个匹配就是最优匹配
证明:由于在算法过程一直保持顶标的可行性, 所以任意一个匹配的权值和肯定小于等于所有 结点的顶标之和,则相等子图中的完备匹配肯 定是最优匹配
KM算法
算法流程 设顶点Xi的顶标为a[i],顶点Yi的顶标为b[i] ⅰ.初始时,a[i]为与Xi相关联的边的最大权值,

km算法原理

km算法原理

km算法原理KM算法原理:带权二分图最大权完美匹配KM算法全称为Kuhn-Munkres算法,是一种求解带权二分图最大权完美匹配的算法。

该算法的时间复杂度为O(n^3),相较于暴力枚举的O(n!)和网络流的O(n^4),其效率更高。

我们来了解一下什么是带权二分图。

带权二分图是指一个无向图G=(V, E),其中V可以划分为两个集合X和Y,使得X和Y内部的点没有边相连,而X和Y之间的点有边相连,并且每条边都有一个权值。

我们的目标是找到X到Y的最大权匹配。

KM算法的思路是不断尝试寻找增广路,并将其加入当前匹配中。

增广路是指从未匹配的点开始,经过一系列已匹配的点,最终到达另一个未匹配的点的路径。

如果当前匹配中不存在增广路,那么我们就找到了最大权匹配。

具体实现时,我们需要使用两个数组:lx和ly。

lx[i]表示左边第i个点的最大权值,ly[j]表示右边第j个点的最大权值。

初始时,我们将lx[i]=max{w[i][j]},其中w[i][j]表示左边第i个点到右边第j个点的边权值,ly[j]=0。

然后我们不断进行匹配,直到没有增广路为止。

匹配的过程中,我们需要使用一个vis数组记录右边第j个点是否被访问过。

如果右边第j个点未被访问,我们就尝试匹配左边第i个点和右边第j个点,如果匹配成功,就更新lx[i]和ly[j]的值。

如果匹配失败,我们就需要尝试将当前匹配中的某个点切换到另一个点上,以获得更大的权值。

这个过程可以通过递归实现。

我们得到的匹配就是带权二分图的最大权完美匹配。

KM算法的时间复杂度为O(n^3),空间复杂度为O(n^2)。

KM算法是一种高效的求解带权二分图最大权完美匹配的算法。

它的思路简单,实现也不难,但需要注意细节和边界条件。

在实际应用中,KM算法可以用于匹配问题、优化问题等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二分图的最优匹配(KM算法)
KM算法用来解决最大权匹配问题:在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。

基本原理
该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。

设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。

在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。

KM算法的正确性基于以下定理:
若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是
Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。

这个定理是显然的。

因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。

所以相等子图的完备匹配一定是二分图的最大权匹配。

初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。

如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。

我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。

这时我们获得了一棵交错树,它的叶子结点全部是X顶点。

现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:
1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。

也就是说,它原来属于相等子图,现在仍属于相等子图。

2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。

也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。

3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。

它原来不属于相等子图,现在仍不属于相等子图。

4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。

也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。

(针对之后例子中x1->y4这条边)
现在的问题就是求d值了。

为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于:
Min{A[i]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。

改进
以上就是KM算法的基本思路。

但是朴素的实现方法,时间复杂度为O(n4)——需要找O(n)次增广路,每次增广最多需要修改O(n)次顶标,每次修改顶标时由于要枚举边来求d值,复杂度为O(n2)。

实际上KM算法的复杂度是可以做到O(n3)的。

我们给每个Y顶点一个“松弛量”函数slack,每次开始找增广路时初始化为无穷大。

在寻找增广路的过程中,检查边(i,j)时,如果它不在相等子图中,则让slack[j]变成原值与A[ i ]+B[j]-w[i,j]的较小值。

这样,在修改顶标时,取所有不在交错树中的Y 顶点的slack值中的最小值作为d值即可。

但还要注意一点:修改顶标后,要把所有的不在交错树中的Y顶点的slack值都减去d(因为:d的定义为 min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y∉ T }
(关键,关键),此时属于S的X均已经减去d了,所以不属于T的y也要减去d,防止下次循环更改出错)。

Kuhn-Munkras算法流程:
(1)初始化可行顶标的值
(2)用匈牙利算法寻找完备匹配
(3)若未找到完备匹配则修改可行顶标的值
(4)重复(2)(3)直到找到相等子图的完备匹配为止

已知K5,5的权矩阵为
y1 y2 y3 y4 y5
x1 3 5 5 4 1
x2 2 2 0 2 2
x3 2 4 4 1 0
x4 0 1 1 0 0
x5 1 2 1 3 3
求最佳匹配,其中K5,5的顶划分为X={xi},Y={yi},i=1,2,3,4,5.
解:
(1)取可行顶标l(v)为 l(yi)=0,i=1,2,3,4,5;
l(x1)=max{3,5,5,4,1}=5,l(x2)=max{2,2,0,2,2}=2,l(x3)=max(2,4,4,1,0}=4,l(x4)=max{0,1,1,0,0} =1,l(x5)=max{1,2,1,3,3}=3.
(2) Gl及其上之匹配见图7.12。

这个图中ο(G-x2)=3,由Tutte定理知无完备匹配。

需要修改顶标。

(3) u=x4,得S={x4,x3,x1},T={y3,y2},N(S)=T,于是
al=min(l(x)+l(y)-w(xy)}=1. (x∈S,y∈T)
x1,x2,x3,x4,x5的顶标分别修改成4,2,3,0,3;y1,y2,y3,y4,y5的顶标分别修改成0,1,1,0,0。

(4) 用修改后的顶标l得Gl及其上面的一个完备匹配如图7.13。

图中粗实线给出了一个最佳匹配,其最大权是2+4+1+4+3=14。

我们看出:al>0;修改后的顶标仍是可行顶标;Gl中仍含Gl中的匹配M;Gl中至少会出现不属于M的一条边,所以会造成M的逐渐增广。

得到可行顶标后求最大匹配:
书上这部分没讲,实际上是这样的,对于上面这个例子来说,通过Kuhn-Munkres得到了顶标l(x)= {4,2,3,0,3},l(y)={0,1,1,0,0},那么,对于所有的l(xi)+l(yj) = w(i,j),在二分图G设置存在边
w(i,j)。

再用匈牙利算法求出最大匹配,再把匹配中的每一边的权值加起来就是最后的结果了。

例2
如图:
| 1 2 3 |
| 3 2 4 |
| 2 3 5 |
若要对这个完全二分图求最佳匹配
初始化:
Lx(1)= max{ y| w(1,y), 1<= y<= 3 }= max{ 1, 2, 3 }= 3, Ly(1)= 0
Lx(2)= max{ 3, 2, 4 }= 4, Ly(2)= 0
Lx(3)= max{ 2, 3, 5 }= 5, Ly(3)= 0;
我们建立等价子图( 满足Lx(x)+ Ly(y)== W(x,y) ) 如下:
对于该图,运用匈牙利算法对X 部顶点 1 求增广路径,得到一个匹配,如图( 红色代表匹配边):
对X 部顶点2 求增广路径失败,寻找增广路径的过程为X 2-> Y 3-> X 1。

我们把寻找增广路径失败的DFS 的交错树中,在X 部顶点集称之为S,在Y 部的顶点集称之为T。

则S= { 1, 2 },T= { 3 }。

现在我们就通过修改顶标值来扩大等价子图,如何修改。

1) 我们寻找一个d 值,使得d= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y), x∈ S, y∉ T },因些,这时d= min{
Lx(1)+Ly(1)-W(1,1), Lx(1)+Ly(2)-W(1,2), Lx(2)+Ly(1)-W(2,1), Lx(2)+Ly(2)-W(2,2) }=
min{ 3+0- 1, 3+0-2, 4+0-3, 4+0-2 }= min{ 2, 1, 1, 2 }= 1。

寻找最小的d 是为了保证修改后仍满足性质对于边<x,y> 有Lx(x)+ Ly(y)>= W(x,y)。

2) 然后对于顶点x
1. 如果x∈S 则Lx(x)= Lx(x)- d。

2. 如果x∈T 则Ly(x)= Ly(x)+ d。

3. 其它情况保持不变。

如此修改后,我们发现对于边<x,y>,顶标Lx(x)+ Ly(y) 的值为
1. Lx(x)- d+ Ly(y)+ d,x∈S, y∈ T。

2. Lx(x)+ Ly(y), x∉ S, y∉ T。

3. Lx(x)- d+ Ly(y),x∈ S, y∉ T。

4. Lx(x)+ Ly(y)+ d,x∉ S, y∈ T。

易知,修改后对于任何边仍满足Lx(x)+ Ly(y)>= W(x,y),并且第三种情况顶标值减少了d,如此定会使等价子图扩大。

就上例而言: 修改后Lx(1)= 2, Lx(2)= 3, Lx(3)= 5, Ly(1)= 0, Ly(1)= 0, Ly(2)= 0, Ly(3)= 1。

这时Lx(2)+Ly(1)=3+0=3= W(2,1),在等价子图中增加了一条边,等价子图变为:
如此按以上方法,得到等价子图的完美匹配。

另外计算 d 值的时候可以进行一些优化。

定义slack(y)= min{ (x,y)| Lx(x)+ Ly(y)- W(x,y),x∈ S, y∉ T }
这样能在寻找增广路径的时候就顺便将slack 求出。

相关文档
最新文档