二分图最大匹配问题(贪心算法)
运筹学匈牙利法

运筹学匈牙利法运筹学匈牙利法(Hungarian Algorithm),也叫匈牙利算法,是解决二部图最大(小)权完美匹配(也称作二分图最大权匹配、二分图最小点覆盖)问题的经典算法,是由匈牙利数学家Kuhn和Harold W. Kuhn发明的,属于贪心算法的一种。
问题描述在一个二分图中,每个节点分别属于两个特定集合。
找到一种匹配,使得所有内部的节点对都有连边,并且找到一种匹配方案,使得该方案的边权和最大。
应用场景匈牙利算法的应用场景较为广泛,比如在生产调度、货车调度、学生对导师的指定、电影的推荐等领域内,都有广泛的应用。
算法流程匈牙利算法的伪代码描述如下:进行循环ɑ、选择一点未匹配的点a作为起点,它在二分图的左边β、找出a所有未匹配的点作为下一层节点ɣ、对下一层的每个节点,如果它在右边未匹配,直接匹配ɛ、如果遇到一个已经匹配的节点,进入下一圈,考虑和它匹配的情况δ、对已经匹配的点,将它已经匹配的点拿出来,作为下一层节点,标记这个点作为已被搜索过ε、将这个点作为当前层的虚拟点,没人配它,看能否为它找到和它匹配的点ζ、如果能匹配到它的伴侣,令它们成对被匹配最后输出最大权匹配。
算法优缺点优点:相比于暴力求解二分图最大权匹配来说,匈牙利算法具有优秀的解决效率和高效的时间复杂度,可以在多项式时间(O(n^3))内解决二分图最大权匹配问题。
缺点:当二分图较大时,匈牙利算法还是有很大的计算复杂度,复杂度不佳,算法有效性差。
此时就需要改进算法或者使用其他算法。
总结匈牙利算法是一个常见的解决二分图最大权匹配问题的算法,由于其简洁、易用、效率优秀等特性,广泛应用于学术和实际问题中。
匈牙利算法虽然在处理较大规模问题时效率不佳,但仍然是一种值得掌握的经典算法。
离散数学中的的匹配与覆盖问题

离散数学中的的匹配与覆盖问题在离散数学中的匹配与覆盖问题,我们研究的是如何在给定的集合中,找到满足特定条件的组合或者子集。
匹配与覆盖问题在实际生活中有着广泛的应用,例如在社交网络中匹配好友,组织中分配任务,以及物流中优化路径等等。
1. 匹配问题匹配问题是指在一个给定的图中,找到一个子图,使得子图的边集中的每个顶点都只有一条边与之关联。
在离散数学中,匹配问题可以表示为一个图的问题,其中图的顶点表示对象,边表示对象之间的关系。
在旅行商问题中,我们经常使用匹配来解决路线规划问题。
在一个包含多个城市的地图中,我们可以通过匹配算法找到最短的路径,从而使得旅行商能够尽快地访问到每个城市。
2. 覆盖问题覆盖问题是指从给定的集合中选取一些元素,使得这些元素能够覆盖其他元素的集合。
在离散数学中,覆盖问题可以表示为一个集合系统,并且需要找到一个最小的子集,使得它覆盖了集合系统中的所有元素。
在电信领域,我们经常会遇到覆盖问题。
例如,在一个城市中建设无线信号基站,我们需要在有限的基站数量下,选择合适的位置,使得基站能够覆盖到尽可能多的用户。
通过覆盖问题的研究,我们可以优化基站的布局,提高网络的覆盖率。
3. 匹配与覆盖问题的解决方法在离散数学中,匹配与覆盖问题有着丰富的解决方法。
其中一种常见的方法是图论中的匈牙利算法,它可以用于解决二分图的最大匹配问题。
匈牙利算法的基本思想是通过增加路径来找到当前路径的增广路径,并最终找到最大匹配。
另外一种常见的解决方法是贪心算法,它可以用于解决覆盖问题。
贪心算法的基本思想是每次选择一个局部最优的解决方案,并逐步构建全局最优解。
通过不断地选择覆盖集合中最多未被覆盖的元素,贪心算法可以找到一种近似的最优解。
此外,还有其他一些算法和方法可以用于解决匹配与覆盖问题,如线性规划、网络流等。
根据问题的具体要求和限制条件,选择合适的算法和方法进行求解。
思考匹配与覆盖问题给我们带来的启示,我们发现离散数学在实际问题中有着广泛的应用。
ACM算法总结

(1)几何公式.
(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)
(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)
(poj1408,poj1584)
(4)最小树形图(poj3164)
(5)次小生成树.
(6)无向图、有向图的最小环
三.数据结构.
(1)trie图的建立和应用. (poj2778)
(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和 在线算法
(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.动态规划
(1)背包问题. (poj1837,poj1276)
(2)型如下表的简单DP(可参考lrj的书 page149):
(4)凸包. (poj2187,poj1113)
中级:
一.基本算法:
(1)C++的标准模版库的应用. (poj3096,poj3007)
(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)
二.图算法:
(3)记忆化搜索(poj3373,poj1691)
五.动态规划
(1)较为复杂的动态规划(如动态规划解特别的施行商问题等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)四边形不等式理论.
程序设计竞赛常用算法

程序设计竞赛常用算法1.排序算法:排序是一个基本的算法问题,常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
这些排序算法有各自的优势和适用场景,需要根据具体问题需求选择合适的算法。
2.图论算法:图论是程序设计竞赛中经常出现的重要领域。
常见的图论算法有深度优先(DFS)、广度优先(BFS)、Dijkstra算法、Floyd-Warshall算法、拓扑排序、最小生成树等。
这些算法可以用于解决最短路径、连通性、最大流最小割等问题。
3.动态规划:动态规划是一种常用于解决优化问题的算法。
该算法通过将问题分解成子问题,并记录子问题的解来求解原问题的最优解。
常见的动态规划算法有背包问题、最长公共子序列(LCS)、最大子序列和等。
4.字符串处理算法:字符串处理是程序设计竞赛中常见的问题。
常见的字符串处理算法有KMP算法、哈希算法、字符串匹配等。
这些算法可以用于解决模式匹配、字符串、字符统计等问题。
5.数学算法:数学算法在程序设计竞赛中也经常被使用。
常见的数学算法有质因数分解、素数筛、快速乘法、高精度计算等。
这些算法可以用于解决数论、计算几何、概率等问题。
6.图形算法:图形算法主要用于处理图像和几何图形。
常见的图形算法有扫描线算法、凸包算法、几何运算等。
这些算法可以用于解决图像处理、三维建模等问题。
7.树和图的遍历算法:树和图的遍历算法是程序设计竞赛中常用的算法之一、常见的树和图的遍历算法有先序遍历、中序遍历、后序遍历、深度优先(DFS)、广度优先(BFS)等。
这些算法可以用于解决树和图的构建、路径等问题。
8.最大匹配和最小割算法:最大匹配算法用于求解二分图的最大匹配问题,常见的算法有匈牙利算法。
最小割算法用于求解图的最小割问题,常见的算法有Ford-Fulkerson算法。
这些算法可以用于解决网络流和二分图匹配等问题。
9.贪心算法:贪心算法是一种常用于优化问题的算法。
该算法通过每一步选择局部最优解来达到全局最优解。
POJ 题目整理

初期:一.基本算法:(1)枚举. (poj1753,poj2965)(2)贪心(poj1328,poj2109,poj2586)(3)递归和分治法.(4)递推.(5)构造法.(poj3295)(6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:(1)图的深度优先遍历和广度优先遍历.(2)最短路径算法(dijkstra,bellman-ford,floyd,heap+dijkstra)(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)(3)最小生成树算法(prim,kruskal) (poj1789,poj2485,poj1258,poj3026)(4)拓扑排序 (poj1094)(5)二分图的最大匹配 (匈牙利算法) (poj3041,poj3020)(6)最大流的增广路算法(KM算法). (poj1459,poj3436)三.数据结构.(1)串 (poj1035,poj3080,poj1936)(2)排序(快排、归并排(与逆序数有关)、堆排) (poj2388,poj2299)(3)简单并查集的应用.(4)哈希表和二分查找等高效查找法(数的Hash,串的Hash)(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)(5)哈夫曼树(poj3253)(6)堆(7)trie树(静态建树、动态建树) (poj2513)四.简单搜索(1)深度优先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)(2)广度优先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)(3)简单搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)五.动态规划(1)背包问题. (poj1837,poj1276)(2)型如下表的简单DP(可参考lrj的书 page149):1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最长公共子序列) (poj3176,poj1080,poj1159)3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最优二分检索树问题)六.数学(1)组合数学:1.加法原理和乘法原理.2.排列组合.3.递推关系.(POJ3252,poj1850,poj1019,poj1942)(2)数论.1.素数与整除问题2.进制位.3.同余模运算.(poj2635, poj3292,poj1845,poj2115)(3)计算方法.1.二分法求解单调函数相关知识.(poj3273,poj3258,poj1905,poj3122)七.计算几何学.(1)几何公式.(2)叉积和点积的运用(如线段相交的判定,点到线段的距离等). (poj2031,poj1039)(3)多边型的简单算法(求面积)和相关判定(点在多边型内,多边型是否相交)(poj1408,poj1584)(4)凸包. (poj2187,poj1113)中级:一.基本算法:(1)C++的标准模版库的应用. (poj3096,poj3007)(2)较为复杂的模拟题的训练(poj3393,poj1472,poj3371,poj1027,poj2706)二.图算法:(1)差分约束系统的建立和求解. (poj1201,poj2983)(2)最小费用最大流(poj2516,poj2516,poj2195)(3)双连通分量(poj2942)(4)强连通分支及其缩点.(poj2186)(5)图的割边和割点(poj3352)(6)最小割模型、网络流规约(poj3308, )三.数据结构.(1)线段树. (poj2528,poj2828,poj2777,poj2886,poj2750)(2)静态二叉检索树. (poj2482,poj2352)(3)树状树组(poj1195,poj3321)(4)RMQ. (poj3264,poj3368)(5)并查集的高级应用. (poj1703,2492)(6)KMP算法. (poj1961,poj2406)四.搜索(1)最优化剪枝和可行性剪枝(2)搜索的技巧和优化 (poj3411,poj1724)(3)记忆化搜索(poj3373,poj1691)五.动态规划(1)较为复杂的动态规划(如动态规划解特别的施行商问题等) (poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)(2)记录状态的动态规划. (POJ3254,poj2411,poj1185)(3)树型动态规划(poj2057,poj1947,poj2486,poj3140)六.数学(1)组合数学:1.容斥原理.2.抽屉原理.3.置换群与Polya定理(poj1286,poj2409,poj3270,poj1026).4.递推关系和母函数.(2)数学.1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)2.概率问题. (poj3071,poj3440)3.GCD、扩展的欧几里德(中国剩余定理) (poj3101)(3)计算方法.1.0/1分数规划. (poj2976)2.三分法求解单峰(单谷)的极值.3.矩阵法(poj3150,poj3422,poj3070)4.迭代逼近(poj3301)(4)随机化算法(poj3318,poj2454)(5)杂题. (poj1870,poj3296,poj3286,poj1095)七.计算几何学.(1)坐标离散化.(2)扫描线算法(例如求矩形的面积和周长并,常和线段树或堆一起使用).(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)(3)多边形的内核(半平面交)(poj3130,poj3335)(4)几何工具的综合应用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)高级:一.基本算法要求:(1)代码快速写成,精简但不失风格(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)(2)保证正确性和高效性. poj3434二.图算法:(1)度限制最小生成树和第K最短路. (poj1639)(2)最短路,最小生成树,二分图,最大流问题的相关理论(主要是模型建立和求解) (poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446) (3)最优比率生成树. (poj2728)(4)最小树形图(poj3164)(5)次小生成树.(6)无向图、有向图的最小环三.数据结构.(1)trie图的建立和应用. (poj2778)(2)LCA和RMQ问题(LCA(最近公共祖先问题) 有离线算法(并查集+dfs) 和在线算法(RMQ+dfs)).(poj1330)(3)双端队列和它的应用(维护一个单调的队列,常常在动态规划中起到优化状态转移的目的).(poj2823)(4)左偏树(可合并堆).(5)后缀树(非常有用的数据结构,也是赛区考题的热点). (poj3415,poj3294)四.搜索(1)较麻烦的搜索题目训练(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)(2)广搜的状态优化:利用M进制数存储状态、转化为串用hash表判重、按位压缩存储状态、双向广搜、A*算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)(3)深搜的优化:尽量用位运算、一定要加剪枝、函数参数尽可能少、层数不易过大、可以考虑双向搜索或者是轮换搜索、IDA*算法.(poj3131,poj2870,poj2286)五.动态规划(1)需要用数据结构优化的动态规划. (poj2754,poj3378,poj3017)(2)四边形不等式理论.(3)较难的状态DP(poj3133)六.数学(1)组合数学.1.MoBius反演(poj2888,poj2154)2.偏序关系理论.(2)博奕论.1.极大极小过程(poj3317,poj1085)2.Nim问题.七.计算几何学.(1)半平面求交(poj3384,poj2540)(2)可视图的建立(poj2966)(3)点集最小圆覆盖.(4)对踵点(poj2079)八.综合题.(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263) 以及补充Dp状态设计与方程总结1.不完全状态记录<1>青蛙过河问题<2>利用区间dp2.背包类问题<1> 0-1背包,经典问题<2>无限背包,经典问题<3>判定性背包问题<4>带附属关系的背包问题<5> + -1背包问题<6>双背包求最优值<7>构造三角形问题<8>带上下界限制的背包问题(012背包)3.线性的动态规划问题<1>积木游戏问题<2>决斗(判定性问题)<3>圆的最大多边形问题<4>统计单词个数问题<5>棋盘分割<6>日程安排问题<7>最小逼近问题(求出两数之比最接近某数/两数之和等于某数等等)<8>方块消除游戏(某区间可以连续消去求最大效益)<9>资源分配问题<10>数字三角形问题<11>漂亮的打印<12>邮局问题与构造答案<13>最高积木问题<14>两段连续和最大<15>2次幂和问题<16>N个数的最大M段子段和<17>交叉最大数问题4.判定性问题的dp(如判定整除、判定可达性等)<1>模K问题的dp<2>特殊的模K问题,求最大(最小)模K的数<3>变换数问题5.单调性优化的动态规划<1>1-SUM问题<2>2-SUM问题<3>序列划分问题(单调队列优化)6.剖分问题(多边形剖分/石子合并/圆的剖分/乘积最大)<1>凸多边形的三角剖分问题<2>乘积最大问题<3>多边形游戏(多边形边上是操作符,顶点有权值)<4>石子合并(N^3/N^2/NLogN各种优化)7.贪心的动态规划<1>最优装载问题<2>部分背包问题<3>乘船问题<4>贪心策略<5>双机调度问题Johnson算法8.状态dp<1>牛仔射击问题(博弈类)<2>哈密顿路径的状态dp<3>两支点天平平衡问题<4>一个有向图的最接近二部图9.树型dp<1>完美服务器问题(每个节点有3种状态)<2>小胖守皇宫问题<3>网络收费问题<4>树中漫游问题<5>树上的博弈<6>树的最大独立集问题<7>树的最大平衡值问题<8>构造树的最小环转一个搞ACM需要的掌握的算法.要注意,ACM的竞赛性强,因此自己应该和自己的实际应用联系起来.适合自己的才是好的,有的人不适合搞算法,喜欢系统架构,因此不要看到别人什么就眼红, 发挥自己的长处,这才是重要的.第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都可以把程序打出来.1.最短路(Floyd、Dijstra,BellmanFord)2.最小生成树(先写个prim,kruscal要用并查集,不好写)3.大数(高精度)加减乘除4.二分查找. (代码可在五行以内)5.叉乘、判线段相交、然后写个凸包.6.BFS、DFS,同时熟练hash表(要熟,要灵活,代码要简)7.数学上的有:辗转相除(两行内),线段交点、多角形面积公式.8. 调用系统的qsort, 技巧很多,慢慢掌握.9. 任意进制间的转换第二阶段:练习复杂一点,但也较常用的算法。
贪心算法通过每次选择局部最优解来达到全局最优

贪心算法通过每次选择局部最优解来达到全局最优贪心算法是一种常用的解决优化问题的算法。
它通过每次选择局部最优解来达到全局最优的目标。
在本文中,我们将介绍贪心算法的原理、应用场景以及优缺点。
一、原理贪心算法的基本原理非常简单:每一步都选择当前状态下的局部最优解,最终得到的结果就是全局最优解。
贪心算法不考虑过去的选择对未来的影响,只关注眼前的最佳选择。
二、应用场景贪心算法在各个领域都有广泛的应用,下面我们将以几个常见的实际问题来说明。
1. 图的最小生成树问题在一个连通无向图中,找到一个包含所有节点且权值最小的无回路子图,这个问题称为最小生成树问题。
贪心算法可以通过每次选择权值最小的边来逐步构建最小生成树。
2. 分糖果问题有一组孩子和一组糖果,每个孩子有一个需求因子和每个糖果有一个大小。
当糖果的大小不小于孩子的需求因子时,孩子可以获得该糖果。
目标是尽可能多地满足孩子的需求,贪心算法可以通过给每个孩子分配满足其需求因子的最小糖果来达到最优解。
3. 区间调度问题给定一个任务列表,每个任务有一个开始时间和结束时间。
目标是安排任务的执行顺序,使得尽可能多的任务能够被完成。
贪心算法可以通过选择结束时间最早的任务来实现最优解。
以上只是一些贪心算法的应用场景,实际上贪心算法可以用于解决各种优化问题。
三、优缺点1. 优点①简单:贪心算法的思路相对简单,容易理解和实现。
②高效:由于只考虑局部最优解,贪心算法的时间复杂度较低,通常能够在较短的时间内得到一个接近最优解的结果。
③可用于近似求解:由于贪心算法不保证得到全局最优解,但可以用于求解近似最优解的问题。
2. 缺点①不保证全局最优解:贪心算法只考虑眼前的最优选择,无法回溯和修正过去的选择,因此不能保证得到全局最优解。
②局部最优解无法转移:在某些情况下,局部最优解并不一定能够转移到全局最优解,导致贪心算法得到的结果偏离最优解。
③对问题的要求较高:由于贪心算法需要找到适合的局部最优解,因此问题必须具备一定的特殊性,而一些问题无法使用贪心算法解决。
《算法设计与分析》课程实验报告 (贪心算法(一))

《算法设计与分析》课程实验报告实验序号:07实验项目名称:实验8 贪心算法(一)一、实验题目1.删数问题问题描述:键盘输入一个高精度的正整数N(不超过250 位),去掉其中任意k个数字后剩下的数字按原左右次序将组成一个新的非负整数。
编程对给定的N 和k,寻找一种方案使得剩下的数字组成的新数最小。
若输出前有0则舍去2.区间覆盖问题问题描述:设x1,x2,...xn是实轴上的n个点。
用固定长度为k的闭区间覆盖n个点,至少需要多少个这样的固定长度的闭区间?请你设计一个有效的算法解决此问题。
3.会场安排问题问题描述:假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。
设计一个有效的贪心算法进行安排。
(这个问题实际上是著名的图着色问题。
若将每一个活动作为图的一个顶点,不相容活动间用边相连。
使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。
)4.导弹拦截问题问题描述:某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。
但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。
某天,雷达捕捉到敌国的导弹来袭。
由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
给定导弹依次飞来的高度(雷达给出的高度数据是≤50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
二、实验目的(1)通过实现算法,进一步体会具体问题中的贪心选择性质,从而加强对贪心算法找最优解步骤的理解。
(2)掌握通过迭代求最优的程序实现技巧。
(3)体会将具体问题的原始数据预处理后(特别是以某种次序排序后),常能用贪心求最优解的解决问题方法。
三、实验要求(1)写出题1的最优子结构性质、贪心选择性质及相应的子问题。
(2)给出题1的贪心选择性质的证明。
(3)(选做题):写出你的算法的贪心选择性质及相应的子问题,并描述算法思想。
frégier定理证明及推广

Frégier定理证明及推广Frégier定理证明及推广Frégier定理是图论中的一个重要结论,它提供了关于二分图的一个重要性质。
本文将分别介绍Frégier定理的证明方法、定理推广、应用领域以及相关定理。
●定理证明方法Frégier定理的证明方法基于贪心算法和数学归纳法。
以下是具体的证明步骤:●初始化:令$G$为待处理的二分图,$A$和$B$分别为图的两个子集。
选择一个节点$x$,将其放入$A$中。
●贪心策略:对于每个未处理的节点$y$,如果$y$与$A$中的节点相邻接,则将$y$放入$B$中;否则将$y$放入$A$中。
●数学归纳法:假设经过k轮处理后,已经将节点$x_1, x_2, \ldots, x k$分别放入了$A$和$B$中。
对于第k+1个节点$x{k+1}$,根据贪心策略进行处理。
在证明过程中,需要证明经过贪心策略处理后,得到的二分图是平衡的,即两个子集的节点数量相差不超过1。
为了证明这一点,可以使用数学归纳法,通过对节点数目的归纳来逐步推导。
●定理推广Frégier定理的推广主要集中在两个方面:一是将定理应用于更广泛的图类,二是寻找更高效的算法实现。
在应用范围方面,Frégier定理的结论可以扩展到一般图论中的平衡二分问题。
例如,对于一个给定的图,可以尝试使用Frégier算法将其分成两个平衡的子图。
此外,还可以将平衡二分的概念推广到超图上,研究超图的平衡二分问题。
在算法优化方面,贪心策略的核心是将每个节点放入与其相邻接的节点较少的子集中。
这一策略可以在实际应用中进行优化,例如使用优先队列等数据结构来加速查找相邻节点的过程。
此外,还可以研究使用启发式算法来改进Frégier算法的性能,例如使用模拟退火等优化方法来避免局部最优解。
●应用领域Frégier定理的应用领域广泛,主要包括以下几方面:●社交网络分析:社交网络中的用户可以抽象为图的节点,用户之间的互动关系可以抽象为边的连接。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意
以上所述的贪心算法仅适用于二分图的最 大匹配问题,最佳匹配问题是不适用的。 本人尚未见到有人能够对此算法给出严格 的证明,但是网上确实也有不少人有用此 算法过全点的经历。 总之,请各位慎重使用! (:以下附例题的主程序的代码
主程序代码
procedure add(i,j:longint); begin inc(top); v[top]:=j; next[top]:=u[i]; u[i]:=top; inc(degree[i]); end; procedure ins(i:longint); var o:longint; begin visit[i]:=true; inc(tot); o:=u[i]; while o<>0 do begin dec(degree[v[o]]); o:=next[o]; end; end; begin readln(n,m,k); for a:=1 to k do begin readln(b,c); c:=n+c; add(b,c); add(c,b); end;
网络流算法(编程复杂,小题大做) 匈牙利算法(理解困难,实现简单) 以上这些我都不会怎么办?
贪心算法
下面,我们引进一种能够完美解决二分图 最大匹配问题的贪心算法。
会议安排
一个重要的会议由A公司的M位代表和B公司的N 位代表参加(M,N≤1000,代表用1,2,……, M和1,2,……,N表示)。他们被预先分成 K(K≤60000)组进行谈判。每组两个人分别来自A 公司和B公司。每个参加会议的代表都至少参加 了一组谈判。会议为每一个代表都准备了一个房 间。技术人员将会在一些房间之间连上直通电话, 一个代表至少要和他的一个谈判对手直接联络。 连接一个直通电话的价格是常数。技术人员要用 尽量少的花费满足会议的要求。
贪心算法
接着,我们将u,v两点都进行删除操作。 (当u的出边所对的点都已被访问,那么就找 不到满足条件的v,因此只对u进行操作) 所谓删除操作,在这里,删除s,其实就是 将s的所有出边所对的点t的出度都减一。 (因为要删除点s,即(s,t)也被删除,即(t,s) 也要被删除,所以t的出度要减一)
二分图最大匹配问题 (贪心算法) 贪心算法)
BY 长郡中学 曹博凯
二分图的基本概念
二分图是一类特殊的图结构 二分图是这样一种图:G的顶点集合V分成 两部分X与Y,G中每条边的两个端点一定 是一个属于X而另一个属于Y。
匹配的基本概念
设G=[V,E]是一个无向图,M属于E是G的 若干条边的集合,如果M中的任意两条边Biblioteka 没有公共的端点,就称M是一个匹配。
题目分析
这道题目我们很容易将其抽象成为二分图 最大匹配的基本模型。我们可以用匈牙利 算法求出其最大匹配M,然后所求解即为 n+m-M。 可是,考场上并不是每个人都能想到这一 巧妙的转换。 于是,我们可以怀抱着一种骗分的心态, 构造出一种贪心策略,从而得到满分!
贪心算法
首先,我们将每条无向边拆分成两条反向 的有向边,存储在邻接表中。与此同时, 我们记录下每个顶点的出度。 然后,我们每次找出一个当前未被访问过 的结点中,出度最小的结点u。同时,再在 以该结点u为起始点的所有边所对的点中, 找出一个同样满足未被访问,且出度最小 的结点v。
主程序代码
n:=n+m; while tot<n do begin b:=maxlongint;//找结点u for a:=1 to n do if(not visit[a])and(degree[a]<b)then begin b:=degree[a]; c:=a; end; a:=u[c]; b:=maxlongint;// b:=maxlongint;//找结点v v while a<>0 do begin if(not visit[v[a]])and(degree[v[a]]<b)then begin b:=degree[v[a]]; d:=v[a]; end; a:=next[a]; end; inc(ans);//连边,答案加一 ins(c);//对u进行删除操作 if b<>maxlongint then ins(d);//如果存在v,对v进行删除操作 end; writeln(ans);; end.
贪心算法
这样循环做下来,我们每做一次都相当于 连了一条边(u,v),于是inc(ans)。 同时,我们对这条边的两个端点u,v都做了 删除操作(如果可以的话)。每删一个点 就inc(tot),直到tot=n+m,即两边的点均被 删完。 此时我们得到的ans值即为答案,直接输出 即可。
总结
以上就是简单明了的二分图最大匹配的贪 心算法。 比起前面所提到的网络流算法和匈牙利算 法,都有着无可比拟的优越性。 它不但比前面两个算法都要好理解,而且 不及网络流算法的编程复杂度,也不用担 心匈牙利算法的递归层数。
最大匹配的基本概念
从给定的图G=[V,E]的所有匹配中,把包 含边数最多的匹配找出来。这种匹配即所 谓的最大匹配问题。
二分图的最大匹配
e.g.飞行员分成两部分,一部分是正驾驶员, 一部分是副驾驶员。显然,如何搭配正副 驾驶员才能使出航飞机最多的问题可以归 结为一个二分图上的最大匹配问题。
常用算法