药物化学第三章-药物的结构与生物活性[一类优选]
药物化学第三章习题及答案

第三章外周神经系统药物一、单项选择题3-1、下列哪种叙述与胆碱受体激动剂不符: BA. 乙酰胆碱的乙酰基部分为芳环或较大分子量的基团时,转变为胆碱受体拮抗剂B. 乙酰胆碱的亚乙基桥上位甲基取代,M样作用大大增强,成为选择性M受体激动剂C. Carbachol作用较乙酰胆碱强而持久D. Bethanechol chloride的S构型异构体的活性大大高于R构型异构体E. 中枢M受体激动剂是潜在的抗老年痴呆药物3-2、下列有关乙酰胆碱酯酶抑制剂的叙述不正确的是:EA. Neostigmine bromide是可逆性乙酰胆碱酯酶抑制剂,其与AChE结合后形成的二甲氨基甲酰化酶,水解释出原酶需要几分钟B. Neostigmine bromide结构中N, N-二甲氨基甲酸酯较physostigmine结构中N-甲基氨基甲酸酯稳定C. 中枢乙酰胆碱酯酶抑制剂可用于抗老年痴呆D. 经典的乙酰胆碱酯酶抑制剂结构中含有季铵碱阳离子、芳香环和氨基甲酸酯三部分E. 有机磷毒剂也是可逆性乙酰胆碱酯酶抑制剂3-3、下列叙述哪个不正确:DA. Scopolamine分子中有三元氧环结构,使分子的亲脂性增强B. 托品酸结构中有一个手性碳原子,S构型者具有左旋光性C. Atropine水解产生托品和消旋托品酸D. 莨菪醇结构中有三个手性碳原子C1、C3和C5,具有旋光性E. 山莨菪醇结构中有四个手性碳原子C1、C3、C5和C6,具有旋光性3-4、下列合成M胆碱受体拮抗剂分子中,具有9-呫吨基的是:CA. Glycopyrronium bromideB. OrphenadrineC. Propantheline bromideD. BenactyzineE. Pirenzepine3-5、下列与epinephrine 不符的叙述是:DA. 可激动α和β 受体B. 饱和水溶液呈弱碱性C. 含邻苯二酚结构,易氧化变质D. β-碳以R 构型为活性体,具右旋光性E. 直接受到单胺氧化酶和儿茶酚氧位甲基转移酶的代谢3-6、临床药用(-)- ephedrine 的结构是CA. (1S2R)H NOHNE. 上述四种的混合物3-7、Diphenhydramine 属于组胺H1受体拮抗剂的哪种结构类型:EA. 乙二胺类B. 哌嗪类C. 丙胺类D. 三环类E. 氨基醚类3-8、下列哪一个药物具有明显的中枢镇静作用:AA. ChlorphenamineB. ClemastineC. AcrivastineD. LoratadineE. Cetirizine3-9、若以下图代表局麻药的基本结构,则局麻作用最强的X 为:CX Ar O Cn NA. -O -B. -NH -C. -S -D. -CH2-E. -NHNH - 3-10、Lidocaine 比procaine 作用时间长的主要原因是:EA. Procaine 有芳香第一胺结构B. Procaine 有酯基C. Lidocaine 有酰胺结构D. Lidocaine 的中间部分较procaine 短E. 酰氨键比酯键不易水解二、配比选择题[3-11-3-15]A. 溴化N-甲基-N-(1-甲基乙基)-N-[2-(9H-呫吨-9-甲酰氧基)乙基]-2-丙铵B. 溴化N ,N ,N-三甲基-3-[(二甲氨基)甲酰氧基]苯铵C. (R )-4-[2-(甲氨基)-1-羟基乙基]-1,2-苯二酚D. N ,N-二甲基-γ-(4-氯苯基)-2-吡啶丙胺顺丁烯二酸盐E. 4-氨基苯甲酸-2-(二乙氨基)乙酯盐酸盐3-11、Epinephrine3-12、Chlorphenamine maleate3-13、Propantheline bromide3-14、Procaine hydrochloride3-15、Neostigmine bromide[3-16-3-20]A. O NH 2O N +. Cl -B. OH H NHO HOOOH OD. 2HCl O OOH ClN NE. H NN O ·HCl·H 2O3-16、Salbutamol3-17、Cetirizine hydrochloride3-18、Atropine3-19、Lidocaine hydrochloride3-20、Bethanechol chloride[3-26-3-30]A. 加氢氧化钠溶液,加热后,加入重氮苯磺酸试液,显红色B. 用发烟硝酸加热处理,再加入氢氧化钾醇液和一小粒固体氢氧化钾,初显深紫色,后转暗红色,最后颜色消失C. 其水溶液加氢氧化钠溶液,析出油状物,放置后形成结晶。
药物化学期末复习

绪论1、药物化学(Medicinal Chemistry)是关于药物的发现、发展和确证,并在分子水平上研究药物作用方式的一门学科。
2、药物是对疾病具有预防、治疗和诊断作用或用以调节机体生理功能的物质。
3、根据药物的来源和性质不同,可以分为中药或天然药物、化学药物和生物药物。
4、化学药物是一类既有药物的功效,同时又有确切的化学结构的物质。
5、药物化学的三个时期:以天然产物为主的发现时期、以合成药物为主的发展时期、药物分子设计时期。
6、1899年,阿司匹林上市,标志着药物化学学科的形成。
第一章:新药研究和开发概论1、新化学实体(New Chemical Entities)是指在以前的文献中没有报道过的新化合物。
而有可能成为药物的新化学实体则需要时能够以安全和有效的方法治疗疾病的新化合物。
2、通常新药的发现分为4个主要的阶段:靶分子的确定和选择、靶分子的优化、先导化合物的发现和先导化合物的优化。
3、药品质量的主要含义是:A、药物的疗效和毒副作用,B、药物的纯度。
4、药品质量标准中,有两个重要的指征:一是药物的纯度,即有效成分的含量;二是药物的杂质限度。
5、药物的商品名通常是针对药物的最终产品,即剂量和剂型已确定的含有一种或多种药物活性成分的药品。
含同样活性成分的同一药品,每个企业应有自己的商品名,不得冒用、顶替别人的药品商品名称。
6、药物的通用名:也称为国际非专利药品名称,是世界卫生组织推荐使用的名称,通常是指有活性的药物物质,而不是最终产品,因此是药学研究人员和医务人员使用的共同名称,所以一个药物只有一个药品通用名,比商品名使用起来更为方便。
第二章:药物设计的基本原理和方法1、目前新药设计的靶点集中在受体、酶、核酸、离子通道和基因等上。
2、先导化合物(Lead Compound):通过各种途径得到的具有一定生理活性的化学物质。
3、先导化合物的发现方法和途径:a、从天然产物活性成分中发现先导化合物;b、通过分子生物学途径发现先导化合物;c、通过随机机遇发现先导化合物;d、从代谢产物中发现先导化合物;e、从临床药物的副作用或者老药新用途中发现新药;f、从药物合成中间体中发现先导化合物;g、通过计算机辅助药物筛选寻找先导化合物。
药物化学药物的化学结构与生物活性

引入下列基团至脂烃化合物(R),其lgP的递降顺序大致 为:
C6H5 > CH3 > Cl > R > -COOCH3 > -N(CH3)2 > OCH3 > COCH3 > NO2 > OH > NH2 > COOH > CONH2
引入下列基团至芳烃化合物(Ar),其lgP的递降顺序大 致为:
表示。即化合物在非水相中的平衡浓度Co和水相 中的中性形式平衡浓度Cw之比值:P=Co/Cw
不同的靶组织对于药物的脂水分配系数的要求不同。 作用于中枢神经系统的药物,需要较大的脂水分配系数 局部麻醉药作用于神经末梢,要求必须有一定的脂溶性,
但脂溶性又不能太大。因此,在局部麻醉药的结构中,应 具有亲脂性部分,也要具有亲水部分,以保持合适的脂水 分配系数,产生较好的局麻作用.
二、药动团
1、定义: 药动团是指决定药物的药代动力学性质,影响药物的吸
收、分布、代谢与排泄的过程结构片段或基团。 药动团可模拟自然界存在的物质,与药效团经化学键结
合,赋予药物分子有类似天然物质被转运的性质,控制药 物的药动学性质、优化生物利用度及药物靶向作用。药动 团可认为是药效团的载体。
2、药动团的设计
弱酸或弱碱类药物在体液中解离后,离子与未 解离分子的比率由解离指数pKa和介质的pH决 定。
酸类:pKa=pH + lg[RCOOH]/[RCOO-]
碱类:pKa=pH + lg[RN+H3]/[RNH2] 酸性药物:随介质pH增大,解离度增大,体内吸收
率降低.
碱性药物随介质pH增大,解离度减小,体内吸收 率升高.
2、改变电性,例如在苯环对位引入F,减低苯环在体内被代 谢为羟基化的速度和程度。
第3章 药物的结构与生物活性

14
1、药物与受体的相互键合作用对药 效的影响
• 药物与受体的结合方式主要分为可逆和不可逆 两种。药物与受体以共价键结合时,形成不可 逆复合物,往往产生很强的活性。如青霉素的 作用机制是与黏肽转肽酶酰化反应。
• 但在大多数情况下,药物与受体的结合是可逆 的,药物与受体可逆的结合方式主要是:离子 键、氢键、离子偶极、偶极-偶极、范德华力、 电荷转移复合物和疏水作用等。
9
• 当药物结构中含有氢键的接受体官能团, 以及氢键的给予体官能团时,可增加药物 的亲水性。这种官能团的数目越多,药物 的亲水性越强,这种官能团主要有羟基、 氨基和羧基,通过这些基团的数目,可以 判断药物的溶解度趋势。 • 分子中如含有亲脂性的烷基、卤素和芳环 等,一般会增加药物的脂溶性。
10
• 中枢神经系统的药物,需要穿过血脑屏障, 适当增强药物亲脂性,有利吸收,可增强 活性。而一般降低亲脂性,不利吸收,活 性下降。如巴比妥类药物是作用于中枢神 经系统,活性好的药物的分配系数logp在 2.0左右。
第三章 药物的结构与生物活性 (构效关系)
Structure - Activity Relationships of Drugs
1
• • • •
药物从给药到产生药效的过程分为三个阶段: 药剂相(Pharmaceutical phase) 药物动力相(Pharmacokinetic phase) 药效相(Pharmacodynemic phase)
15
• 药物与受体往往是以多种键合方式结合, 一般作用部位越多,作用力越强而药物活 性较好。
16
药物与受体作用常见的键合方式示 意图
偶极-偶极键
疏水键
O N H OO 酶 S HN O CH3 CH3 O离子键
(优选)药物的化学结构与药理活性

三、药效学时相的影响因素
• 根据药物在体内的作用方式,把药物分为: • 结构特异性药物(structurally specific drugs) • 结构非特异性药物(structurally nonspecific
drugs)。 • 大多数药物通过与受体或酶的相互作用而发挥药
理作用,药物结构上细微的改变将会影响药效, 这种药物称为结构特异性药物。
• logP是构成整个分子的所有官能团的亲水性和疏水性的总 和,分子中的每一个取代基对分子整体的亲水性和疏水性 都有影响,即logP=∑π(fragments)。
• P值越大,则药物的亲脂性越高。对于作用于不同 系统的药物,对亲脂性的要求不同。一般来说, 脂水分配系数应有一个适当的范围,才能显示最 好的药效。例如,中枢神经系统的药物需要穿过 血脑屏障,适当增加药物亲脂性可增强活性,降 低亲脂性可使活性降低。易于穿过血脑屏障的适
• 多数药物为弱酸或弱碱,其解离度由化合物的解离常数 pKa和溶液介质的pH决定。
• 药物解离后以部分离子型和部分分子型两种形式存在,以 乙酸和甲胺为例,pKa的计算方法为:
解离度对药效的影响
• 弱酸或弱碱类药物在体液中解离后, 离子型与非离子型(分子型)分子的 比率由解离指数pKa和介质的pH决定。
和一个羧酸基,根据溶液的pH, 这个分子既可以接受一个质子,也 可以给出一个质子,或同时发生,因此它既是一个酸,又是一个碱, 是一个两性化合物。在胃肠不同阶段,有不同的酸碱性,因此环丙 沙星有不同的解离形式,在pH 4.0时,烷氨基和羧基均被离子化; 在pH 1.0~3.5时,只有烷氨基团离子化。
1.脂水分配系数与生物活性
(共轭碱)占20.1%。
酸
共轭碱
8.0=7.4 + log[酸]/[碱] 0.6=log[酸]/[碱] 100.6=[酸]/[碱]=3.16/1
药物化学第三章 药物的结构与生物活性 PPT课件

离子键 氢键 离子-偶极键及偶极-偶极键(定向力) 范德华力(色散力) 疏水键 电荷转移复合物 金属离子络合物
1.药物和受体之间主要的相互键合作用
作用类型
键能(KJ/mol) 有效半径(nm)
发生构象变化,柔性药物分子也会呈现各种构象, 受体只能与药物多种构象中的一种结合,此时的 药物构象成为药效构象,只有能为受体识别并与 受体结构互补的构象。
构型、构象有何区别? 优势构象=药效构象?
相同一种结构,因具有不同构象,可作用于 不同受体,产生不同性质的活性。
只有特异性的优势构象才能产生最大活性: 构象不同,产生生物活性的的强弱不同。
中枢神经系统药物需要需要穿过血脑屏障, 适当增强药物亲脂性,有利于吸收,增强活 性,巴比妥药物lgP在2.0左右。
麻醉药物活性与结构没有明显关系,一般 lgP值越大,麻醉作用越强
药物水溶性与药物形成氢键的数目以及离子 化程度有关。容易离子化的药物可增加其水 溶性。
2.酸碱性和解离度对药物的影响
受体学说
药物 + 受体
药物受体复合物
受体构象改变
药理效应
受体:位于细胞膜或细胞内能识别相应化学信使 并与之结合,产生某些生物学效应的一类物质。
影响药物与受体相互作用的因素有很多 药物受体的结合方式 药物结构中的各官能团 药物分子的电荷分布 药物分子的构型、构象等立体因素
1.药物和受体之间主要的相互键合作用
铂金属络合物 抗肿瘤药物
使肿瘤细胞 DNA的复制
停止。
药物与受体往往是以多种键合方式结合,一般作 用部位越多,作用力越强而药物活性较好。
2.药物结构中的各官能团对药效的影响
药物化学 化学结构与生物活性的关系
H H O N H O NH
如巴比妥类药物结构变化
• 巴比妥类药物,在5位有两个烃基取代时,显示出 镇静安眠作用
O NH O N H O OHO N H O N O-
苯巴比妥的生物活性
• 5位双取代后不能转变成芳环结构
– pKa通常在7.0-8.5间,
• 在生理pH下,苯巴比妥约有50%左右以分 子型存在,可进入中枢而起作用
如全身麻醉药,从其化学结构上看,有气体、 低分子量的卤烃、醇、醚、烯烃等,其作用 主要受药物的脂水(气)分配系数的影响。
特异性结构药物
Structurally Specific Drug 作用依赖于药物分子的特异的化学结构,及其按某种 特异的空间相互关系排列 作用与体内特定的受体的相互作用有关
设计新药时必须考虑到化合物的理化性质
药物口服给药后,经胃肠道吸收进入血液 药物在转运过程中,必须通过各种生物膜,才能 到达作用部位或受体部位 药物分布到作用部位并且在作用部位达到有效浓 度,是药物与受体结合的基本条件 能和受体良好结合的药物并不一定具有适合转运 过程的最适宜理化性质参数
药物产生药效的两个主要决定因素
药物的理化性质 及药物和受体的相互作用
物理性质
药物的性质 药物结构 药物的空间 立体化学
NH3 NH3 C NH O CH2 NH C O CH2 CH2 O CH2 CH2 CH2 C O O CH2 O CH2 O CH2 O CH2 H H H H H H H H N N N N N N N N H H H H H H H H CH2 O CH2 O CH2 O CH2 O S N NH N H O
RCOOH
Ka
药物化学第三章-药物的结构与生物活性
分 子 间 引 力
静 电 作 用
离子键
(ionic bond, ion-ion bond)
(electrostatic interaction)
指药物带正电荷的正离子与受体带负电的负离 子之间,因静电引力而产生的电性作用
偶极-偶极作用
(dipole-dipole interaction) (electrostatic interaction)
0.72nm H H O H Z-己烯雌酚 H E-己烯雌酚 O 1.45nm H O 1.45nm O H
O
O 雌二醇
(2)几何异构对药效的影响
产生:由双键或环等刚性或半刚性系统导致 分子内旋转受到限制 几何异构体的理化性质和生理活性都有较大 的差异
顺式异构体抗精神病作用比反式强5-10倍
解离度对药物活性的影响
5
三、药物和受体间的相互作用对药效的影响
受体学说
药物 + 受体 药物受体复合物
受体构象改变
药理效应
受体:位于细胞膜或细胞内能识别相应化学信使 并与之结合,产生某些生物学效应的一类物质。 影响药物与受体相互作用的因素有很多 药物受体的结合方式 药物结构中的各官能团 药物分子的电荷分布 药物分子的构型、构象等立体因素
结构非特异性药物:
活性取决于药物分子的各种理化性质 药物作用与化学结构关系不密切 药物结构有所改变,活性并无大的变化
结构特异性药物:
靶点是不同的受体(蛋白、酶),所以生物活性主要 与药物结构与受体间的相互作用有关 活性与化学结构的关系密切 药物化学结构稍加变化,药物分子与受体的相互作 用和相互匹配也发生变化,从而影响药效学性质。
F N O C N C2 H5 诺氟沙星 COOH
药物化学结构与药理活性PPT课件
药物分子的立体构型
对映异构
对映异构体是具有相同化学组成但空 间结构不同的分子形式,其对药物的 生物活性具有重要影响。
手性分子
手性分子是指不能与其镜像重合的分 子,许多药物分子具有手性,其对药 物的吸收、分布、代谢和排泄过程具 有重要影响。
02
药理活性与化学结构的关 系
药物的作用靶点
药物靶点是指药物在体内的作用 结合位点,包括酶、受体、离子
基于片段的药物设计
片段
指具有特定三维构象和药理活性的小分子基团。基于片段的药物设计是从大量的 化合物库中筛选出与靶点结合的片段,再通过拼接和优化这些片段来发现新药物 。
总结
基于片段的药物设计利用已知活性片段作为药物发现的起点,通过拼接和优化这 些片段,发现具有潜在药理活性的新药物。
计算机辅助药物设计
抗生素的药理活性
抗生素主要用于治疗由细菌引起 的感染。
抗生素通过抑制或杀死细菌的生 长来发挥作用,从而减轻感染症
状,治愈疾病。
不同种类的抗生素具有不同的抗 菌谱和作用机制,它们的化学结 构也各具特点,但都具备抗菌的
药理活性。
镇痛药的药理活性
镇痛药主要用于缓解疼痛。
镇痛药主要通过抑制疼痛信号的传递或抑制前列腺素的合成来发挥作用,达到缓解疼痛的目 的。
药物化学结构与药理活性的跨学科研究
总结词
结合化学、生物学、药理学等多学科知识,研究药物化学结构与药理活性之间的关系。
详细描述
药物化学结构与药理活性之间的关系是复杂而多变的,需要结合化学、生物学、药理学 等多学科知识进行研究。通过跨学科的合作,可以深入了解药物的化学结构与药理活性 之间的关系,为新药的研发提供理论支持和实践指导。同时,这种跨学科的研究也有助
第3章 药物的化学结构与生物活性的关系(1,2节)
药物的解离度对活性的影响最经典的例子是 巴比妥药物,下表列出巴比妥类药物在体 液(pH7.4)中分子型(未解离形式)的百分 率。
巴比妥酸和苯巴比妥酸为强酸,在体液 (pH7.4)中,几乎百分之百的解离,不能 透过血脑屏障,所以无活性。苯巴比妥、 海索比妥等巴比妥类药物为弱酸,在 体液 (pH7.4)中,有近50%或更多以分子型存 在,能透过血脑屏障,到达中枢,因此具 有活性。海索比妥有近90以分子型存在, 透膜快所以显效最快。
• 作用于中枢神经系统的药物,需通过血脑 屏障,应具有相对较大的脂溶性。例如全 身麻醉药中的吸入麻醉药,麻醉作用与log P相关,lgP在一定范围 内越大,麻醉作 用越强。巴比妥类药物,logP在0.5~2.0之 间作用最好。因此,适度的亲脂性(lgP 在一定范围内)有最佳药效。
(二)酸碱性与解离度对药效的影响
• 3、药物分子的电荷分布对药效的影响 受体是大分子蛋白结构,其电荷分布不均 匀,而药物的电子云密度分布也不均匀。 药物的电性性质使其与受体可产生电性结 合,与生物活性有密切关系。如果电荷密 度分布正好和其特定受体相匹配,会使受 体和药物相互接近,相互作用增强,药物 与受体容易形成复合物而增加活性。
• 疏水性参数(Lipophilicity parameters ) • 电性参数(Electronic parameters) • 立体参数(Steric parameters )
Hansch方法的一般操作过程
• 从先导化合物出发,设计并合成首批化合物。 • 用可靠的定量方法测活性。 • 确定及计算化合物及取代基的各种理化参数或常 数。 • 用计算机程序计算Hansch方程,求出一个或几个 显著相关的方程。 • 用所得方程,定量地设计第二批新的化合物,并 预测活性。Hansch方程除了研究定量构效关系外, 还能用来解释药物作用机理,推测和描述可能的 受体模型,研究除活性以外的其它药代动力学定 量关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
评价药物亲脂性或亲水性大小的标准
分配系数大,药物的脂溶性高,容易进入通过组织 和器官的膜进入到作用部位。
分配系数小,水溶性高,容易被输运,药物的分配
系数取决于它们的化学结行业构内部。
8
1.溶解度、分配系数对药效的影响
亲水性基团:氢键接受体、氢键给体(羟基、 羧基、氨基等)
亲脂性基团:烷基、卤素和芳环等
中枢神经系统药物需要需要穿过血脑屏障, 适当增强药物亲脂性,有利于吸收,增强活 性,巴比妥药物lgP在2.0左右。
麻醉药物活性与结构没有明显关系,一般 lgP值越大,麻醉作用越强
药物水溶性与药物形成氢键的数目以及离子 化程度有关。容易离子化的药物可增加其水 溶性。
行业内部
9
2.酸碱性和解离度对药物的影响
离解度过小,离子浓度下降,也不利于药物的转运
预测药物离子化程度 行业内部
10
弱酸性药物
弱碱性药物
HA Ka
H+ + A-
BH+ Ka
H++ B
[H+][A-] Ka = HA pKa = pH -log [A-]
[HA]
[H+][B] Ka = BH+
pKa
= pH -log [B] [BH+]
10pH-pKa=
[A-] [HA]
解离型 非解离型
10pKa-pH=
[BH+] [B]
解离型 非解离型
pH=pKa [HA]=[A-]
pH=pKa
[BH+]=[B]
pKa 即弱酸性或弱碱性药行物业内在部 50% 解离时的溶液pH值。11
2.酸碱性和解离度对药物的影响
弱酸性药物在酸性的胃(pH=1)中几乎不解离, 99%呈分子型,易在胃吸收(如巴比妥类和水 杨酸类)。
行业内部
14
1.药物和受体之间主要的相互键合作用
药物与受体的结合方式主要分为可逆和不可逆两种。
不可逆结合:共价键
可逆结合:非共价键
离子键
氢键
离子-偶极键及偶极-偶极键(定向力)
范德华力(色散力)
疏水键
电荷转移复合物
行业内部
15
金属离子络合物
1.药物和受体之间主要的相互键合作用
药物化学
第三章 药物的结构和生物活性
Structure- Activity Relationships of Drugs
行业内部
1
本章主要内容
第一节 药物的结构与活性的关系 影响药物到达作用部位的因素 药物-受体的相互作用对药效的影响
第二节 定量构效关系 第三节 计算机辅助药物设计 CADD
药代动力学性质由药物理化性质决定。
药物理化性质主要有
溶解度
氧化还原势
分配系数
热力学性质
解离度
光谱性质
行业内部
7
1.溶解度、分配系数对药效的影响
Corg
P=
Cw
Corg表示药物在生物非水相或正辛醇中的浓度 Cw表示药物在水相的浓度
脂水分配系数P即药物在有机相和水相中分配达到平 衡时的物质的量浓度Corg和Cw之比,常用其对数lgP 表示。
弱碱性药物在胃中几乎100%呈离子型,无 法·吸收,易在肠道(pH=7-8)中吸收(如奎宁、 氨苯砜、地西泮和麻黄碱)
碱性极弱的药物(如咖啡因和茶碱)在胃中也 易吸收。
强碱性药物胍乙啶及完全离子化的季铵盐类和
磺酸类药物在胃肠道均不易吸收,更不会进入
神经系统。
行业内部
12
解离度对药物活性的影响
行业内部
2
药物作用的三个重要相
给药剂量
剂型崩解药物溶出
药剂相
可被吸收的药物
药物利用度
吸收、转运、分布、代谢、排 泄 药代动力相
可产生作用的药物
生物利用度
药物与靶点相互作用
药效相
效应
行业内部
3
§ 1. 药物的结构与活性的关系
Structure- Activity Relationships of Drugs
用和相互匹配也发生变化,从而影响药效学性质。
大多数药物属于结构特异性药物,是药物研究
的重点。
行业内部
5
药效团
早期:在相同作用类型的药物中可发现化学结构相 同的部空间上具有相 同的疏水性、电性和立体性质,具有相似的构象
决定药物发挥药效的两个决定因素:
5
行业内部
13
三、药物和受体间的相互作用对药效的影响
受体学说
药物 + 受体
药物受体复合物
受体构象改变
药理效应
受体:位于细胞膜或细胞内能识别相应化学信使 并与之结合,产生某些生物学效应的一类物质。
影响药物与受体相互作用的因素有很多
药物受体的结合方式
药物结构中的各官能团
药物分子的电荷分布
药物分子的构型、构象等立体因素
行业内部
4
一、影响药物活性的主要因素
结构非特异性药物:
活性取决于药物分子的各种理化性质 药物作用与化学结构关系不密切 药物结构有所改变,活性并无大的变化
结构特异性药物:
靶点是不同的受体(蛋白、酶),所以生物活性主要 与药物结构与受体间的相互作用有关
活性与化学结构的关系密切 药物化学结构稍加变化,药物分子与受体的相互作
作用类型
键能(KJ/mol) 有效半径(nm)
共价键
分
范德华力
子
疏水键
间
氢键
引静
离子键
力 电 离子-偶极键
作 偶极-偶极
用 诱导偶极
140-800 0.3-1.9
3.4 4-30 20-40 ~2 0.5 <0.5
键长 0.2-0.4 0.2-0.4 0.25-0.35 0.5-1.0 0.5-1.0 0.2-0.4
~0.5
行业内部
16
离子键
(ionic bond, ion-ion bond) (electrostatic interaction)
指药物带正电荷的正离子与受体带负电的负离 子之间,因静电引力而产生的电性作用
药物在作用部位 达到有效浓度
药物与受体的 作用强度(亲和力)
影响药物到达作用部 位的因素(理化性质)
药物-受体间相互作用 的影响
行业内部
6
二、药物的理化性质对活性的影响
药物分布到作用部位并且在作用部位达到有效 浓度,是药物与受体结合的基本条件。
药代动力学性质(吸收、转运、分布、代谢、排 泄)会对药物在受体部位的浓度产生直接影响。
很多药物是弱有机酸和弱有机碱,这些药物在体液中 可部分解离
解离形式存在[离子型,水溶性的]——易于转运
非解离形式[分子型,脂溶性的]——易于吸收
解离度由化合物解离常数pKa和溶液介质的pH决定
药物发挥作用应有适当的解离度
药物的解离度增加,会使药物的离子浓度上升,未 解离的分子型减少,可减少在亲脂性组织中的吸收