二分图匹配(匈牙利算法和KM算法)

合集下载

匈牙利算法解决二分图最大匹配

匈牙利算法解决二分图最大匹配

匈⽛利算法解决⼆分图最⼤匹配预备知识 匈⽛利算法是由匈⽛利数学家Edmonds于1965年提出,因⽽得名。

匈⽛利算法是基于Hall定理中充分性证明的思想,它是⼆分图匹配最常见的算法,该算法的核⼼就是寻找增⼴路径,它是⼀种⽤增⼴路径求⼆分图最⼤匹配的算法。

⼆分图 ⼆分图⼜称作⼆部图,是图论中的⼀种特殊模型。

设G=(V,E)是⼀个⽆向图,如果顶点V可分割为两个互不相交的⼦集(A,B),并且图中的每条边(i,j)所关联的两个顶点 i 和 j 分别属于这两个不同的顶点集(i in A,j in B),则称图G为⼀个⼆分图。

匹配 在图论中,⼀个图是⼀个匹配(或称独⽴边集)是指这个图之中,任意两条边都没有公共的顶点。

这时每个顶点都⾄多连出⼀条边,⽽每⼀条边都将⼀对顶点相匹配。

例如,图3、图4中红⾊的边就是图2的匹配。

图3中1、4、5、7为匹配点,其他顶点为⾮匹配点,1-5、4-7为匹配边,其他边为⾮匹配边。

最⼤匹配 ⼀个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最⼤匹配。

图 4 是⼀个最⼤匹配,它包含 4 条匹配边。

任意图中,极⼤匹配的边数不少于最⼤匹配的边数的⼀半。

完美匹配 如果⼀个图的某个匹配中,所有的顶点都是匹配点,那么它就是⼀个完美匹配。

显然,完美匹配⼀定是最⼤匹配,但并⾮每个图都存在完美匹配。

最⼤匹配数:最⼤匹配的匹配边的数⽬。

最⼩点覆盖数:选取最少的点,使任意⼀条边⾄少有⼀个端点被选择。

最⼤独⽴数:选取最多的点,使任意所选两点均不相连。

最⼩路径覆盖数:对于⼀个DAG(有向⽆环图),选取最少条路径,使得每个顶点属于且仅属于⼀条路径,路径长可以为0(即单个点)定理1:Konig定理——最⼤匹配数 = 最⼩点覆盖数定理2:最⼤匹配数 = 最⼤独⽴数定理3:最⼩路径覆盖数 = 顶点数 - 最⼤匹配数匈⽛利算法例⼦ 为了便于理解,选取了dalao博客⾥找妹⼦的例⼦: 通过数代⼈的努⼒,你终于赶上了剩男剩⼥的⼤潮,假设你是⼀位光荣的新世纪媒⼈,在你的⼿上有N个剩男,M个剩⼥,每个⼈都可能对多名异性有好感(惊讶,-_-||暂时不考虑特殊的性取向) 如果⼀对男⼥互有好感,那么你就可以把这⼀对撮合在⼀起,现在让我们⽆视掉所有的单相思(好忧伤的感觉,快哭了),你拥有的⼤概就是下⾯这样⼀张关系图,每⼀条连线都表⽰互有好感。

二分图的最大匹配、完美匹配和匈牙利算法

二分图的最大匹配、完美匹配和匈牙利算法

二分图的最大匹配、完美匹配和匈牙利算法August 1, 2013 / 算法这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm);不讲带权二分图的最佳匹配。

二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图。

准确地说:把一个图的顶点划分为两个不相交集U和V,使得每一条边都分别连接U、V中的顶点。

如果存在这样的划分,则此图为一个二分图。

二分图的一个等价定义是:不含有「含奇数条边的环」的图。

图 1 是一个二分图。

为了清晰,我们以后都把它画成图 2 的形式。

匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。

例如,图3、图 4 中红色的边就是图 2 的匹配。

我们定义匹配点、匹配边、未匹配点、非匹配边,它们的含义非常显然。

例如图 3 中 1、4、5、7 为匹配点,其他顶点为未匹配点;1-5、4-7为匹配边,其他边为非匹配边。

最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。

图 4 是一个最大匹配,它包含 4 条匹配边。

完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。

图 4 是一个完美匹配。

显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。

但并非每个图都存在完美匹配。

举例来说:如下图所示,如果在某一对男孩和女孩之间存在相连的边,就意味着他们彼此喜欢。

是否可能让所有男孩和女孩两两配对,使得每对儿都互相喜欢呢?图论中,这就是完美匹配问题。

如果换一个说法:最多有多少互相喜欢的男孩/女孩可以配对儿?这就是最大匹配问题。

基本概念讲完了。

二分图匹配题目类型总结.

二分图匹配题目类型总结.

二分图匹配题目类型总结二分图最大匹配的匈牙利算法二分图是这样一个图,它的顶点可以分类两个集合X和Y,所有的边关联在两个顶点中,恰好一个属于集合X,另一个属于集合Y。

最大匹配:图中包含边数最多的匹配称为图的最大匹配。

完美匹配:如果所有点都在匹配边上(x=y=m),称这个最大匹配是完美匹配。

最小点覆盖:(二分图)最小覆盖要求用最少的点(X集合或Y集合的都行)让每条边都至少和其中一个点关联。

可以证明:最少的点(即覆盖数)=最大匹配数。

支配集:(二分图)最小点覆盖数+孤立点最小边覆盖:找最大匹配(注意可能是任意图最大匹配)m则有2*m 个点被m 条两两不相交的边覆盖。

对于剩下的n-2*m 个点,每个点用一条边覆盖,总边数为n-m条;最小路径覆盖:用尽量少的不相交简单路径覆盖有向无环图G的所有结点。

解决此类问题可以建立一个二分图模型。

把所有顶点i拆成两个:X结点集中的i和Y结点集中的i',如果有边i->j,则在二分图中引入边i->j',设二分图最大匹配为m,则结果就是n-m。

最大独立集问题:(二分图)n-最小点覆盖;任意图最大匹配:(没有奇环)转换为二分图:把所有顶点i拆成两个:X结点集中的i和Y结点集中的i',如果原图中有边i->j,则在二分图中引入边i-> j',j->i’;设二分图最大匹配为m,则结果就是m/2。

最大完全子图:补图的最大独立集三大博弈问题威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况下是颇为复杂的。

我们用(ak,bk)(ak ≤bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。

前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。

最大权匹配KM算法

最大权匹配KM算法

最大权匹配KM算法
KM算法(Kuhn–Munkres算法,也称为匈牙利算法)是由Kuhn于
1955年和Munkres于1957年分别提出的,用于解决二分图最大匹配问题。

该算法的核心思想是基于匈牙利算法的增广路径,通过构建一个增广路径
来不断更新匹配,直到无法找到增广路径为止。

算法流程如下:
2.从G的每个未匹配顶点开始,通过增广路径将其标记为可增广点;
3.当存在增广路径时,将匹配的边进行反向操作,直到不存在增广路径;
4. 利用增广路径的反向操作可以修改lx和ly的值,使其满足特定
约束条件;
5.通过相等子图的扩展来实现增广路径的;
6.重复步骤3-5,直到不存在更多的增广路径;
7.返回找到的最大匹配。

具体实现时,对于增广路径的可以利用DFS或BFS等方法进行,当找
到一个增广路径时,通过反向操作修改匹配情况,并更新lx和ly的值。

同时,算法还可以使用增广路径来调整优化标号,以减少匹配时间。

KM算法是一种高效的解决最大权匹配问题的方法,其时间复杂度为
O(V^3),其中V为图的顶点数。

算法的核心思想是利用二分图中的相等子
图来查找增广路径,并通过修改顶点的标号来实现最大匹配。

总之,最大权匹配KM算法是一个解决带权无向二分图最大匹配问题
的高效算法,通过不断寻找增广路径并调整顶点的标号来实现最大权匹配。

它的思想简单而有效,可以广泛应用于各种实际问题中。

二分图匹配--匈牙利算法

二分图匹配--匈牙利算法

⼆分图匹配--匈⽛利算法⼆分图匹配--匈⽛利算法⼆分图匹配匈⽛利算法基本定义:⼆分图 —— 对于⽆向图G=(V,E),如果存在⼀个划分使V中的顶点分为两个互不相交的⼦集,且每个⼦集中任意两点间不存在边 ϵ∈E,则称图G为⼀个⼆分图。

⼆分图的充要条件是,G⾄少有两个顶点,且所有回路长度为偶数。

匹配 —— 边的集合,其中任意两条边都不存在公共顶点。

匹配边即是匹配中的元素,匹配点是匹配边的顶点,同样⾮匹配边,⾮匹配点相反定义。

最⼤匹配——在图的所有匹配中,包含最多边的匹配成为最⼤匹配 完美匹配——如果在⼀个匹配中所有的点都是匹配点,那么该匹配称为完美匹配。

附注:所有的完美匹配都是最⼤匹配,最⼤匹配不⼀定是完美匹配。

假设完美匹配不是最⼤匹配,那么最⼤匹配⼀定存在不属于完美匹配中的边,⽽图的所有顶点都在完美匹配中,不可能找到更多的边,所以假设不成⽴,及完美匹配⼀定是最⼤匹配。

交替路——从⼀个未匹配点出发,依次经过⾮匹配边,匹配边,⾮匹配边…形成的路径称为交替路,交替路不会形成环。

增⼴路——起点和终点都是未匹配点的交替路。

因为交替路是⾮匹配边、匹配边交替出现的,⽽增⼴路两端节点都是⾮匹配点,所以增⼴路⼀定有奇数条边。

⽽且增⼴路中的节点(除去两端节点)都是匹配点,所属的匹配边都在增⼴路径上,没有其他相连的匹配边,因此如果把增⼴路径中的匹配边和⾮匹配边的“⾝份”交换,就可以获得⼀个更⼤的匹配(该过程称为改进匹配)。

⽰例图Fig1_09_09.JPG注释:Fig3是⼀个⼆分图G=(V,E),V={1,2,3,4,5,6,7,8},E={(1,7),(1,5),(2,6),(3,5),(3,8),(4,5),(4,6)},该图可以重绘成Fig4,V可分成两个⼦集V={V1,V2},V1={1,2,3,4},V2={5,6,7,8}。

Fig4中的红⾊边集合就是⼀个匹配{(1,5),(4,6),(3,8)}Fig2中是最⼤匹配Fig1中红⾊边集合是完美匹配Fig1中交替路举例(4-6-2-7-1-5)Fig4中增⼴路(2-6-4-5-1-7)匈⽛利树匈⽛利树中从根节点到叶节点的路径均是交替路,且匈⽛利树的叶节点都是匹配点。

二分图的最大匹配—匈牙利算法

二分图的最大匹配—匈牙利算法

⼆分图的最⼤匹配—匈⽛利算法【基本概念】:⼆分图:⼆分图⼆分图⼜称作⼆部图,是图论中的⼀种特殊模型。

设G=(V,E)是⼀个⽆向图,如果顶点V可分割为两个互不相交的⼦集(A,B),并且图中的每条边(i,j)所关联的两个顶点i和j分别属于这两个不同的顶点集(i in A,j in B),则称图G为⼀个⼆分图。

⽆向图G为⼆分图的充分必要条件是,G⾄少有两个顶点,且其所有回路的长度均为偶数。

最⼤匹配最⼤匹配:给定⼀个⼆分图G,在G的⼀个⼦图M中,M的边集中的任意两条边都不依附于同⼀个顶点,则称M是⼀个匹配. 选择这样的边数最⼤的⼦集称为图的最⼤匹配问题,如果⼀个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配.最⼩覆盖:最⼩覆盖要求⽤最少的点(X集合或Y集合的都⾏)让每条边都⾄少和其中⼀个点关联。

可以证明:最少的点(即覆盖数)=最⼤匹配数最⼩路径覆盖:⽤尽量少的不相交简单路径覆盖有向⽆环图G的所有结点。

解决此类问题可以建⽴⼀个⼆分图模型。

把所有顶点i拆成两个:X结点集中的i 和Y结点集中的i',如果有边i->j,则在⼆分图中引⼊边i->j',设⼆分图最⼤匹配为m,则结果就是n-m。

增⼴路(增⼴轨):(增⼴轨):增⼴路若P是图G中⼀条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的⼀条增⼴路径(举例来说,有A、B集合,增⼴路由A中⼀个点通向B中⼀个点,再由B中这个点通向A中⼀个点……交替进⾏)。

增⼴路径的性质:1 有奇数条边。

2 起点在⼆分图的左半边,终点在右半边。

3 路径上的点⼀定是⼀个在左半边,⼀个在右半边,交替出现。

(其实⼆分图的性质就决定了这⼀点,因为⼆分图同⼀边的点之间没有边相连,不要忘记哦。

)4 整条路径上没有重复的点。

5 起点和终点都是⽬前还没有配对的点,⽽其它所有点都是已经配好对的。

算法学习:图论之二分图的最优匹配(KM算法)

算法学习:图论之二分图的最优匹配(KM算法)

二分图的最优匹配(KM算法)KM算法用来解决最大权匹配问题:在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接XiYj有权wij,求一种匹配使得所有wij的和最大。

基本原理该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。

设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。

在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。

KM算法的正确性基于以下定理:若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。

这个定理是显然的。

因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。

所以相等子图的完备匹配一定是二分图的最大权匹配。

初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。

如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。

我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。

这时我们获得了一棵交错树,它的叶子结点全部是X顶点。

现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。

也就是说,它原来属于相等子图,现在仍属于相等子图。

2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。

最大二分图匹配(匈牙利算法)

最大二分图匹配(匈牙利算法)

最大二分图匹配(匈牙利算法)二分图指的是这样一种图:其所有的顶点分成两个集合M和N,其中M或N中任意两个在同一集合中的点都不相连。

二分图匹配是指求出一组边,其中的顶点分别在两个集合中,并且任意两条边都没有相同的顶点,这组边叫做二分图的匹配,而所能得到的最大的边的个数,叫做最大匹配。

计算二分图的算法有网络流算法和匈牙利算法(目前就知道这两种),其中匈牙利算法是比较巧妙的,具体过程如下(转自组合数学):令g=(x,*,y)是一个二分图,其中x={x1,x2...},y={y1,y2,....}.令m为g中的任意匹配。

1。

将x的所有不与m的边关联的顶点表上¥,并称所有的顶点为未扫描的。

转到2。

2。

如果在上一步没有新的标记加到x的顶点上,则停,否则,转33。

当存在x被标记但未被扫描的顶点时,选择一个被标记但未被扫描的x的顶点,比如xi,用(xi)标记y 的所有顶点,这些顶点被不属于m且尚未标记的边连到xi。

现在顶点xi 是被扫描的。

如果不存在被标记但未被扫描的顶点,转4。

4。

如果在步骤3没有新的标记被标记到y的顶点上,则停,否则转5。

5。

当存在y被标记但未被扫描的顶点时。

选择y的一个被标记但未被扫描的顶点,比如yj,用(yj)标记x的顶点,这些顶点被属于m且尚未标记的边连到yj。

现在,顶点yj是被扫描的。

如果不存在被标记但未被扫描的顶点则转道2。

由于每一个顶点最多被标记一次且由于每一个顶点最多被扫描一次,本匹配算法在有限步内终止。

代码实现:bfs过程:#include<stdio.h>#include<string.h>main(){bool map[100][300];inti,i1,i2,num,num1,que[300],cou,stu,match1[100],match2[300],pqu e,p1,now,prev[300],n;scanf("%d",&n);for(i=0;i<n;i++){scanf("%d%d",&cou,&stu);memset(map,0,sizeof(map));for(i1=0;i1<cou;i1++){scanf("%d",&num);for(i2=0;i2<num;i2++){scanf("%d",&num1);map[i1][num1-1]=true;}}num=0;memset(match1,int(-1),sizeof(match1)); memset(match2,int(-1),sizeof(match2)); for(i1=0;i1<cou;i1++){p1=0;pque=0;for(i2=0;i2<stu;i2++){if(map[i1][i2]){prev[i2]=-1;que[pque++]=i2;}elseprev[i2]=-2;}while(p1<pque){now=que[p1];if(match2[now]==-1)break;p1++;for(i2=0;i2<stu;i2++){if(prev[i2]==-2&&map[match2[now]][i2]){prev[i2]=now;que[pque++]=i2;}}}if(p1==pque)continue;while(prev[now]>=0){match1[match2[prev[now]]]=now; match2[now]=match2[prev[now]]; now=prev[now];}match2[now]=i1;match1[i1]=now;num++;}if(num==cou)printf("YES\n");elseprintf("NO\n");}}dfs实现过程:#include<stdio.h>#include<string.h>#define MAX 100bool map[MAX][MAX],searched[MAX]; int prev[MAX],m,n;bool dfs(int data){int i,temp;for(i=0;i<m;i++){if(map[data][i]&&!searched[i]){searched[i]=true;temp=prev[i];prev[i]=data;if(temp==-1||dfs(temp))return true;prev[i]=temp;}}return false;}main(){int num,i,k,temp1,temp2,job;while(scanf("%d",&n)!=EOF&&n!=0) {scanf("%d%d",&m,&k);memset(map,0,sizeof(map));memset(prev,int(-1),sizeof(prev)); memset(searched,0,sizeof(searched));for(i=0;i<k;i++){scanf("%d%d%d",&job,&temp1,&temp2); if(temp1!=0&&temp2!=0)map[temp1][temp2]=true;}num=0;for(i=0;i<n;i++){memset(searched,0,sizeof(searched)); dfs(i);}for(i=0;i<m;i++){if(prev[i]!=-1)num++;}printf("%d\n",num);}}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言:
高中时候老师讲这个就听得迷迷糊糊,有一晚花了通宵看KM的Pascal代码,大概知道过程了,后来老师说不是重点,所以忘的差不多了。

都知道二分图匹配是个难点,我这周花了些时间研究了一下这两个算法,总结一下
1.基本概念
M代表匹配集合
未盖点:不与任何一条属于M的边相连的点
交错轨:属于M的边与不属于M的边交替出现的轨(链)
可增广轨:两端点是未盖点的交错轨
判断M是最大匹配的标准:M中不存在可增广轨
2.最大匹配,匈牙利算法
时间复杂度:O(|V||E|)
原理:
寻找M的可增广轨P,P包含2k+1条边,其中k条属于M,k+1条不属于M。

修改M 为M&P。

即这条轨进行与M进行对称差分运算。

所谓对称差分运算,就是比如X和Y都是集合,X&Y=(X并Y)-(x交Y)
有一个定理是:M&P的边数是|M|+1,因此对称差分运算扩大了M
实现:
关于这个实现,有DFS和BFS两种方法。

先列出DFS的代码,带注释。

这段代码来自中山大学的教材
核心部分在dfs(x),来寻找可增广轨。

如果找到的话,在Hungarian()中,最大匹配数加一。

这是用了刚才提到的定理。

大家可以想想初始状态是什么,又是如何变化的
view plaincopy to clipboardprint?
第二种方法BFS,来自我的学长cnhawk
核心步骤还是寻找可增广链,过程是:
1.从左的一个未匹配点开始,把所有她相连的点加入队列
2.如果在右边找到一个未匹配点,则找到可增广链
3.如果在右边找到的是一个匹配的点,则看它是从左边哪个点匹配而来的,将那个点出发的所有右边点加入队列
这么说还是不容易明白,看代码吧
view plaincopy to clipboardprint?
3.最佳匹配
加权图中,权值最大的最大匹配
KM算法:
概念:
f(v)是每个点的一个值,使得对任意u,v C V,f(u)+f(v)>=w[e u,v]集合H:一个边集,使得H中所有u,v满足f(u)+f(v)=w[e u,v]
等价子图:G f(V,H),标有f函数的G图
理论:
对于f和G f,如果有一个理想匹配集合M p,则M p最优。

对于任意匹配集合M,weight(M)<weight(M p)
KM算法的实质是扩展G f,直到找到理想的匹配集合
伪代码
view plaincopy to clipboardprint?
最后给一个代码,跟伪代码的思路不是很一样。

从网上找的
view plaincopy to clipboardprint?。

相关文档
最新文档