专题二:动态几何型压轴题(中考压轴解析)
中考复习 动态几何型压轴题

1、解决这类问题时,要 、解决这类问题时, 理解图形运动的过程, 理解图形运动的过程, 探索运动的特点和规律, 探索运动的特点和规律, 掌握好动静的切换---“动 掌握好动静的切换 动 中求静” 中求静”。 2、多作出几个符合要求 、多作出几个符合要求 草图。 的草图。
Page 4
例题: 中考回放 例题:09中考回放
(1)当t = 2时,AP = ) 时 ,点Q到AC的距离是 到 的距离是 ; 运动的过程中, 的面积S与 的 (2)在点 从C向A运动的过程中,求△APQ的面积 与t的 )在点P从 向 运动的过程中 的面积 函数关系式;(不必写出t的取值范围 ;(不必写出 的取值范围) 函数关系式;(不必写出 的取值范围) 运动的过程中, (3)在点 从B向C运动的过程中,四边形 )在点E从 向 运动的过程中 四边形QBED能否成为 能否成为 直角梯形?若能, 的值 若不能,请说明理由; 的值. 直角梯形?若能,求t的值.若不能,请说明理由; 经过点C 请直接写出t的值 的值. (4)当DE经过点 时,请直接写出 的值. ) 经过点
解:②如图5,当PQ∥BC时,DE⊥BC, 如图 , ∥ 时 ⊥ , 四边形QBED是直角梯形. 是直角梯形. ∴四边形 是直角梯形 此时∠ 此时∠APQ =90°. ° 由△AQP ∽△ABC,得 AQ = AP , AB AC Q 即 t = 3-t ,解得t= 15 解得 3 5 8 D
A P B
解:(3)能. :( ) ①当DE∥QB时,如图 .∵DE⊥PQ, ∥ 时 如图4. ⊥ , 是直角梯形. ∴PQ⊥QB,四边形 ⊥ ,四边形QBED是直角梯形. 是直角梯形 此时∠ 此时∠AQP=90° ° AQ = AP 由△APQ ∽△ABC,得 AC AB , 9 t 即 3 = 3-t ,解得,t= 8 5
中考数学动点问题专题讲解()

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==.在Rt △MPH 中, .∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=.(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函AEDCB图23(1)HM NGPOAB图1数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP. (2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.A3(2)ABCO图8HC∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
【中考压轴题专项练习】最新中考数学压轴大题冲刺专项训练:《动态几何 》含答案与解析

中考数学压轴大题冲刺专项训练动态几何1.在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC =6cm ,P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 出发向B 运动,几秒后四边形ABQP 是平行四边形?2.如图,点E 是矩形ABCD 中CD 边上一点,BCE 沿BE 折叠为BFE △,点F 落在AD 上.(1)求证:ABF DFE ∽△△;(2)若1sin 3DFE ∠=,求tan EBC ∠的值; (3)设AB k BC=,是否存在k 的值,使ABF 与BFE △相似?若存在,求出k 的值;若不存在,请说明理由. 3.如图,在平面直角坐标系xoy 中,顶点为M 的抛物线1C :2y ax bx =-(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=︒.(1)求该抛物线的表达式;(2)联结AM ,求AOM S ;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E F 、(点E 在点F 的左侧),如果MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.4.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PM 与PN 的积的最大值.5.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t (单位:秒).(1)当t =5时,点P 表示的有理数为 .(2)在点P 往左运动的过程中,点P 表示的有理数为 (用含t 的代数式表示).(3)当点P 与原点距离5个单位长度时,t 的值为 .6.如图,△ABC 中,∠ACB=90°,AB=10cm ,BC=8cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A-B-C-A 运动,设运动时间为t (t >0)秒.(1)AC= cm ;(2)若点P 恰好在∠ABC 的角平分线上,求此时t 的值;(3)在运动过程中,当t 为何值时,△ACP 为等腰三角形.7.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.8.综合实践初步探究:如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系为;解决问题:(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?若成立,请给于证明;若不成立,线段OD、OE与OC之间的数量关系为;拓展应用:(4)当∠DCE绕点C旋转到CD与OA垂直时,请猜想四边形CDOE的周长与OC的数量关系,并说明理由;==.9.ABC是等边三角形,点D在BC上,点E,F分别在射线AB,AC上,且DA DE DF∠=________︒;(1)如图1,当点D是BC的中点时,则EDF(2)如图2,点D在BC上运动(不与点B,C重合).∠的大小是否发生改变,并说明理由;①判断EDF②点D关于射线AC的对称点为点G,连接BG,CG,CE.依题意补全图形,判断四边形BECG的形状,并证明你的结论.10.如图,数轴上,点A表示的数为7-,点B表示的数为1-,点C表示的数为9,点D表示的数为13,在点B和点C处各折一下,得到条“折线数轴”,我们称点A和点D在数上相距20个长度单位,动点P从点A出发,沿着“折线数轴”的正方向运动,同时,动点Q从点D出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA和射线CD上的运动速度相同均为2个单位/秒,“上坡路段”从B到C速度变为“水平路线”速度的一半,“下坡路段”从C到B速度变为“水平路线”速度的2倍.设运动的时间为t秒,问:(1)动点P从点A运动至D点需要时间为________秒;(2)P、Q两点到原点O的距离相同时,求出动点P在数轴上所对应的数;(3)当Q点到达终点A后,立即调头加速去追P,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q追上点P时,直接写出它们在数轴上对应的数.11.如图,在矩形ABCD 中,4AB =,3BC =,点O 为对角线BD 的中点,点P 从点A 出发,沿折线AD DO OC --以每秒1个单位长度的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ AB ⊥于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与ABD ∆重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒).(1)求点N 落在BD 上时t 的值.(2)直接写出点O 在正方形PQMN 内部时t 的取值范围.(3)当点P 在折线AD DO -上运动时,求S 与t 之间的函数关系式.(4)直接写出直线DN 平分BCD ∆面积时t 的值.12.在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,点P 是射线AB 上的动点,连接CP ,将ACP ∆沿着CP 翻折得到A CP '∆,设AP x =()0x >,(1)如图1,当点A '在BC 上时,求x 的值.(2)如图2,连接AA ',BA ',当90AA B '∠=时,求PA B '∆的面积.(3)在点P 的运动过程中,当AA B '∆是等腰三角形时,求x 的值.参考答案与试题解析1.在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,几秒后四边形ABQP是平行四边形?【解析】解:设t秒后,四边形APQB为平行四边形,则AP=t,QC=2t,BQ=6﹣2t,∵AD∥BC所以AP∥BQ,根据一组对边平行且相等的四边形是平行四边形,知:AP=BQ即可,即:t=6﹣2t,∴t=2,当t=2时,AP=BQ=2<BC<AD,符合,综上所述,2秒后四边形ABQP是平行四边形.△,点F落在AD上.2.如图,点E是矩形ABCD中CD边上一点,BCE沿BE折叠为BFE(1)求证:ABF DFE ∽△△;(2)若1sin 3DFE ∠=,求tan EBC ∠的值; (3)设AB k BC=,是否存在k 的值,使ABF 与BFE △相似?若存在,求出k 的值;若不存在,请说明理由. 【解析】(1)证明:∵四边形ABCD 是矩形,∴90A D C ∠=∠=∠=︒,∵BCE 沿BE 折叠为BFE △,∴90BFE C ∠=∠=︒,∴90AFB DFE ∠+∠=︒,又∵90AFB ABF ∠+∠=︒,∴ABF DFE =∠∠.∴ABF DFE ∽△△;(2)解:在Rt DEF △中,1sin 3DE DFE EF ∠==, ∴设DE a =,3EF a =,2222DF EF DE a =+=,∵BCE 沿BE 折叠为BFE △, ∴3CE EF a ==,4CD DE CE a =+=,4AB a =,EBC EBF ∠=∠, 又∵ABF DFE ∽△△,∴22EF DF BF AB ==, ∴2tan 2EF EBF BF ∠==, 2tan tan EBC EBF ∠=∠=; (3)存在,32k =时,ABF 与BFE △相似 理由:当ABF FBE △∽△时,24∠∠=.∵45∠=∠,24590∠+∠+∠=︒,∴24530∠=∠=∠=︒,∴3cos302AB BF =︒=, ∵BC BF =,∴32AB k BC ==;②当ABF FEB ∽△△时,26∠=∠,∵4690∠+∠=︒,∴2490∠+∠=︒,这与24590∠+∠+∠=︒相矛盾,∴ABF FEB ∽△△不成立.综上所述,3k =时,ABF 与BFE △相似.3.如图,在平面直角坐标系xoy 中,顶点为M 的抛物线1C :2y ax bx =-(0a <)经过点A 和x 轴上的点B ,2AO OB ==,120AOB ∠=︒.(1)求该抛物线的表达式;(2)联结AM ,求AOM S ;(3)将抛物线1C 向上平移得到抛物线2C ,抛物线2C 与x 轴分别交于点E F 、(点E 在点F 的左侧),如果MBF 与AOM 相似,求所有符合条件的抛物线2C 的表达式.【解析】解:(1)过A 作AH x ⊥轴,垂足为H ,∵2OB =,∴0(2)B ,∵120AOB ∠=︒∴60AOH ∠=︒,30HAO ∠=︒.∵2OA =, ∴112OH OA ==. 在Rt AHO 中,222OH AH OA +=, ∴22213AH - ∴()13A --,∵抛物线1C :2y ax bx =+经过点A B 、,∴可得:4203 a ba b-=⎧⎪⎨-=-⎪⎩,解得:33233ab⎧=-⎪⎪⎨⎪=⎪⎩∴这条抛物线的表达式为232333y x x=-+;(2)过M作MG x⊥轴,垂足为G,∵23333y x x=-+=233(1)33x--+∴顶点M是31,3⎛⎝⎭,得3MG=设直线AM为y=kx+b,把(3A-,31,3M⎛⎫⎪⎪⎝⎭代入得33k bk b=-+=+,解得2333kb⎧=⎪⎪⎨⎪=-⎪⎩∴直线AM为233y x=令y=0,解得x=12∴直线AM 与x 轴的交点N 为1,02⎛⎫ ⎪⎝⎭∴111111××222222AOM S ON MG ON AH =⋅-⋅=+(3)∵0(2)B ,、M ⎛ ⎝⎭,∴在Rt BGM中,tan MG MBG BG ∠==, ∴30MBG ∠=︒.∴150MBF ∠=︒.由抛物线的轴对称性得:MO MB =,∴150MBO MOB ∠=∠=︒.∵120AOB ∠=︒,∴150AOM ∠=︒∴AOM MBF ∠=∠.∴当MBF 与AOM 相似时,有:=OM BM OA BF 或=OM BF OA BM即332BF =或32= ∴2BF =或23BF =. ∴0(4)F ,或803⎛⎫ ⎪⎝⎭,设向上平移后的抛物线2C 为:2y x k =++,当0(4)F ,时,3k =,∴抛物线2C 为:2y =+当803F ⎛⎫ ⎪⎝⎭,时,27k =,∴抛物线2C 为:2y x =+综上:抛物线2C 为:2y x x 333=-++或23327y x x =-++ 4.定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PM 与PN 的积的最大值.【解析】(1)是;∵AB AC =,AD AE =∴DB=EC ,∠ADE=∠AED=∠B=∠ACB∴DE ∥BC∴∠EDC=∠DCB∵点M 、P 、N 分别为DE 、DC 、BC 的中点∴PM ∥EC ,PN ∥BD ,11,22PM EC PN BD == ∴PM PN =,∠DPM=∠DCE ,∠PNC=∠DBC∵∠DPN=∠PNC+∠DCB∴∠MPN=∠DPM+∠DPN=∠ACD+∠DCB+∠B=180°-90°=90°∴线段PM 与PN 是“等垂线段”;(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =,由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=∴90ACB ABC ∠+∠=∴90MPN ∠=∴PM 与PN 为“等垂线段”;(3)PM 与PN 的积的最大值为49;由(1)(2)知,12PM PN BD == ∴BD 最大时,PM 与PN 的积最大∴点D 在BA 的延长线上,如图所示:∴14BD AB AD =+=∴249PM PN PM •==.6.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t (单位:秒).(1)当t =5时,点P 表示的有理数为 .(2)在点P 往左运动的过程中,点P 表示的有理数为 (用含t 的代数式表示).(3)当点P 与原点距离5个单位长度时,t 的值为 .【解析】(1)由题意得:()201030AB =--=,点P 从点A 运动到点B 所需时间为30655AB ==(秒), 点P 从点B 返回,运动到点A 所需时间为301522AB ==(秒), 则当56t =<时,5525PA =⨯=, 因此,点P 表示的有理数为20255-=-,故答案为:5-;(2)在点P 往左运动的过程中,5PA t =,则点P 表示的有理数为205t -,故答案为:205t -;(3)由题意,分以下两种情况:①当点P 从点A 运动到点B ,即06t ≤≤时,由(2)可知,点P 表示的有理数为205t -,则2055t -=,即2055t -=或2055t -=-,解得3t =或5t =,均符合题设;②当点P 从点B 返回,运动到点A ,即615t <≤时,()26PB t =-,点P 表示的有理数为()2610222t t --=-,则2225t -=,即2225t -=或2225t -=-,解得13.5t =或8.5t =,均符合题设;综上,当点P 与原点距离5个单位长度时,t 的值为3或5或8.5或13.5时,故答案为:3或5或8.5或13.5.6.如图,△ABC 中,∠ACB=90°,AB=10cm ,BC=8cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A-B-C-A 运动,设运动时间为t (t >0)秒.(1)AC= cm ;(2)若点P 恰好在∠ABC 的角平分线上,求此时t 的值;(3)在运动过程中,当t 为何值时,△ACP 为等腰三角形.【解析】(1)由题意根据勾股定理可得:22221086AC AB BC =--=(cm ),故答案为6;(2)如图,点P 恰好在∠ABC 的角平分线上,过P 作PD ⊥AB 于点D ,则可设PC=xcm ,此时BP=(8-x )cm ,DP=PC=xcm ,AD=AC=6cm,BD=10-6=4cm ,∴在RT △BDP 中,222BD PD BP +=,即 ()22248x x +=-,解之可得:x=3,∴BP=8-3=5cm ,∴P 运动的路程为:AB+BP=10+5=15cm , ∴t=157.52=s ; (3)可以对△ACP 的腰作出讨论得到三种情况如下:①如图,AP=AC=6cm ,此时t=632=s ;②如图,PA=PC ,此时过P 作PD ⊥AC 于点D ,则AD=3,PD=4,∴AP=5,此时t=5 2.52=s ; ③如图,PC=AC=6cm ,则BP=8-6=2cm ,则P 运动的路程为AB+BP=10+2=12cm ,此时t=1262=s , 综上所述,在运动过程中,当t 为2.5s 或3s 或6s 时,△ACP 为等腰三角形.7.已知,在平面直角坐标系中,AB ⊥x 轴于点B ,A(a ,b)满足64a b -+-=0,平移线段AB 使点A 与原点重合,点B 的对应点为点C .OA ∥CB .(1)填空:a =_______,b =_______,点C 的坐标为_______;(2)如图1,点P(x ,y)在线段BC 上,求x ,y 满足的关系式;(3)如图2,点E 是OB 一动点,以OB 为边作∠BOG =∠AOB 交BC 于点G ,连CE 交OG 于点F ,当点E 在OB 上运动时,OFC FCG OEC∠+∠∠的值是否发生变化?若变化,请说明理由;若不变,请求出其值.【解析】解:(1)∵ 640a b --=,∴60,40a b -=⎧⎨-=⎩∴6,4a b =⎧⎨=⎩ 4,6,AB OB ∴==由平移得:4,OC =且C 在y 轴负半轴上, ()0,4,C ∴-故答案为:()6,4,0,4-;(2)如图,过点P 分别作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,连接OP . ∵AB ⊥x 轴于点B ,且点A ,P ,C 三点的坐标分别为:()()()6,4,,,0,4,x y - ∴OB=6,OC=4,,,PM y PN x =-= ∴()1111462222BOC POC POB S S S OC PN OB PM x y =+=•+•=⨯+⨯⨯- 23x y =-,而116412,22BOC S OB OC =•=⨯⨯= 2312,x y ∴-=∴,x y 满足的关系式为:2312,x y -=(3)OFC FCGOEC∠+∠∠的值不变,值为2.理由如下:∵线段OC是由线段AB平移得到,∴//,OA CB,∴∠AOB=∠OBC,又∵∠BOG=∠AOB,∴∠BOG=∠OBC,根据三角形外角性质,可得∠OGC=2∠OBC,∠OFC=∠FCG+∠OGC,,OEC FCG OBC∠=∠+∠∴∠OFC+∠FCG=2∠FCG+2∠OBC =2(∠FCG+∠OBC)=2∠OEC,∴22 OFC FCG OECOEC OEC∠+∠∠==∠∠;所以:OFC FCGOEC∠+∠∠的值不变,值为2.8.综合实践初步探究:如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系为;解决问题:(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?若成立,请给于证明;若不成立,线段OD、OE与OC之间的数量关系为;拓展应用:(4)当∠DCE绕点C旋转到CD与OA垂直时,请猜想四边形CDOE的周长与OC的数量关系,并说明理由;【解析】:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=12∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE-∠OCD=60°,在Rt△OCD中,OD=OC•cos30°=2OC,同理:,∴;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=,,∴,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE-EG,∴OF+OG=OD+EG+OE-EG=OD+OE,∴OD+OE=3OC;(3)(1)中结论不成立,结论为:3OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=3,3,∴3,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF-OD=EG-OD,OG=OE-EG,∴OF+OG=EG-OD+OE-EG=OE-OD,∴3.(4)由(1)可得3,CD+CE=OC∴3+1)OC,故四边形CDOE的周长为(3+1)OC.9.ABC是等边三角形,点D在BC上,点E,F分别在射线AB,AC上,且DA DE DF==.(1)如图1,当点D是BC的中点时,则EDF∠=________︒;(2)如图2,点D在BC上运动(不与点B,C重合).①判断EDF∠的大小是否发生改变,并说明理由;②点D关于射线AC的对称点为点G,连接BG,CG,CE.依题意补全图形,判断四边形BECG的形状,并证明你的结论.【解析】(1)∵点D是等边△ABC的边BC的中点,∴∠DAB=∠DAC=12∠BAC=30°,∵DA=DE,∴∠AED=∠BAD=30°,∴∠ADE=180°−∠BAD−∠AED=120°,同理:∠ADF=120°,∴∠EDF=360°−∠ADE−∠ADF=120°,故答案为:120;(2)①不发生改变,理由如下:∵ABC 是等边三角形,∴60BAC ∠=︒.∵DA DE DF ==.∴点A ,E ,F 在以D 为圆,DA 长为半径的圆上,∴2120EDF BAC ∠=∠=︒.②补全图形如下:四边形BECG 为平行四边形,证明如下:由①知,120EDF ∠=︒,∵60BDE BED ∠+∠=︒,60BDE CDF ∠+∠=︒,∴BED CDF ∠=∠.在CDF 和BED 中,DCF EBD CDF DEA DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()CDF BED AAS ≅△△.∴CD BE =.∵点D 和点G 关于射线AC 对称,∴CD CG =,2120DCG ACD EBD ∠=∠=︒=∠.∴BE CG =,且//BE CG .∴四边形BECG 为平行四边形.10.如图,数轴上,点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13,在点B 和点C 处各折一下,得到条“折线数轴”,我们称点A 和点D 在数上相距20个长度单位,动点P 从点A 出发,沿着“折线数轴”的正方向运动,同时,动点Q 从点D 出发,沿着“折线数轴”的负方向运动,它们在“水平路线”射线BA 和射线CD 上的运动速度相同均为2个单位/秒,“上坡路段”从B 到C 速度变为“水平路线”速度的一半,“下坡路段”从C 到B 速度变为“水平路线”速度的2倍.设运动的时间为t 秒,问:(1)动点P 从点A 运动至D 点需要时间为________秒;(2)P 、Q 两点到原点O 的距离相同时,求出动点P 在数轴上所对应的数;(3)当Q 点到达终点A 后,立即调头加速去追P ,“水平路线”和“上坡路段”的速度均提高了1个单位/秒,当点Q 追上点P 时,直接写出它们在数轴上对应的数.【解析】(1)点A 表示的数为7-,点B 表示的数为1-,点C 表示的数为9,点D 表示的数为13, 6,10,4AB BC CD ∴===,∴动点P 从点A 运动到点D 所需时间为6104310215212++=++=(秒), 故答案为:15;(2)由题意,分以下六种情况:①当点P 在AB ,点Q 在CD 时,点P 表示的数为72t -+,点Q 表示的数为132t -,点P 、Q 到原点的距离相同,()721320t t ∴-++-=,此方程无解;②当点P 在AB ,点Q 在CO 时,点P 表示的数为72t -+,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()721740t t ∴-++-=,解得5t =,此时点P 表示的数为3,不在AB 上,不符题设,舍去;③当点P 在BO ,点Q 在CO 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()41740t t ∴-+-=, 解得133t =, 此时点P 表示的数为13,不在BO 上,不符题设,舍去; ④当点P 、Q 相遇时,点P 、Q 均在BC 上,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,4174t t ∴-=-, 解得215t =, 此时点P 表示的数为15,点Q 表示的数为15,均符合题设; ⑤当点P 在OC ,点Q 在OB 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为4941742t t ⎛⎫--=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()41740t t ∴-+-=, 解得133t =, 此时点P 表示的数为13,点Q 表示的数为13-,均符合题设; ⑥当点P 在OC ,点Q 在BA 时,点P 表示的数为6142t t ⎛⎫-+-=- ⎪⎝⎭,点Q 表示的数为410128224t t ⎛⎫----=- ⎪⎝⎭, 点P 、Q 到原点的距离相同,()4820t t ∴-+-=,解得4t =,此时点Q 表示的数为0,不在BA 上,不符题设,舍去;综上,点P 表示的数为15或13; (3)点Q 到达点A 所需时间为41067.5242++=(秒),此时点P 到达的点是()7327.531 3.5-+⨯+-⨯=,点P 到达点C 所需时间为6101321+=(秒),此时点Q 到达的点是()7232137.526-+⨯+⨯--=, ∴点Q 在CD 上追上点P ,此时点P 表示的数为()9213217t t +-=-,点Q 表示的数为()761037.525334.5t t -+++---=-,217334.5t t ∴-=-,解得17.5t =,此时点P 表示的数为18,点Q 表示的数为18.11.如图,在矩形ABCD 中,4AB =,3BC =,点O 为对角线BD 的中点,点P 从点A 出发,沿折线AD DO OC --以每秒1个单位长度的速度向终点C 运动,当点P 与点A 不重合时,过点P 作PQ AB ⊥于点Q ,以PQ 为边向右作正方形PQMN ,设正方形PQMN 与ABD ∆重叠部分图形的面积为S (平方单位),点P 运动的时间为t (秒).(1)求点N 落在BD 上时t 的值.(2)直接写出点O 在正方形PQMN 内部时t 的取值范围.(3)当点P 在折线AD DO -上运动时,求S 与t 之间的函数关系式.(4)直接写出直线DN 平分BCD ∆面积时t 的值.【解析】(1)如图1所示,由题意可知,当点N 落在BD 上时,因为四边形PQMN 是正方形,所以AP PN t ==,又因为在矩形ABCD 中,4AB =,3BC =,所以3DP t =-,在DPN ∆和DAB ∆中,因为PDN ADB ∠=∠,90DPN DAB ∠=∠=︒,所以DPN DAB ∆∆∽,则DP PN DA AB =, 所以334t t -=,解得127t =, 所以当点N 落在BD 上时t 的值为127. 故答案为:127t =. (2)①如图2,点O 刚落在正方形PQMN 上.因为点O 是矩形ABCD 对角线BD 的中点,所以MN 在矩形ABCD 的一条对称轴上,所以AM MB =,所以4t t =-,解得2t =.②如图3,点O 和点P 重合,此时P 点运动的距离为AD DO +,因为3AD =,4AB =,所以2222345BD AD AB =+=+=, 所以1522DO BD ==, 所以此时511322t AD DO =+=+=. 综上所述,当点O 在正方形PQMN 内部时,t 的取值位于上述两个临界位置之间,即t 的取值范围为1127t <<. 故答案为:1127t <<. (3)①由(1)可知,当1207t <≤时,正方形PQMN 和ABD ∆的重叠部分即为正方形PQMN ,所以此时2S t =.②当1237t <≤时,点P 在AD 上, 设PN 与BD 交于点G ,MN 与BD 交于点F ,此时正方形PQMN 和ABD ∆的重叠部分为五边形PGFMQ ,此时PQMN GNF S S S ∆=-.同(1),可知DPG DAB ∆∆∽,FMB DAB ∆∆∽,因为AP AM t ==,3AD =,4AB =,所以3DP t =-,4BM t =-, 所以DP PG DA AB =,FM BM DA BA=, 所以334t PG -=,434FM t -=, 所以443PG t =-,334FM t =-, 所以474433GN PN PG t t t ⎛⎫=-=--=- ⎪⎝⎭, 373344NF MN FM t t t ⎛⎫=-=--=- ⎪⎝⎭, 所以1177432234GNF S GN NF t t ∆⎛⎫⎛⎫=⋅=-- ⎪⎪⎝⎭⎝⎭,所以217743234PQMN GNF S S S t t t ∆⎛⎫⎛⎫=-=--- ⎪⎪⎝⎭⎝⎭, 整理得2257624S t t =-+-.③当1132t <≤时,点P 在DO 上, 设MN 与BD 交于点F ,则PFMQ PQB FMB S S S S ∆∆==-.因为3AD =,5BD =,所以3PD t =-,所以8PB t =-,同(1),PQB DAB ∆∆∽,所以PB QB PQ DA AB DA==, 所以8543t QB PQ -==,所以()485QB t =-,()385PQ t =-, 所以431(8)(8)(8)555MB QB QM t t t =-=---=-, 又因为FMB DAB ∆∆∽,所以FM BM DA BA =, 所以()18534t FM -=,所以()3820FM t =-, 所以11134131(8)(8)(8)(8)222552205PQB FMB S S S PQ QB FM MB t t t t ∆∆=-=⋅-⋅=⋅-⋅--⋅-⋅-, 整理得()29840S t =-. 综上所述,当1207t <≤时,2S t =;当1237t <≤时,2257624S t t =-+-;当1132t <≤时,()29840S t =-.故答案为:22212725127632479187211340552t tS t t tt t t⎧⎛⎫<⎪⎪⎝⎭⎪⎪⎛⎫=-+-<⎨ ⎪⎝⎭⎪⎪⎛⎫-+<⎪ ⎪⎝⎭⎩(4)设直线DN与BC交于点E,因为直线DN平分BCD∆的面积,∴32BE CE==.①如图7,点P在AD上,过点E作EH AD⊥于点H,则DPN DHE∆∆∽,所以DP PNDH HE=,因为AP PN t==,3DP t=-,4EH BA==,所以3324tt-=,解得2411t=.②如图8,点P在DO上,连接OE.因为E 、O 分别是BC 、BD 的中点,所以EO 是BCD ∆的一条中位线,所以//OE CD ,所以122OE CD ==,又因为//PN CD ,所以//PN OE ,所以DPN DOE ∆∆∽,所以DP PN DO OE=, 因为3DP t =-,52DO =,()385PN PQ t ==- (由(3)②知),2OE =,所以3(8)35522t t --=,解得367t =. ③如图9,P 在OC 上,设DE 与OC 交于点S ,连接OE ,交PQ 于R .同②,//OE CD ,且122OE CD ==, 所以SCD SOE ∆∆∽,所以12OS OE CS CD ==, 又因为52OC OD ==,所以15126OS OC ==+, 所以53SC =,又因为//PN OE (同②), 所以SPN SOE ∆∆∽,所以SP PN SO OE=, 因为112OP t AD OD t =--=-, 所以193SP OS OP t =-=-,所以193526t PN -=, 所以761255PN t =-, 又因为//PQ BC ,所以ORP OEC ∆∆∽, 所以OP PR OC CE =,所以1125322t PR -=,所以333510PQ t =-, 所以333339510255PQ PR RQ PR BE t t =+=+=-+=-, 又因为PQ PN =,所以7612395555t t -=-,解得173t =. 综上所述,当直线DN 平分BCD ∆的面积时,t 的值为2411或367或173. 故答案为:2411或367或173. 12.在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,点P 是射线AB 上的动点,连接CP ,将ACP ∆沿着CP 翻折得到A CP '∆,设AP x =()0x >,(1)如图1,当点A '在BC 上时,求x 的值.(2)如图2,连接AA ',BA ',当90AA B '∠=时,求PA B '∆的面积.(3)在点P 的运动过程中,当AA B '∆是等腰三角形时,求x 的值.【解析】(1)在Rt ABC ∆中,90CAB ∠=︒,6AC =,8AB =,∴由勾股定理得:BC=10,由折叠性质得:A 'P=AP=x , C A '=AC=6,则PB=8-x ,A 'B=4,在RtΔA 'BP 中,由勾股定理得:42+x 2=(8-x)2,解得:3x =;(2)当90AA B '∠=︒时,由折叠性质得:AC=A 'C=4,∠CAB=∠C A 'P=90º,∴CAA '∠=CA A '∠,∵A AB CAA ''∠+∠=90º,A AB A BA ''∠+∠=90º,∴CAA A BA ''∠=∠,∵CA A AA P ''∠+∠=90º,AA P PA B ''∠+∠=90º,∴CA A PA B ''∠=∠,∴A BA PA B ''∠=∠,∴A P PB '==4,则4PA PA PB '===,且PAA S '∆=PA B S '∆,由6AC =,∠CAB=90º,可求得213CP =,121313AQ A Q '∴==,81313PQ ∴=, 9613PAA S '∆∴=,9613PA B S '∆∴=; (3)①当AA A B ''=时,若P 在线段AB 上,如图1,过A '作A 'H ⊥AB 于H ,过C 作CD ⊥H A '延长线于D ,则四边形ACDH 是矩形,又AA B '∆是等腰三角形,∴4CD AH ==,6A C AC DH '===,25A D '∴=,625A H '=-,∵CA D PA H ''∠+∠=90º,CA D A CD ''∠+∠=90º, ∴A CD PA H ''∠=∠,又PHA CDA ''∠=∠=90º,∴A PH CA D ''∆~∆,∴CD A C A H A P '='', 得6625x=-,解得935x =-,若P 在AB 延长线上时,如图2,过A '作AB 的平行线,交AC 延长线与D ,过P 作PH 垂直平行线于H ,则四边形APHD 是矩形,同上方法,易求得A 'D=4,25CD =, ∴PH=AD=625+,同理可证得A PH CA D ''∆~∆,∴C AD A PH A P '''=, 得6625x=+,解得935x =+,②当8AA AB '==时,如图3,由折叠性质得: CP 垂直平分A A ',则4AQ A Q '==,∠AQP=90º,又AC=6,25CQ ∴=,∵∠ AQP=∠CAB=90º,∴由同角的余角相等得:∠ACQ=∠QAP , ∴ACQ PAQ ∆∆,∴AC CQ AP AQ =, 即625x =, 解得:1255x =;③当AB A B '=时,如图4,则P 、B 重合,8x ∴=,综上所述935x =-935x =+或1255x =或8x =.。
近几年中考压轴题动态几何问题归类解析

近几年中考压轴题动态几何问题归类解析一、点动带动线动例1如图1-1所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线=-■x+b交折线O-A-B于点E。
(1)记△ODE的面积为S,求S与b的函数关系式。
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由。
分析:本题是以一条运动直线为载体,以矩形为背景的有关图形面积是否改变的探究题。
问题(1):点D在线段BC上沿CB向点B运动,其实就是直线DE向右平移。
在运动过程中,有三个临界点:直线DE经过点C(b=1),直线DE经过点A(b=■),直线DE经过点B(b=■),故分两种情况①1<b≤■,②■<b<■展开讨论;问题(2):直线DE运动过程中,重叠部分(菱形)的面积是否变化,取决于这个菱形的边长,由勾股定理可知这个菱形的边长始终不变,且为■,从而确定重叠部分的面积不会变化。
解:(1)①当点E在线段OA上时,即1<b≤■,此时E(2b,0)∴S=■OE·CO=■×2b×1=b②当点E在线段AB上时(如图1-2),即■<b<■,此时E(3,b-■),D (2b-2,1)∴S=S矩-(S△OCD+S△OAE +S△DBE )=3-[■(2b-1)×1+■×(5-2b)·(■-b)+■×3(b-■)]=-b2+■b(2)如图1-3,设O1A1与CB相交于点M,OA与C1B1相交于点N,则矩形O1A1B1C1与矩形OABC的重叠部分的面积即为四边形DNEM的面积。
由题意知,DM∥NE,DN∥ME,则四边形DNEM为平行四边形。
由轴对称知,∠MED=∠NED又∵∠MDE=∠NED∴∠MED=∠MDE ∴MD=ME∴平行四边形DNEM为菱形过点D作DH⊥OA于H,则tan∠DEN=■,DH=1 ∴HE=2设菱形DNEM的边长为a,则在Rt△DHN中,由勾股定理知:a2=(2-a)2+12,a=■∴S四边形DNEM=NE·DH=■∴矩形O1A1B1C1与矩形OABC的重叠部分的面积不发生变化,面积始终为■。
最新中考数学总复习几何动态压轴题专题分类讲练(含参考答案)

最新中考数学总复习几何动态压轴题专题分类讲练考情分析几何动态综合一般以特殊平行四边形或三角形为背景,考查线段长度、角度、点的坐标、菱形或平行四边形的判定、直角或等腰三角形的存在性、与面积有关的函数关系式及最值,涉及解直角三角形、三角形的面积公式、勾股定理、二次函数的性质及最值等.题目一般有3~4问,第一问较为简单,熟练运用基础知识即可;后几问综合性较强,经常用到分类讨论、数形结合思想.类型点动型综合题例1 如图1,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A以每秒1个单位长度的速度匀速运动,同时动点Q以相同的速度从(1,0)出发在x轴正半轴上运动,当点P第一次回到A点时,两点同时停止运动,设运动的时间为t秒.(1)求正方形边长及顶点C的坐标;(2)当点P在AB上时,设△O PQ的面积为S,求S与t的函数关系式,并写出当t为何值时S最大;(3)如果点P,Q保持原速度不变,当点P沿A→B→C→D匀速运动时,O P与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.图1思路点拨 解决几何动态问题的关键是“化动为静”,找出几何图形中的自变量与时间t或线段长x的关系,并用函数关系式表示出来,再结合已知条件和图象性质求解.训练 1.如图2,Rt△ABC中,∠C=90°,BC=8 cm,AC=6 cm.点P从B出发沿BA 向A运动,速度为每秒1 cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2 cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.图2(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;(3)当t为何值时,△AEQ为等腰三角形?2. 正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.(1)当OM经过点A时,①请直接填空:ON__________(可能,不可能)过D点;(图3仅供分析)②如图4,在ON上截取O E=O A,过E点作EF垂直于直线BC,垂足为点F,EH⊥CD于H,求证:四边形EFCH为正方形.(2)当OM不过点A时,设OM交边AB于G,且O G=1.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PK O=4S△O BG,连接GP,求四边形PKBG的最大面积.图3 图4 备用图类型线动型综合题例2 如图5,在△ABC中,AB=AC=10 cm,BD⊥AC于点D,BD=8 cm.点M从点A出发,在AC上以每秒2 cm的速度匀速向点C运动,同时直线PQ从点B出发,沿BA 的方向以每秒1 cm的速度匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接P M,设运动时间为t秒(0<t≤5).图5(1)当t为何值时,四边形PQC M是平行四边形?(2)设四边形PQC M的面积为y cm2,求y与t之间的函数关系式;(3)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.训练 3.如图6,在△ABC中,∠C=90°,∠A=60°,AC=2 cm.长为1 cm的线段MN 在△ABC的边AB上沿AB方向以1 cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为t s.图6(1)若△A M P的面积为y,写出y与t的函数关系式;(写出自变量t的取值范围)(2)线段MN运动过程中,四边形MN QP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?4.如图7,在△ABC中,AB=AC,∠BAC=90°,AD⊥BC于点D,BC=20 cm,AD=10 cm.点P从点B出发,在线段BC上以每秒2 cm的速度向点C匀速运动,与此同时,垂直于AD的直线l从点A沿AD出发,以每秒1 cm的速度沿AD方向匀速平移,分别交AB,AC,AD于M,N,E.当点P到达点C时,点P与直线l同时停止运动,设运动时间为t 秒(t >0).(1)在运动过程中(点P 不与B ,C 重合),连接P N ,求证:四边形M BP N 为平行四边形;(2)如图8,以MN 为边向下作正方形M FG N ,FG 交AD 于点H ,连接PF ,PG ,当0<t <时,求△PFG 的面积最大值;103(3)在整个运动过程中,观察图8,9,是否存在某一时刻t ,使△PFG 为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由. 图7 图8 图9类型形动型综合题例3 已知:把Rt △ABC 和Rt △DEF 按如图10摆放(点C 与点E 重合),点B ,C (E ),F 在同一条直线上.∠ACB =∠EDF =90°,∠DEF =45°,AC =8 cm ,BC =6 cm ,EF =9 cm.如图11,△DEF 从图10的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s)(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P ,Q ,F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.图10 图11 训练 5.如图12所示,在▱ABCD中,AB=3 cm,BC=5 cm,AC⊥AB,△ACD沿射线AC的方向匀速平移得到△P NM,速度为1 cm/s,同时,点Q从点C出发,沿射线CB 方向匀速运动,速度为1 cm/s,当△P NM停止平移时,点Q也停止运动,如图13所示,设运动时间为t(s)(0<t<4).(1)当t=__________时,PQ∥MN;(2)设△Q M C的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使得PQ=Q M,若存在,求出t的值;若不存在,请说明理由.图12 图136.已知矩形O ABC的顶点O(0,0),A(4,0),B(4,-3).动点P从O出发,以每秒1个单位的速度,沿射线O B方向运动.设运动时间为t秒.(1)求P点的坐标;(用含t的代数式表示)(2)如图14,以P为一顶点的正方形PQ MN的边长为2,且边PQ⊥y轴.设正方形PQ MN与矩形O ABC的公共部分面积为S,当正方形PQ MN与矩形O ABC无公共部分时,运动停止.①当t<4时,求S与t之间的函数关系式;②当t>4时,设直线M Q,MN分别交矩形O ABC的边BC,AB于D,E,是否存在这样的t,使得△PDE为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.图14参考答案例1 解:(1)如图1,过点B 作BF ⊥y 轴于F ,BE ⊥x 轴于E ,过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H ,图1∵A (0,10),∴OA =10.∵B (8,4),∴BF =8,OF =4.∴AF =10-4=6.∴AB ==10.AF 2+BF 2∵∠ABC =90°,∴∠ABF +∠CBH =90°.∵∠BAF +∠ABF =90°,∴∠BAF =∠CBH .又AB =BC ,∠AFB =∠BHC =90°,∴△ABF ≌△BCH .∴BH =AF =6,CH =BF =8.∴OG =FH =8+6=14,CG =8+4=12.∴点C 的坐标为(14,12).(2)如图1,过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N ,∴PM ∥BF .则△APM ∽△ABF ,∴==.AP AB AM AF PM BF∴==.∴AM =t ,PM =t .t 10AM 6PM 83545∴PN =OM =10-t ,ON =PM =t .3545∴S =PN ·OQ =×(1+t )=-t 2+t +5=-2+(0≤t ≤10).1212(10-35t )3104710310(t -476)8 407360∴当t =时,S 取到最大值.476(3)OP 与PQ 可以相等,根据等腰三角形的相关性质可知,相等时P 点的横坐标等于Q 点的横坐标的一半.①当P 在AB 上时,如图1,t =(t +1),t =;451253②当P 在BC 上时,如图2,图2则PB =t -10,sin ∠ABF =sin ∠BPM ==,AF AB BM PB∴=.∴BM =(t -10).610BM t -1035∴ON =BF +BM =8+(t -10)=(t +1).解得t =-15(舍去);3512③当P 在CD 上时,如图3,过点C 作CR ⊥PN 于R ,则PC =t -20,图3cos ∠PCR =cos ∠BCH ==,CH BC CR PC∴=.810CR t -20∴CR =NG =(t -20).45∴ON =OG -NG =14-(t -20)=(t +1),4512解得t =.29513综上所述,当t =或时,OP 与PQ 相等.2951353训练 1.解:(1)∵∠C =90°,BC =8 cm ,AC =6 cm ,∴AB =10 cm.∵BP =t ,AQ =2t ,∴AP =AB -BP =10-t .∵PQ ∥BC ,∴=.AP AB AQ AC∴=,解得t =.10-t 102t 63013即当t =时,PQ ∥BC .3013(2)∵S 四边形PQCB =S △ACB -S △APQ =AC ·BC -AP ·AQ ·sin A ,1212∴y =×6×8-×(10-t )·2t ·=24-t (10-t )=t 2-8t +24.12128104545即y 关于t 的函数关系式为y =t 2-8t +24.45(3)△AEQ 为等腰三角形分三种情况讨论:①如果AE =AQ ,那么10-2t =2t ,解得t =;52②如果AE =QE ,如图4,过点E 作EF ⊥AQ 于F,图4则F 为AQ 的中点,∴AF =AQ =t .12又AC ⊥BC ,∴EF ∥BC .∴sin ∠AEF =sin B ===.AF AE AC AB 610即=,解得t =;t 10-2t 6103011③如果AQ =QE ,可作QM ⊥AE 于M ,同理可得cos A ==,即=,解得t =.AM AQ AC AB 10-2t 22t 6102511故当t 为秒或秒或秒时,△AEQ 为等腰三角形.52301125112.(1)①解:不可能.【提示】若ON 过点D ,则OA >AB ,OD >CD ,∴OA 2>AD 2,OD 2>AD 2.∴OA 2+OD 2>2AD 2≠AD 2.∴∠AOD ≠90°,这与∠MON =90°矛盾,∴ON 不可能过D 点.②证明:∵EH ⊥CD ,EF ⊥BC ,∴∠EHC =∠EFC =90°,且∠HCF =90°.∴四边形EFCH 为矩形.∵∠MON =90°,∴∠EOF =90°-∠AOB .在正方形ABCD 中,∠BAO =90°-∠AOB ,∴∠EOF =∠BAO .∵∠EFO =∠B ,OE =OA ,∴△OFE ≌△ABO .∴EF =OB ,OF =AB .又OF =CF +OC =AB =BC =OB +OC =EF +OC ,∴CF =EF .∴四边形EFCH 为正方形.(2)解:如图5,∵∠POK +∠BOG =∠OGB +∠BOG =90°,图5∴∠POK =∠OGB .∵∠PKO =∠OBG ,∴△PKO ∽△OBG .∵S △PKO =4S △OBG ,∴=2=4.∴OP =2.S △PKO S △OBG (OP OG )∴S △POG =OG ·OP =×1×2=1.1212∵S 四边形PKBG =S △POG +S △PKO +S △OBG =1+5S △OBG ,∴只需求出S △OBG 的最大值.设OB =a ,BG =b ,则a 2+b 2=OG 2=1,∴b =.1-a 2∴S △OBG =ab =a =12121-a 212-a 4+a 2=.12-(a 2-12)2+14∴当a 2=时,△OBG 有最大值为,此时S △PKO =4S △OBG =1.1214∴四边形PKBG 的最大面积为1+1+=.1494例2 解:(1)若四边形PQCM 是平行四边形,则PM ∥QC ,∴AP ∶AB =AM ∶AC .∵AB =AC ,∴AP =AM ,即10-t =2t ,解得t =.103∴当t =时,四边形PQCM 是平行四边形.103(2)∵PQ ∥AC ,∴△PBQ ∽△ABC .∴△PBQ 为等腰三角形,PQ =PB =t .∴=,即=,解得BF =t .BF BD PB AB BF 8t 1045∴FD =BD -BF =8-t .45∴y =S △ABC -S △APM -S △BPQ =×10×8-×2t ×-×t ×t =t 2-8t +40.1212(8-45t )124525(3)假设存在某一时刻t ,使点M 在线段PC 的垂直平分线上,则MP =MC ,图6过M 作MH ⊥AB ,交AB 于H ,如图6所示,∵∠A =∠A ,∠AHM =∠ADB =90°,∴△AHM ∽△ADB .∴==.HM BD AH AD AM AB又AD =6,∴==.HM 8AH 62t 10∴HM =t ,AH =t .8565∴HP =10-t -t =10-t .65115在Rt △HMP 中,MP 2=2+2=t 2-44t +100,(85t )(10-115t )375又MC 2=(10-2t )2=100-40t +4t 2,MP 2=MC 2,∴t 2-44t +100=100-40t +4t 2.375解得t 1=,t 2=0(舍去).2017∴t =秒时,点M 在线段PC 的垂直平分线上.2017训练 3.解:(1)当点P 在AC 上时,∵AM =t ,∴PM =AM ·tan 60°=t .3∴y =t ·t =t 2(0<t ≤1).12332当点P 在BC 上时,PM =BM ·tan 30°=(4-t ),33∴y =t ·(4-t )=-t 2+t (1≤t <3).123336 2 33(2)∵AC =2,∴AB =4.∴BN =AB -AM -MN =4-t -1=3-t .∴QN =BN ·tan 30°=(333-t ).若要四边形MNQP 为矩形,需PM =QN ,且P ,Q 分别在AC ,BC 上.即t =(3-t ),∴t =.33334∴当t = s 时,四边形MNQP 为矩形.34(3)由(2)知,当t = s 时,34四边形MNQP 为矩形,此时PQ ∥AB ,∴△PQC ∽△ABC .除此之外,当∠CPQ =∠B =30°时,△QPC ∽△ABC ,此时=tan 30°=.CQ CP 33∵=cos 60°=,∴AP =2AM =2t .∴CP =2-2t .AM AP 12∵=cos 30°=,∴BQ ==(3-t ).BN BQ 32BN 32 2 33又BC =2 ,∴CQ =2 -(3-t )=.33 2 33 2 3t 3∴=,解得t =.2 3t32-2t 3312∴当t = s 或 s 时,以C ,P ,Q 为顶点的三角形与△ABC 相似.12344.(1)证明:∵l ⊥AD ,BC ⊥AD ,∴l ∥BC .∴=.AM AB AN AC ∵AB =AC ,∴AM =AN .∵∠BAC =90°,∴ME =NE .∴MN =2AE =2t .∵BP =2t ,∴MN =BP .∴四边形MBPN 为平行四边形.(2)解:∵四边形MFGN 是正方形,∴FG =MN =MF =2AE =2t .∵EH =MF =2t ,∴DH =AD -AH =10-3t .∴S △PFG =FG ·DH =×2t ×(10-3t )=-32+.1212(t -53)253∵-3<0,0<t <,103∴当t =时,S △PFG 最大为.53253(3)解:存在,t =或.30±10 27103【提示】如图7,过点F 作FK ⊥BC 于K ,过点G 作GL ⊥BC 于L ,图7则FK =GL =DH =10-3t ,PK =BD -BP -KD =10-3t ,PL =PD +DL =10-2t +t =10-t .利用勾股定理得:PF 2=2(10-3t )2,PG 2=(10-3t )2+(10-t )2,FG 2=(2t )2.当PF =FG 时,2(10-3t )2=(2t )2,解得t =;30±10 27当PF =PG 时,2(10-3t )2=(10-3t )2+(10-t )2,解得t =5,或t =0(舍去);当t =5时,点P 为BC 中点,而F ,P ,G 三点共线,舍去.当FG =PG 时,(2t )2=(10-3t )2+(10-t )2,解得t =,或t =10(舍去);103综上所述,t =或时,△PFG 为等腰三角形.30±10 27103例3 解:(1)∵点A 在线段PQ 的垂直平分线上,∴AP =AQ .∵∠DEF =45°,∠ACB =90°,∠DEF +∠ACB +∠EQC =180°,∴∠EQC =45°.∴∠DEF =∠EQC .∴CE =CQ .由题意知CE =t ,BP =2t ,∴CQ =t .∴AQ =8-t .在Rt △ABC 中,由勾股定理得AB =10 cm ,则AP =10-2t .∴10-2t =8-t ,解得t =2.(2)如图8,过点P 作PM ⊥BE 于M ,图8∴∠BMP =90°.∴sin B ==,即=.AC AB PM PB PM 2t 810解得PM =t .85∵BC =6 cm ,CE =t ,∴BE =6-t .∴y =S △ABC -S △BPE =×BC ×AC -×BE ×PM =×6×8-×(6-t )×t =t 2-t +24=(t -121212128545245453)2+.845∵>0,∴抛物线开口向上.45∴当t =3时,y 最小=.845(3)假设存在某一时刻t ,使点P ,Q ,F 三点在同一条直线上,如图9,过点P 作PN ⊥AC 于N,图9∴∠ANP =∠ACB =∠PNQ =90°.∵∠PAN =∠BAC ,∴△PAN ∽△BAC .∴==,即==.PN BC AP AB AN AC PN 610-2t 10AN 8解得PN =6-t ,AN =8-t .6585∵NQ =AQ -AN ,∴NQ =8-t -=t .(8-85t )35∵∠ACB =90°,B ,C (E ),F 在同一条直线上,∴∠QCF =90°,∠QCF =∠PNQ .∵∠FQC =∠PQN ,∴△QCF ∽△QNP .∴=,即=,解得t =1.PN FC NQ CQ 6-65t 9-t 35t t训练 5.解:(1);209【提示】如图10,由题意得,CQ =AP =t,图10∵AB =3,BC =5,∴AC =4.∴CP =4-t .由平移的性质可得MN ∥AB ,∵PQ ∥MN ,∴PQ ∥AB .∴=,即=,解得t =.CP AC CQ BC 4-t 4t 5209(2)如图11,过点P 作PF ⊥BC 于点F ,过点A 作AE ⊥BC 于点E,图11由S △ABC =AB ×AC =AE ×BC ,1212即×3×4=×5AE ,可得AE =.1212125∴CE ===.AC 2-AE 242-(125)2165∵PF ⊥BC ,AE ⊥BC ,∴AE ∥PF .∴△CPF ∽△CAE .∴==,即==.CP AC CF CE PF AE 4-t 4CF 165PF 125∴PF =,CF =.12-3t 516-4t 5∵PM ∥BC ,∴点M 到QC 的距离h =PF =.12-3t 5∴y =CQ ×h =×t ×=-t 2+t (0<t <4).121212-3t 531065(3)如图12,过点Q 作QK ⊥PM 于点D ,QE 交AC 于点H .图12∵PQ =MQ ,∴PK =KM =,且KQ ⊥BC .52∵∠A =∠HQC ,∠ACB =∠QCH ,∴△CQH ∽△CAB ,∴=,即=.CQ AC CH BC t 4CH 5∴CH =t .∴PH =AC -AP -CH =4-t -t =4-t .545494易证△PHK ∽△CBA ,∴=,即=,解得t =.PH BC PK AC 4-94t 5524718∴当t =时,PQ =QM .7186.解:(1)设设PN 与x 轴交于点G ,∵OA =4,AB =3,∠OAB =90°,∴OB =5.∵PG ∥AB ,∴△OPG ∽△OBA .∴==.∴==.OG OA PG AB OP OB OG 4PG 3t 5∴OG =t ,PG =.453t 5∴P 点的坐标为.(45t ,-35t )(2)①当0<t ≤时,S =t ×t =t 2;5245351225当<t ≤时,S =2×t =t ;521033565当<t <4时,S =4.103②当QM 运动到AB 位置时,恰好无公共部分,t <4+2,45即t <.152(ⅰ)当4<t <5时,∠DPE >∠DBE =90°,△PDE 不可能为直角三角形;(ⅱ)当t =5时,∠DPE =∠DBE =90°,此时△PDE 是直角三角形;(ⅲ)当5<t <时,如图13,ME =MN -NE =2-=6-t ,DM =MQ -QD =2152(45t -4)45-=5-t .(35t -3)35此时∠DPE <90°,有∠PDE =90°或∠PED =90°两种可能.若∠PDE =90°,则=,PQ QD DM ME图13可得=,235t -35-35t 6-45t 整理得9t 2-160t +675=0,解得t =,应取t =;80±5 13980-5 139若∠PED =90°,则=,PN NE ME DM可得=,245t -46-45t 5-35t 整理得8t 2-115t +425=0,注意到Δ<0,该方程无实数解.综上所述,符合条件的t 的值有两个,t =5或t =.80-5 139。
中考压轴题动态几何之其他问题2

中考压轴题动态几何之其他问题2数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.动态几何之其他问题(解析几何)是除前述动态几何问题以外的平面几何问题,本专题原创编写动态几何之其他问题(解析几何)模拟题.在中考压轴题中,其他问题(解析几何)的难点在于准确应用适当的定理和方法进行探究. 原创模拟预测题1.在平面直角坐标系中,点P (x ,0)是x 轴上一动点,它与坐标原点O 的距离为y ,则y 关于x 的函数图象大致是( )A .B .C .D .【答案】A .【解析】试题分析:x <0时,y=﹣x ,x >0时,y=x .故选A .考点:动点问题的函数图象.原创模拟预测题2.如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ=BQ 时,a 的值是 .【答案】﹣1,4,425+,425-【解析】考点:二次函数综合题;分类讨论;动点型;综合题;压轴题.原创模拟预测题3.如图,在Rt△AOB中,∠AOB=90°,AO=3,BO=1,AB的垂直平分线交AB于点E,交射线BO于点F.点P从点A出发沿射线AO以每秒23个单位的速度运动,同时点Q从点O出发沿OB方向以每秒1个单位的速度运动,当点Q到达点B时,点P、Q 同时停止运动.设运动的时间为t秒.(1)当t= 时,PQ∥EF;(2)若P、Q关于点O的对称点分别为P′、Q′,当线段P′Q′与线段EF有公共点时,t的取值范围是.【答案】(1)35;(2)0<t≤1且35t.(2)如图2,当P点介于P1和P2之间的区域时,P1′点介于P1′和P2′之间,此时线段P′Q′与线段EF有交点,①当P运动到P1时,∵AE=12AB=1,且易知△AEP1′∽△AOB,∴1'APAEAO AB=,∴AP1′=23,∴P1O=P1′O=3,∴AP1=AO+P1O=43,∴此时P点运动的时间t=4323÷=23s,②当P点运动到P2时,∵∠BAO=30°,∠BOA=90°,∴∠B=60°,∵AB的垂直平分线交AB于点E,∴FB=FA,∴△FBA是等边三角形,∴当PO=OA=3时,此时Q2′与F重合,A 与P2′重合,∴PA=23,则t=1秒时,线段P′Q′与线段EF有公共点,故当t的取值范围是:23≤t≤1.故答案为:≤t≤1.考点:几何变换综合题;动点型;分类讨论;综合题.原创模拟预测题4.如图,甲、乙两动点分别从正方形ABCD的顶点A、C同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边上.【答案】AB.【解析】试题分析:设正方形的边长为a,因为乙的速度是甲的速度的3倍,时间相同,甲乙所行的路程比为3:1,把正方形的每一条边平均分成2份,由题意知:①第一次相遇甲乙行的路程和为2a,甲行的路程为2a×113+=2a,乙行的路程为2a×313+=32a,在AB边相遇;②第二次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在CB边相遇;③第三次相遇甲乙行的路程和为4a,甲行的路程为4a×113+=a,乙行的路程为4a×313+=3a,在DC边相遇;考点:一元一次方程的应用;动点型.原创模拟预测题5.如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2,点P,Q同时从点D出发,以相同的速度分别沿射线DC、射线DA运动,过点Q作AC的垂线段QR,使QR=PQ,连接PR,当点Q到达点A时,点P,Q同时停止运动.设PQ=x,△PQR与△ABC重叠部分的面积为S,S关于x的函数图象如图2所示(其中087x<≤,87x m<≤时,函数的解析式不同).(1)填空:n的值为;(2)求S关于x的函数关系式,并写出x的取值范围.【答案】(1)3249;(2)228(0)7256328(4)412545457xx x xxS<≤-+⎧⎪⎪=⎨-<≤⎪⎪⎩.【解析】试题分析:(1)当x=78时,△PQR与△ABC重叠部分的面积就是△PQR的面积,然后根据PQ=78,QR=PQ,求出n的值是多少即可.(2)首先根据S关于x的函数图象,可得S关于x的函数表达式有两种情况:①当87x<≤时,求出S关于x的函数关系式,判断出当点Q点运动到点A时,x=2AD=4,据此求出m=4;②当847x<≤时,S关于x的函数关系式即可.试题解析:(1)如图1,当x=78时,△PQR与△ABC重叠部分的面积就是△PQR的面积,∵PQ=78,QR=PQ,∴QR=78,∴n=S=21(287)⨯=3249;(2)如图2,根据S关于x的函数图象,可得S关于x的函数表达式有两种情况:①当087x<≤时,S=12×PQ×RQ=212x,当点Q点运动到点A时,x=2AD=4,∴m=4,②当847x<≤时,AP=22x+,AQ=22x-,∵△AQE∽△AQ1R1,111AQ QEAQ Q R=,∴QE=4(2)52x-,设FG=PG=m,∵△AGF∽△AQ1R1,111AG FGAQ Q R=,∴AG=22xm+-,787102x2mm=-+,∴m=4(2)92x+,∴S=S△APF﹣S△AQE=12AP•FG﹣12AQ•EQ=1414(2)(2)(2)(2)22922252x x x x+⋅+--⋅-=225632454545x x-+-,∴S=225632454545x x-+-.综上,可得:228(0)7256328(4)412545457xx x xxS<≤-+⎧⎪⎪=⎨-<≤⎪⎪⎩.考点:动点问题的函数图象;动点型;分类讨论;分段函数;综合题;压轴题.原创模拟预测题6.如图1,在平面直角坐标系中,抛物线23y ax bx=++交x轴于A(﹣1,0)和B(5,0)两点,交y轴于点C,点D是线段OB上一动点,连接CD,将线段CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴于H,过点C作CF⊥l于F.(1)求抛物线解析式;(2)如图2,当点F恰好在抛物线上时,求线段OD的长;(3)在(2)的条件下:①连接DF,求tan∠FDE的值;②试探究在直线l上,是否存在点G,使∠EDG=45°?若存在,请直接写出点G的坐标;若不存在,请说明理由. 学科网【答案】(1)2312355y x x =-++;(2)1;(3)①12;②G (4,32-)或(4,6).【解析】试题分析:(1)把A 、B 的坐标代入抛物线的解析式,解方程组即可;(2)由C 的纵坐标求得F 的坐标,由△OCD ≌△HDE ,得出DH=OC=3,即可求得OD 的长;试题解析:(1)如图1,∵抛物线23y ax bx =++交x 轴于A (﹣1,0)和B (5,0)两点,∴3025530a b a b -+=⎧⎨++=⎩,解得:35125a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为2312355y x x =-++;(2)如图2,∵点F 恰好在抛物线上,C (0,3),∴F 的纵坐标为3,把y=3代入2312355y x x =-++得,23123355x x -++=,解得x=0或x=4,∴F (4,3),∴OH=4,∵∠CDE=90°,∴∠ODC+∠EDH=90°,∴∠OCD=∠EDH ,在△OCD 和△HDE 中,∵∠OCD=∠EDH ,∠COD=∠DHE=90°,CD=DE ,∴△OCD ≌△HDE (AAS ),∴DH=OC=3,∴OD=4﹣3=1;(3)①如图3,连接CE ,∵△OCD ≌△HDE ,∴HE=OD=1,∵BF=OC=3,∴EF=3﹣1=2,∵∠CDE=∠CFE=90°,∴C 、D 、E 、F 四点共圆,∴∠ECF=∠EDF ,在RT △CEF 中,∵CF=OH=4,∴tan ∠ECF=24EF CF ==12,∴tan ∠FDE=12;②如图4,连接CE ,∵CD=DE ,∠CDE=90°,∴∠CED=45°,过D 点作DG1∥CE ,交直线l 于G1,过D 点作DG2⊥CE ,交直线l 于G2,则∠EDG1=45°,∠EDG2=45°,∵EH=1,OH=4,∴E (4,1),∵C (0,3),∴直线CE 的解析式为132y x =-+,设直线DG1的解析式为12y x m =-+,∵D (1,0),∴1012m =-⨯+,解得m =12,∴直线DG1的解析式为1122y x =-+,当x=4时,11422y =-⨯+=32-,∴G1(4,32-);设直线DG2的解析式为2y x n =+,∵D (1,0),∴0=2×1+n,解得n=﹣2,∴直线DG2的解析式为22y x =-,当x=4时,y=2×4﹣2=6,∴G2(4,6);综上,在直线l 上,是否存在点G ,使∠EDG=45°,点G 的坐标为(4,32-)或(4,6).考点:二次函数综合题;动点型;存在型;旋转的性质;分类讨论;综合题;压轴题.原创模拟预测题7.如图,已知抛物线2y ax bx c =++的顶点D 的坐标为(1,92-),且与x 轴交于A 、B 两点,与y 轴交于C 点,A 点的坐标为(4,0).P 点是抛物线上的一个动点,且横坐标为m .(l )求抛物线所对应的二次函数的表达式;(2)若动点P 满足∠PAO 不大于45°,求P 点的横坐标m 的取值范围;(3)当P 点的横坐标0m <时,过p 点作y 轴的垂线PQ ,垂足为Q .问:是否存在P 点,使∠QPO=∠BCO ?若存在,请求出P 点的坐标;若不存在,请说明理由.【答案】(1)2142y x x =--;(2)﹣4≤m≤0;(3)P (341-,341-)或P (133-,3314-). 【解析】试题分析:(1)根据函数值相等的点关于对称轴对称,可得B 点坐标,根据待定系数法,可得函数解析式;(2)根据等腰直角三角形的性质,可得射线AC 、AD ,根据角越小角的对边越小,可得PA 在在射线AC 与AD 之间,根据解方程组,可得E 点的横坐标,根据E 、C 点的横坐标,可得答案;(3)分两种情况,P 在第二象限和P 在第三象限讨论.试题解析:(1)由A 、B 点的函数值相等,得:A 、B 关于对称轴对称.A (4,0),对称轴是x=1,得:B (﹣2,0).将A 、B 、D 点的坐标代入解析式,得:420164092a b c a b c a b c ⎧⎪-+=⎪++=⎨⎪⎪++=-⎩,解得:1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩,抛物线所对应的二次函数的表达式2142y x x =--;(2)如图1作C 点关于原点的对称点D ,OC=OD=OA=4,∠OAC=∠DAO=45°,AP 在射线AC 与AD 之间,∠PAO <45°,直线AD 的解析式为4y x =-+,联立AD 于抛物线,得:24142y x y x x =-+⎧⎪⎨=--⎪⎩,解得x=﹣4或x=4,∵E 点的横坐标是﹣4,C 点的横坐标是0,P 点的横坐标的取值范围是﹣4≤m≤0;(3)存在P 点,使∠QPO=∠BCO ,①若点P 在第二象限,如图2,设P (a ,2142a a --),由∠QPO=∠BCO ,∠PQO=CBO=90°,∴△PQO∽△COB ,∴PQ OQ CO OB =,即4a =21422a a --,化简,得2380a a --=,解得3412a -=或3412a +=(不符合题意,舍),∴2142a a --=3414-,∴P 点坐标为(3412-,3414-);考点:二次函数综合题;动点型;存在型;分类讨论;压轴题.原创模拟预测题8.已知抛物线c bx x y ++-=2与x 轴交于点A (m ﹣2,0)和B (2m+1,0)(点A 在点B 的左侧),与y 轴相交于点C ,顶点为P ,对称轴为l :x=1.(1)求抛物线解析式;(2)直线2y kx =+(0k ≠)与抛物线相交于两点M (1x ,1y ),N (2x ,2y )(12x x <),当12x x -最小时,求抛物线与直线的交点M 与N 的坐标;(3)首尾顺次连接点O 、B 、P 、C 构成多边形的周长为L ,若线段OB 在x 轴上移动,求L 最小值时点O ,B 移动后的坐标及L 的最小值.【答案】(1)223y x x =-++;(2)M (﹣1,0),N (1,4);(3)O′(67,0),B′(157,0)时,周长L 最短为5323.试题解析:(1)由已知对称轴为x=1,得12(1)b ,∴b=2,抛物线c bx x y ++-=2与x 轴交于点A (m ﹣2,0)和B (2m+1,0),即220x x c -++=的解为m ﹣2和2m+1,(m ﹣2)+(2m+1)=2,3m=3,m=1,将m=1代入(m ﹣2)(2m+1)=﹣c 得,(1﹣2)(2+1)=﹣c ,∴c=3,∴m=1,c=3,抛物线的解析式为223y x x =-++;(2)由2223y kx y x x =+⎧⎨=-++⎩,得到:∴2(2)10x k x +--=,∴12(2)x x k +=--,121x x =-,∴212()x x -=21212()4x x x x +-=2(2)4k -+,∴当k=2时,212()x x -的最小值为4,即12x x -的最小值为2,∴120x x +=,121x x =-,∵12x x <,∴,11x =-,21x =,即10y =,24y =,∴当12x x -最小时,抛物线与直线的交点为M (﹣1,0),N (1,4);(3)O (0,0),B (3,0),P (1,4),C (0,3),O ,B ,P ,C 构成多边形的周长L=OB+BP+PC+CO ,∵线段OB 平移过程中,OB 、PC 长度不变,∴要使L 最小,只需BP+CO 最短,如图,平移线段OC 到BC′,四边形OBC′C 是矩形,∴C′(3,3),作点P 关于x 轴(或OB )对称点P′(1,﹣4),连接C′P′与x 轴交于点B′,设C′P′解析式为y ax n =+,∴433a n a n ,解得:72152an ,∴71522y x ,当y=0时, 157x ,∴B′(157,0),又156377,故点B 向左平移67,平移到B′,同时,点O 向左平移67,平移到0′(67,0).即线段OB 向左平移67时,周长L 最短,此时,线段BP ,CO 之和最短为P′C′=2272+=53,O′B′=OB=3,CP=2,∴当线段OB 向左平移67,即点O 平移到O′(67,0),点B 平移到B′(157,0)时,周长L 5323.考点:二次函数综合题;动点型;平移的性质;最值问题;综合题;压轴题.。
最新中考数学复习:动态几何问题压轴题专项训练(带答案)

2022年中考数学复习:动态几何问题压轴题专项训练1.已知AD是等边△ABC的高,AC=2,点O为直线AD上的动点(不与点A重合),连接BO,将线段BO 绕点O顺时针旋转60°,得到线段OE,连接CE、BE.(1)问题发现:如图1,当点O在线段AD上时,线段AO与CE的数量关系为,△ACE的度数是.(2)问题探究:如图2,当点O在线段AD的延长线上时,(1)中结论是否还成立?请说明理由.(3)问题解决:当△AEC=30°时,求出线段BO的长2.如图1,在平面直角坐标系中,已知△ABC中,△ABC=90°,B(4,0),C(8,0),tan△ACB=2,抛物线y=ax2+bx经过A,C两点.(1)求点A的坐标及抛物线的解析式;(2)如图2,过点A作AD△AB交BC的垂线于点D,动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P作PE△AB交AC于点E.△过点E作EF△AD于点F,交抛物线于点G.当t为何值时,线段EG取得最大值?最大值是多少?△连接EQ,在点P,Q运动过程中,t为何值时,使得△CEQ与△ABC相似?3.如图,在平面直角坐标系中,抛物线y=ax2+bx+1的对称轴为直线x32=,其图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)直接写出抛物线的解析式和△CAO的度数;(2)动点M,N同时从A点出发,点M以每秒3个单位的速度在线段AB上运动,点N速度在线段AC上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为t(t>0)秒,连接MN,再将线段MN绕点M顺时针旋转90°,设点N落在点D的位置,若点D恰好落在抛物线上,求t的值及此时点D的坐标;(3)在(2)的条件下,设P为抛物线上一动点,Q为y轴上一动点,当以点C,P,Q为顶点的三角形与△MDB相似时,请直接写出点P及其对应的点Q的坐标.4.如图,在□ABCD 中,△ABD =90°,AD =,BD =8cm .点P 从点A 出发,沿折线AB —BC 向终点C 运动,点P 在AB 边、BC 边上的运动速度分别为1cm /s /s .在点P 的运动过程中,过点P 作AB 所在直线的垂线,交边AD 或边CD 于点Q ,以PQ 为一边作矩形PQMN ,且QM =2PQ ,MN 与BD 在PQ 的同侧.设点P 的运动时间为t (秒),矩形PQMN 与□ABCD 重叠部分的面积为S (cm 2).(1)求边AB 的长;(2)当0<t <4时,PQ = ,当4<t <8时,PQ = (用含t 的代数式表示);(3)当点M 落在BD 上时,求t 的值;(4)当矩形PQMN 与□ABCD 重叠部分图形为四边形时,求S 与t 的函数关系式.5.如图,四边形ABCD 是菱形,其中60B ∠=︒,点E 在对角线AC 上,点F 在射线CB 上运动,连接EF ,作60FEG ∠=︒,交DC 延长线于点G .(1)试判断EFG 的形状,并说明理由;(2)图中7AB =,1AE =.△当CF 10=时,以点B 为原点,射线BC 为正半轴建立平面直角坐标系.平面内是否存在一点M ,使得以点M、E、F、G为顶点的四边形与菱形ABCD相似?若存在,求出点M的坐标,若不存在,说明理由;△记点F关于直线AB的轴对称点为点N.若点N落在EDC的内部(不含边界),求CF的取值范围.6.如图,在平面直角坐标系中,△AOB的边OA在x轴上,OA=AB,且线段OA的长是方程x2﹣4x﹣5=0的根,过点B作BE⊥x轴,垂足为E,tan∠BAE=43,动点M以每秒1个单位长度的速度,从点A出发,沿线段AB向点B运动,到达点B停止.过点M作x轴的垂线,垂足为D,以MD为边作正方形MDCF,点C在线段OA上,设正方形MDCF与△AOB重叠部分的面积为S,点M的运动时间为t(t>0)秒.(1)求点B的坐标;(2)求S关于t的函数关系式,并写出自变量t的取值范围;7.小明在学过圆之后,对该题进行重新探究,请你和他一起完成问题探究.【问题探究】小明把原问题转化为动点问题,如图1,在边长为6cm 的正方形ABCD 中,点E 从点A 出发,沿边AD 向点D 运动,同时,点F 从点B 出发,沿边BA 向点A 运动,它们的运动速度都是2cm/s ,当点E 运动到点D 时,两点同时停止运动,连接CF 、BE 交于点M ,设点E , F 运动时问为t 秒.(1)【问题提出】如图1,点E ,F 分别在方形ABCD 中的边AD 、AB 上,且BE CF =,连接BE 、CF 交于点M ,求证:BE CF ⊥.请你先帮小明加以证明.(2)如图1,在点E 、F 的运动过程中,点M 也随之运动,请直接写出点M 的运动路径长 cm .(3)如图2,连接CE ,在点E 、F 的运动过程中.△试说明点D 在△CME 的外接圆O 上; △若△中的O 与正方形的各边共有6个交点,请直接写出t 的取值范围.8.如图,菱形ABCD ,120ABC ∠=︒,点E 为平面内一点,连接AE .(1)如图1,点E 在BC 的延长线上,将AE 绕点A 顺时针旋转60°得AF ,交EB 延长线于点G ,连接EF 交AB 延长线于点H ,若15AEB ∠=︒,4HF =,求AE 的长;(2)如图2,点E 在AC 的延长线上,将AE 绕点A 逆时针旋转60°得AF ,连接EF ,点M 为CE 的中点,连接BM ,FM ,证明:FM =;(3)如图3,将AB 沿AS 翻折得()120AE BAE ∠<︒,连DE 交AS 于点S ,点T 为平面内一点,当DS 取得最大值时,连接TD ,TE ,若3AT =,AD =6,求TD TE -的最大值.9.已知抛物线()()12y x x m m=+-与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,点P 为抛物线上一动点(点P 不与点C 重合).(1)当ABC 为直角三角形时,求ABC 的面积(2)如图,当AP BC ∥时,过点P 作PQ x ⊥轴于点Q ,求BQ 的长.(3)当以点A ,B ,P 为顶点的三角形和ABC 相似时(不包括两个三角形全等),求m 的值.10.已知:如图,在△ABC 纸片中,AC =3,BC =4,AB =5,按图所示的方法将△ACD 沿AD 折叠,使点C恰好落在边AB上的点C′处,点P是射线AB上的一个动点.(1)求折痕AD长.(2)点P在线段AB上运动时,设AP=x,DP=y.求y关于x的函数解析式,并写出此函数的定义域.(3)当△APD是等腰三角形时,求AP的长.11.如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P 是直线AB下方的抛物线上一动点(不与A、B重合).(1)求此抛物线的解析式;(2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;(3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.A-和点B,与y轴交于点C,顶点D 12.在平面直角坐标系中,抛物线2y ax bx c=++与x轴交于点(1,0)-.的坐标为(1,4)(1)直接写出抛物线的解析式;∠=∠,求点P的坐标;(2)如图1,若点P在抛物线上且满足PCB CBD⊥轴交抛物线于点N,Q是直线AC上一个动点,当(3)如图2,M是直线BC上一个动点,过点M作MN x∆为等腰直角三角形时,直接写出此时点M及其对应点Q的坐标QMNB-,与y轴交于点C,且13.如图,已知抛物线2(0)=++≠与x轴交于点(1,0)y ax bx c aA和点(3,0)=.OC OB(1)求此抛物线的解析式;(2)若点E为第二象限抛物线上一动点,连接BE,CE,BC,求BCE面积的最大值;(3)点P在抛物线的对称轴上,若线段P A绕点P逆时针旋转90︒后,点A的对应点'A恰好也落在此抛物线上,求点P 的坐标.14.综合与探究如图,已知抛物线228y x x =--与x 轴相交于点A ,B (点B 在点A 的右侧),与y 轴相交于点C ,其顶点为点D ,连接AC ,BC .(1)求点A ,B ,D 的坐标;(2)设抛物线的对称轴DE 交线段BC 于点E ,P 为第四象限内抛物线上一点,过点P 作x 轴的垂线,交线段BC 于点F .若四边形DEFP 为平行四边形,求点P 的坐标;(3)设点M 是线段BC 上的一个动点,过点M 作MN AB ,交AC 于点N .点Q 从点B 出发,以每秒1个单位长度的速度沿线段BA 向点A 运动,运动时间为t (6t <)秒,直接写出当t 为何值时,QMN 为等腰直角三角形.15.如图△,在平面直角坐标系中,点A 、B 的坐标分别为A (4,0)、B (0,3),连结AB .抛物线234y x bx c =++经过点B ,且对称轴是直线52x =-.(1)求抛物线的函数关系式.(2)将图△中的△ABO 沿x 轴向左平移得到△DCE (如图△),当四边形ABCD 是菱形时,说明点C 和点D 都在该抛物线上.(3)在(2)中,若点M 是抛物线上的一个动点(点M 不与点C 、D 重合),过点M 作MN △y 轴交直线CD 于点N .设点M 的横坐标为m ,线段MN 的长为l .求l 与m 之间的函数关系式.(4)在(3)的条件下,直接写出m 为何值时,以M 、N 、C 、E 为顶点的四边形是平行四边形.16.如图,抛物线y =-212x +32x +2与x 轴负半轴交于点A ,与y 轴交于点B . (1)求A ,B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC =BC ,求点C 的坐标;(3)如图2,将△ABO 绕平面内点P 顺时针旋转90°后,得到△DEF (点A ,B ,O 的对应点分别是点D ,E ,F ),D ,E 两点刚好在抛物线上.△求点F 的坐标;△直接写出点P 的坐标.17.如图1,直线AB 与x 轴,y 轴分别交于A ,B 两点,点C 在x 轴负半轴上,这三个点的坐标分别为A(4,0),B(0,4),C(−1,0) .(1)请求出直线AB的解析式;(2)连接BC,若点E是线段AC上的一个动点(不与A,C重合),过点E作EF//BC交AB于点F,当△BEF的面积是52时,求点E的坐标;(3)如图2,将点B向右平移1个单位长度得到点D,在x轴上存在动点P,若△DCO+△DPO=△α,当tan△α=4时,请直接写出点P的坐标.18.将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,其中点E与点B,点G与点D分别是对应点,连接BG.(1)如图,若点A,E,D第一次在同一直线上,BG与CE交于点H,连接BE.△求证:BE平分△AEC.△取BC的中点P,连接PH,求证:PH∥CG.△若BC=2AB=2,求BG的长.(2)若点A,E,D第二次在同一直线上,BC=2AB=4,直接写出点D到BG的距离.19.如图,△ABC是等边三角形,AB=4cm,动点P从A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ△AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使A,D在PQ异侧,设点P 的运动时间是x(s)(0<x<2).(1)AP的长为cm(用含x的代数式表示);(2)当Q与C重合时,则x=s;(3)△PQD的周长为y(cm),求y关于x的函数解析式,并写出自变量的取值范围.20.如图1,在平面直角坐标系中,抛物线y=ax2+154x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).(1)求抛物线的函数表达式及直线AB的函数表达式;(2)如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;(3)在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD速度向点D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S与t之间的函数关系式为(不必写出t的取值范围).参考答案:1.解:AO =CE ,△ACE =90°,理由如下:△线段BO 绕点O 顺时针旋转60°,得到线段OE ,△BO =OE ,△BOE =60°,△△BOE 为等边三角形,△△OBE =60°,BE =BO ,△△OBE =60°=△OBD +△DBE ,△△ABC 为等边三角形,△△ABC =60°=△ABO +△OBD ,AB=AC ,△△ABO =△CBE ,在△ABO 和△CBE 中,AB AC ABO CBE BO BE =⎧⎪∠=∠⎨⎪=⎩,△△ABO △△CBE (SAS),△AO =CE ,△BAO =△BCE ,△AD 是等边三角形ABC 的高,△△ACB =60°,AD 也是△BAC 的平分线,△△BAO =30°=△BCE ,△△ACE =△BCE +△ACB =30°+60°=90°,故答案为:AO =CE ,△ACE =90°;(2)解:成立,理由如下:如图:连接BE .△线段BO 绕点O 顺时针旋转了60°得EO ,△BO =EO ,△BOE =60°,△△BOE 是等边三角形,△BO =BE ,△OBE =60°,△△ABC 是等边三角形,△BA =BC ,△ABC =60°,△△ABC +△OBC =△OBE +△OBC ,即△ABO =△CBE ,在△ABO 和△CBE 中,AB AC ABO CBE BO BE =⎧⎪∠=∠⎨⎪=⎩△△ABO △△CBE (SAS),△AO =CE ,△BAO =△BCE ,△AD 是等边△ABC 的高,△△BCE =△BAO =30°,△BCA =60°,△△ACE =△BCE +△ACB =30°+60°=90°,△AO =CE ,△ACE =90°;(3)解:△当点O 1在线段AD 的延长线上时,由(1)和(2)知:△BO 1E 1是等边三角形,△ACE 1=90°,△△ACE 1=90°,△AE 1C =30°,△△E 1AC =60°,△△BAC =60°,△点A 、B 、E 1在一条直线上,△在Rt △ACE 1中,AC =2,△AE 1C =30°,△A E 1=4,△BO 1=BE 1=2;△当点O 2在线段DA 的延长线上时,△△ACE 2=90°,△AE 2C =30°,AC =2,△AE 2=4,2CE△△ABO 2△△CBE 2(SAS),△22AO CE ==△AD 是等边△ABC 的高,AB =AC =2,△BD =1,AD ==在Rt △O 2DB 中,BD =1,而22O D AO AD ==+△2BO ===综上,BO =2或2.解:△B (4,0),C (8,0),△BC =4,△△ABC =90°,tan△ACB =2,△AB =BC •tan△ACB =8,△A 的坐标为(4,8),将A (4,8),C (8,0)代入y =ax ²+bx ,得:16486480+=⎧⎨+=⎩a b a b , 解得:124⎧=-⎪⎨⎪=⎩a b , △抛物线得解析式为:2142y x x =-+; (2)解:△由题得:AP =t ,△APE =△ABC =90°,△EAP =△CAB ,△tan△EAP =tan△CAB ==EP BC AP AB , △4=8PE t ,即PE =2t , △PB =AB ﹣AP =8﹣t ,△E 的坐标为(4+2t ,8﹣t ), 将x =4+2t 代入2142y x x =-+, 得:2188=-+y t , △G 的纵的坐标为2188-+t , △EG =218(8)8-+--t t =21+8-t t =21(4)+28--t ,△0≤t ≤8, △t =4时,线段EG 有最大值且为2;△△CQ =t ,PE =2t ,AP =t ,BC =4,AB =8, △AE=,AC= △CE =AC ﹣AE=,当△CEQ △△ACB 时,=CE CQ AC AB ,代入数据:8=t ,解得:t =4,当△CEQ △△ABC 时,=CE CQ AB AC ,代入数据:△28=解得t =409, △综上,t =4或409. 3. 解:由题意:32216410b a a b ⎧-=⎪⎨⎪++=⎩, 解得1434a b ⎧=-⎪⎪⎨⎪=⎪⎩, △抛物线的解析式为y 14=-x 234+x +1, 令y =0,可得x 2﹣3x ﹣4=0,解得x =﹣1或4,△A (﹣1,0),令y =0,得到x =1,△C (0,1),△OA =OC =1,△△CAO =45°.(2)解:如图1中,过点C 作CE △OA 于E ,过点D 作DF △AB 于F .△△NEM=△DFM=△NMD=90°,△△NME + △DMF=90°,△DMF+△MDF=90°,△△NME=△MDF,△NM=DM,△MEN DFM AAS≌()△NE=MF,EM=DF,△△CAO=45°,AN=,AM=3t,△AE=EN=t,△EM=AM﹣AE=2t,△DF=2t,MF=t,OF=4t﹣1,△D(4t﹣1,2t),△14-(4t﹣1)234+(4t﹣1)+1=2t,△t>0,故可以解得t34 =,经检验,t34=时,M,N均没有达到终点,符合题意,△D(2,32).(3)解:如图3﹣1中,当点Q在点C的下方,点P在y的右侧,△QCP=△MDB时,取E (12,0),连接EC ,过点E 作EG △EC 交PC 于G , △M (54,0),D (2,32),B (4,0) △53244FM =-=,DM =,BM 114=,BD 52=, △DF =2MF ,△OC =2OE ,△tan△OCE =tan△MDF 12=, △△OCE =△MDF ,△△OCP =△MDB ,△△ECG =△FDB ,△tan△ECG =tan△FDB 43=, △EC =, △EG =G (116,23), △直线CP 的解析式为y 211=-x +1, 由2211113144y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得01x y =⎧⎨=⎩或411139121x y ⎧=⎪⎪⎨⎪=⎪⎩, △4139(,)11121P ,(0,1)C ,△PC =当MD BD CQ CP =或时MD BD PC CQ =,△QCP 与△MDB 相似,可得615242CQ =或2050363,△373(0,)242Q -或1687(0,)363-. 如图3﹣2中,当点Q 在点C 的下方,点P 在y 的右侧,△QCP =△DMB 时,设PC 交x 轴于K .△tan△OCK =tan△DMB =2,△OK =2OC =2,△点K 与F 重合,△直线PC 的解析式为112y x =-+, 由211213144y x y x x ⎧=-+⎪⎪⎨⎪=-++⎪⎩,解得01x y =⎧⎨=⎩或532x y =⎧⎪⎨=-⎪⎩, △3(5,)2P -,△PC =当DM BM PC CQ =或DM BM CQ PC =时,△QCP 与△MDB 相似,可得556CQ =或7522, △49(0,)6Q -或53(0,)22-. 当点Q 在点C 的下方,点P 在y 的右侧,△QCP =△DBM 时,同法可得2591257(,)(0,)3918P Q --,或1151(0,)99, 当点Q 在点C 上方,△QCP =△DMB 时,同法可得P (1,32),Q (0,176)或(0,3722), 当点Q 在点C 上方,△QCP =△MDB 时,同法可得25171617(,)(0,)11121242P Q ,或1613(0,).363,当点Q 在点C 下方,点P 在y 轴的左侧时,△QCP =△DBM 时,同法可得71959(,)(0,)3918P Q ---,或251(0,)99-. 4(1)解:△△ABD =90°,AD =,BD =8cm .△4cm AB = ;(2)解:当0<t <4时,点P 在AB 边上,cm AP t = ,如图,△PQ △AB ,△ABD =90°,△PQ △BD ,△△APQ △△ABD ,△AP PQ AB BD = , △4182AP AB PQ BD === , 即12t PQ = , △2cm PQ t = ;当4<t <8时,点P 在BC 边上,)4cm BP t =- ,如图,△四边形ABCD 是平行四边形,△BC AD == ,AB △CD ,△BDC =△ABD =90°,△)()4cm CP BC BP t =-=-= ,△PQ △AB ,△PQ △CD ,△PQ △BD ,△△CPQ △△CBD , △CP PQ BC BD= ,△CP BC PQ BD === , △()162cm PQ t =- ;(3)解:如图,当点P 在AB 上时,cm AP t = ,则()4cm BP t =- ,在矩形PQMN 中, BP =QM ,△QM =2PQ ,△BP =2PQ ,△2cm PQ t =,△224t t ⨯=- ,解得:45t = ;如图,当点P 在BC 边上时,点M 与点D 重合,由(2)得:此时4182CQ CD PQ BD === , △()162cm PQ t =-,△()18cm 2CQ PQ t ==- , △()4cm MQ CD CQ t =-=- ,△QM =2PQ ,△()42162t t -=- ,解得:365t = ; 综上所述,当点M 落在BD 上时, t 的值为45或365; (4) 解:如图,当405t ≤≤ 时,△2cm PQ t =,QM =2PQ ,△4cm QM t =,△矩形PQMN 与□ABCD 重叠部分的面积为22248cm S PQ QM t t t =⋅=⨯= ; 如图,当445t << 时,设MQ 交BC 于点T ,根据题意得:AQ △BT ,QT △AB ,△四边形ABTQ 是平行四边形,△4cm QT = ,△()4cm BP AB AP t =-=- ,2cm PQ t =,△矩形PQMN 与□ABCD 重叠部分的面积为()()()2114428cm 22S PB QT PQ t t t t =+⨯=-+⨯=-+; 如图,当点N 落在AD 边上时,四边形ABPN 是平行四边形,△4cm PN AB == ,△4cm MQ PN == ,△QM =2PQ ,()162cm PQ t =-,△()21624t -= ,解得:7t = ,如图,当47t <≤ 时,设PN 交AD 于点K ,此时四边形ABPK 是平行四边形,△4cm PK AB == ,△()162cm PQ t =-,4182CQ CD PQ BD ===, △()18cm 2CQ PQ t ==- , △()()484cm DQ t t =--=- ,△矩形PQMN 与□ABCD 重叠部分的面积为()()()()211441628cm 22S PK DQ PQ t t t t =+⨯=-+⨯-=-+; 如图,当3685t ≤< 时,△()162cm PQ t =-,QM =2PQ ,△()324cm MQ t =- ,△矩形PQMN 与□ABCD 重叠部分的面积为()()()221623248128512cm S PQ MQ t t t t =⨯=-⨯-=-+ ,综上所述,S 与t 的函数关系式为222248(0)548(4)58(47)368128512(8)5t t t t t S t t t t t t ⎧≤≤⎪⎪⎪-+<<⎪=⎨⎪-+<≤⎪⎪-+≤<⎪⎩.5.(1) EFG 是等边三角形,理由如下:如图,过点E 作EM AB ∥,交FC 于M ,△四边形ABCD 是菱形,△AB CB =,△60ACB ABC ∠=∠=︒,△60ACD ACB ∠=∠=︒,△120ACG ∠=︒,△EM AB ∥,△60ABC EMC ∠∠==︒,△120EMF ∠=︒,△60EMC ECM ∠=∠=︒,△EMC △是等边三角形,△EM EC =,60MEC ∠=︒,△60FEG MEC ∠=∠=︒,△FEM GEC ∠=∠,在FEM △和GEC 中,FGM GEC EM ECEMF ECG ∠=∠⎧⎪=⎨⎪∠=∠⎩, △()FEM GEC ASA ≅,△EF EG =,△EFG 是等腰三角形,△60FEG ∠=︒,△EFG 是等边三角形;(2)△如图所示,过点A 作AT y ⊥轴交于点T ,△60ABC ∠=︒,△30TBA ∠=︒, △1722AT AB ==,BT == 过点E 作EH y ⊥轴交于点H ,交AB 于点K ,△EH CF ∥,△AKE 是等边三角形,△1AK KE AE ===,△6BK =,△sin 6sin 606BH BK BKH =⋅∠=⨯︒==132HK BK ==,△E ,△4HE HK KE =+=,△四边形ABCD 是菱形,△7BC AB ==,△(7,0)C ,21(2D , △CD 的解析式为373yx ,设(G x -, △EFG 是等边三角形,△22EG EF =,即2222(4)(34)x -+-=--+,解得:15=x 或212x =(舍去),当5x =时,y =-△(5,G -,当是菱形EFMG 时,(2,M --,当是菱形EFGM 时,M ,当是菱形FGEM 时,(M -,综上所述,(2,M --或(或(-;△如图,当N 在CD 上时,作CP AB ⊥于P ,点F '关于AB 的对称点N 在CD 上,△OF ON CP '==,CP BC ==△OF '=, 在Rt BOF '中,7sin 60OF OBF ''∠==︒, △14CF '=,如图,当N 在DE 上时,N 与F '关于AB 对称,AB 与DN 交于点Q , △60ABN ABC ∠=∠=︒,△60BAC ∠=︒,△60ABN BAC ∠=∠=︒,△BN AE ∥, △AE AQ BN QB=, △AD BC ∥,△ADE CME ,AQD BQM , △16AD AE MC CE ==,AQ AD QB MB =, △716MC =, △42MC =,△42735MB =-=, △71355AQ QB ==, △115BN =, △5BN =,△5BF BN '==,△752CF BC BF ''=-=-=,△214CF<<.6.解:由x2﹣4x﹣5=0,解得x=5或﹣1,∵OA是方程的根,∴OA=5,∴AB=OA=5,在Rt△ABE中,tan∠BAE=BEAE=43,AB=5,∴BE=4,AE=3,∴OE=OA+AE=5+3=8,∴B(8,4);(2)解:如图1中,当点F落在OB上时,AM=t,DM=45t,AD=35t,∵FM OA∥,∴FM MB OA BA=,∴45555tt-=,∴t=259,如图2中,当0<t≤259时,重叠部分是四边形ACFM,S=12•(AC+FM)•DM=14434 25555t t t t ⎛⎫⋅+-⋅ ⎪⎝⎭=25t2,如图3中,259<t ≤5时,重叠部分是五边形ACHGM , S =S 梯形ACFM ﹣S △FGH =()22211455225t t t ⎡⎤-⨯⨯--⎢⎥⎣⎦=﹣41100t 2+92t ﹣254;综上所述,S =25t 2(0<t ≤259)或S =﹣41100t 2+92t ﹣254(259<t ≤5). 7.(1)四边形ABCD 是正方形,AB BC ∴=,BAE CBF ∠=∠又,E F 的运动速度都是2cm/s ,2AE BF t ∴==BAE CBF ∴≌BCF ABE ∴∠=∠90ABE EBC ABC ∠+∠=∠=︒90BCF EBC ∴∠+∠=︒90MBC ∴∠=︒(2)△90CMB ∠=.△点M 在以CB 为直径的圆上,如图1,当t =0时,点M 与点B 重合;如图2,当t =3时,点M 为正方形对角线的交点.点M 的运动路径为14圆,其路径长13642ππ⨯=. 故答案为:32π (3)△如图3.由前面结论可知:90CME ∠=△△CME 的外接圆的圆心O 是斜边CE 的中点, 则12OM OC OE CE === 在Rt △CDE 中,90D ∠=,O 是CE 的中点. △12OD CE =, △OM OC OE OD ===△点D 、C 、M 、E 在同一个圆(O )上,即点D 在△CME 的外接圆O 上;. △304t <<. 如图4,当O 与AB 相切时,O 与正方形的各边共有5个交点,如图5则有6个交点,所以“当O 与AB 相切时”是临界情况.如图4,当O 与AB 相切(切点为G ),连接OG ,并延长GO 交CD 于点H . △AB 与O 相切,△OG AB ⊥,又△AB CD ∥,132CH DC ∴== 设O 的半径为R .由题意得:在Rt △CHO 中,2223(6)R R +-=,解得154R =△159,22CE DE =△32AE =,即3t 4= △如图5,当304t <<时,O 与正方形的各边共有6个交点.8.(1)解:过点H 作HL △EF ,交AF 于L ,△菱形ABCD ,120ABC ∠=︒△△DAB =180°-18012060ABC ∠=-=︒︒︒,AD∥BC ,△△DAE =△AEB ,△15AEB ∠=︒,△△DAE =15°,△AE 绕点A 顺时针旋转60°得AF ,△△AEF为等边三角形,△△F=60°,△HL△EF,△△HLF=90°-△F=30°,△LF=2HF=2×4=8,根据勾股定理LH△△DAE+△EAH=△EAH+△HAF=60°△△DAE=△HAF=15°,△△HLF为△AHL的外角,△△AHL=△HLF-△HAF=30°-15°=15°,△△AHL=△HAF,△AL=LH=△AE=AF=AL+LF=;(2)证明:过B作BL△AC于L,过F作FK△AE于K,设AE=m,AC=n,△将AE绕点A逆时针旋转60°得AF,△AE=AF=m,△EAF=60°,△△AEF为等边三角形,△AF=EF,△FK△AE,△△AFK=△EFK=30°,AK=EK=12 m,在Rt△AKF中,FK==,△菱形ABCD ,120ABC ∠=︒,BL △AC ,△AL =CL =12n ,△CBL =△ABL =60°,△△LCB =90°-△CBL =30°,△BC =2BL ,在Rt △BCL 中,根据勾股定理222+BC BL CL =,即2224+BL BL CL =,解得2n BL ==, △点M 为CE 中点,△CM =EM =()1122EC m n =+, △MK =ME -KE =()111222m n m n +-=,M L=MC -CL =()111222m n n m +-=,在Rt △MKF 中,根据勾股定理FM =在Rt △MLB 中,根据勾股定理BM ,△BM =,△FM =;(3)解:连结SB ,过E 作TL △DE ,,过G 作GI △AD 于I ,过T 作TJ △AB 于J ,在TD 上截取TE ′=TE ,△将AB 沿AS 翻折得()120AE BAE ∠<︒,△△BAS =△EAS ,AB =AE ,在△ABS 和△AES 中,AB AE BAS EAS AS AS =⎧⎪∠=∠⎨⎪=⎩,△△ABS △△AES (SAS ),△△ABS =△AES ,△四边形ABCD 为菱形,△AD =AB =AE =6,△ABC =120°,△△ADE =△AED =△ABS ,△DAB =180°-△ABC =60°,△A 、S 、B 、D 四点共圆,△点S 在△ABD 的外接圆劣弧AB 上运动,△当AS △AB 时,AS 长最大,△△ADH =90°-△DAH =30°,△AH =3,DH=△点T 在以点A 为圆3为半径的圆上运动,当点A 关于TJ 直线的对称点在△ADH 的角平分线DT 上时,TD TE -的值最大,设点A 的对称点为G ,△△ADG =△HDG =1152ADH ∠=︒,GI △AD ,GH △DH , △GI =GH =m ,AG =AH –GH =3-m ,AI =AD -DI -DH=6-在Rt △AIG 中,根据勾股定理222+AG AI IG =即()(22236+m m -=-,解得9m =,在Rt △DGH 中,根据勾股定理DG△DT=DG +TG =3,△AG =12-△AJ =JG =6-△JH =AH -AJ =3-(6-=,△TJ △AB ,DE △AB ,TL △DE ,△△TJH =△JHL =△TLH =90°,△四边形JTLH 为矩形,△JH =TL =,在DL 上截取DN =TN ,△△NDT =△NTD =15°,△△FNL =△NDT +△NTD =30°,△DN =TN =2TL =6,在Rt △TNL 中,根据勾股定理,NL9=-△DL =DN +NL =6+93-=,在Rt △AHE 中,△EAH =60°,△DE =sin60°×AE△DE△LE =DE -DL ()3=TL ,△TE=△GT -TE 最大=3-.9.(1) 解:由抛物线()()12y x x m m=+-开口向上,则m >0令x =0,则y =-2,即C 点坐标为(0,-2),OC =2令y =0,则()()102x x m m=+-,解得x =-2或x =m ,即点A (-2,0),点B (m ,0) △OA =2,OB =m△AB =m +2由勾股定理可得AC 2=(-2-0)2+[0-(-2)]2=8, BC 2=(m -0)2+[0-(-2)]2=m 2+4 △当ABC 为直角三角形时,仅有△ACB =90°△AB 2= AC 2+BC 2,即(m +2)2=8+m 2+4,解得m =2△AB =m +2=4△ABC 的面积为:12·AB ·OC =12×4×2=4.(2)解:设BC 所在直线的解析式为:y =kx +b则02mk b b =+⎧⎨-=⎩ ,解得22k m b ⎧=⎪⎨⎪=-⎩ △BC 所在直线的解析式为y =2m x -2 设直线AP 的解析式为y =2m x +c 则有:0=2m×(-2)+c ,即c =4m △线AP 的解析式为y =2m x +4m 联立()()1224y x x m m y x m m⎧=+-⎪⎪⎨⎪=+⎪⎩ 解得x =-2(A 点横坐标),x =m +2(P 点横坐标) △点P 的纵坐标为:()24822+m m m m⨯++= △点P 的坐标为(m +2,28m m +) △OQ =m +2△BQ =OQ -OB = m +2-m =2.(3)解:△点P 为抛物线()()12y x x m m=+-上一动点(点P 不与点C 重合).△设P (x ,()()12x x m m+-) △在△ABC 中,△BAC =45°△当以点A ,B ,P 为顶点的三角形和ABC 相似时,有三种情况:△a .若△ABC △△BAP △BP AC AB AB= 又△BP =AC△△ABC △△BAP 不符合题意;b . 若△ABP △△BAC △BP AB AB AC= 过P 作PQ △x 轴于点Q ,则△PQB =90°△△BPQ =90°-△PBQ =45°△PQ =BQ =m -x由于PQ =()()12x x m m +- △1(2)()m x x x m m-=+- △1()(2)10x m x m ⎡⎤-++=⎢⎥⎣⎦△x -m =0或1(2)10x m++= △x =m (舍去),x =-m -2△BQ =m -(-m -2)=2m +2△1)PB m ==+=△m 2-4m -4=0,解得:m =2-m =△m =2-△当△P AB =△BAC =45°时,分两种情况讨论:a . 若△ABP △△ABC ,则AP AC AB AB = ,点C 与点P 重合,不合题意; b . 若△ABP △△BAC ,则PB AB AB AC= , 过P 作PQ △x 轴于点Q ,则△PQA =90°△△APQ =90°-△P AB =45°△PQ =AQ =x +2由于PQ =()()12x x m m +- △12(2)()x x x m m+=+- △1(2)(2)10x x m ⎡⎤+++=⎢⎥⎣⎦△x +2=0或1()10x m m--= △x =-2(舍去),x =2m△AQ = =2m +2△1)AP m ==+=△m 2-4m -4=0,解得:m =2-m =△m =△当△APB=△BAC=45°时,分两种情况讨论:a.过点A作PM//BC交抛物线于点M,则△MAB=△ABC,△△MAB≠△P AB,△△P AB≠△ABC,△△P AB与△BAC不相似;b. 取点C关于x轴的对称点C',连接并延长BC'交抛物线于点N,则△NBA=△CBA,△△PBA≠△NBA,△△PBA≠△CBA,△△P AB与△BAC不相似;综上,m的值为m=2-m=10.解:如图1中,由翻折可知:CD=DC′,AC=AC′=3,设CD=DC′=x,在Rt△BDC中,△BD2=C′D2+C′B2,△(4-x)2=x2+22,解得:x=32,△AD==(2)如图2中,当点P在C'D左侧,AC=AC'=3,则PC'=3-x,△DP△10)y x =≤≤.当点P 在C 'D 右侧,同理可得10)y x =≤≤.△y 关于x 的函数解析式为10)y x =≤≤. (3) 如图3中,△当P A =PD 时,设P A =PD =m , 在Rt △PCD 中,△PD 2=DC ′2+C ′P 2,△2223((3))2m m =+-,解得:158=m , △P A =158.△当AD =AP P 在P′时,△ADP 是等腰三角形, △当PD =AD 时,点P 在AB 的延长线上.如图4,AP =2AC '=6.综上所述,满足条件的P A 的值为1586. 11. (1)解:把A (﹣3,0)和C (1,0)代入y =ax 2+bx ﹣3,得,093303a b a b =--⎧⎨=+-⎩,解得,12a b =⎧⎨=⎩,△抛物线解析式为y =x 2+2x ﹣3; (2)解:设P (x ,x 2+2x ﹣3),直线AB 的解析式为y =kx +b , 由抛物线解析式y =x 2+2x ﹣3, 令x =0,则y =﹣3, △B (0,﹣3),把A (﹣3,0)和B (0,﹣3)代入y =kx +b ,得,033k b b=-+⎧⎨-=⎩,解得,13k b =-⎧⎨=-⎩,△直线AB 的解析式为y =﹣x ﹣3, △PE △x 轴, △E (x ,﹣x ﹣3),△P在直线AB下方,△PE=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+32)2+94,当x=﹣32时,y=x2+2x﹣3=154-,△当PE最大时,P点坐标为(﹣32,154-);(3)存在,理由如下,△x=﹣221⨯=-1,△抛物线的对称轴为直线x=-1,设Q(-1,a),△B(0,-3),A(-3,0),△当△QAB=90°时,AQ2+AB2=BQ2,△22+a2+32+32=12+(3+a)2,解得:a=2,△Q1(-1,2),△当△QBA=90°时,BQ2+AB2=AQ2,△12+(3+a)2+32+32=22+a2,解得:a=﹣4,△Q2(-1,﹣4),△当△AQB=90°时,BQ2+AQ2=AB2,△12+(3+a)2+22+a2=32+32,解得:a1a1△Q3(-1,Q4(-1,综上所述:点Q的坐标是(-1,2)或(-1,﹣4)或(-1-1,.12.解:∵顶点D的坐标为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,得0=a(﹣1﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3,∴该抛物线的解析式为y=x2﹣2x﹣3;(2)解:∵抛物线对称轴为直线x=1,A(﹣1,0),∴B(3,0),设直线BD解析式为y=kx+e,∵B(3,0),D(1,﹣4),∴304k ek e+=⎧⎨+=-⎩,解得:26ke=⎧⎨=-⎩,∴直线BD解析式为y=2x﹣6,过点C作CP1∥BD,交抛物线于点P1,设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,得﹣3=2×0+d,解得:d=﹣3,∴直线CP1的解析式为y=2x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,解得:x1=0(舍),x2=4,故P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,∵OB=OC,∠BOC=∠OBG=∠OCG=90°,∴四边形OBGC是正方形,设CP1与x轴交于点E,则2x﹣3=0,解得:x=32,∴E(32,0),在x轴下方作∠BCF=∠BCE交BG于点F,∵四边形OBGC 是正方形,∴OC =CG =BG =3,∠COE =∠G =90°,∠OCB =∠GCB =45°, ∴∠OCB ﹣∠BCE =∠GCB ﹣∠BCF , 即∠OCE =∠GCF , ∴△OCE ≌△GCF (ASA ),∴FG =OE =32,∴BF =BG ﹣FG =3﹣32=32,∴F (3,﹣32),设直线CF 解析式为y =k 1x +e 1,∵C (0,﹣3),F (3,﹣32),∴1113332e k e =-⎧⎪⎨+=-⎪⎩,解得:11123k e ⎧=⎪⎨⎪=-⎩, ∴直线CF 解析式为y =12x ﹣3,结合抛物线y =x 2﹣2x ﹣3,可得x 2﹣2x ﹣3=12x ﹣3, 解得:x 1=0(舍),x 2=52,∴P 2(52,﹣74),综上所述,符合条件的P 点坐标为:(4,5)或(52,﹣74);(3)解:(3)设直线AC 解析式为y =m 1x +n 1,直线BC 解析式为y =m 2x +n 2, ∵A (﹣1,0),C (0,﹣3),∴11103m n n -+=⎧⎨=-⎩,解得:1133m n =-⎧⎨=-⎩,∴直线AC 解析式为y =﹣3x ﹣3, ∵B (3,0),C (0,﹣3),∴222303m n n +=⎧⎨=-⎩, 解得:2213m n =⎧⎨=-⎩,∴直线BC 解析式为y =x ﹣3, 设M (t ,t ﹣3),则N (t ,t 2﹣2t ﹣3), ∴MN =|t 2﹣2t ﹣3﹣(t ﹣3)|=|t 2﹣3t |,①当△QMN 是以NQ 为斜边的等腰直角三角形时,此时∠NMQ =90°,MN =MQ ,如图2,∵MQ ∥x 轴, ∴Q (﹣13t ,t ﹣3),∴|t2﹣3t|=|t﹣(﹣13t)|,∴t2﹣3t=±43 t,解得:t=0(舍)或t=53或t=133,∴154 (,) 33M-,154 (,)93Q--;2134 (,) 33M,2134 (,)93Q-;②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,∵NQ∥x轴,∴Q(223t t-+,t2﹣2t﹣3),∴NQ=|t﹣223t t-+|=13|t2+t|,∴|t2﹣3t|=13|t2+t|,解得:t=0(舍)或t=5或t=2,∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);③当△QMN是以MN为斜边的等腰直角三角形时,此时∠MQN=90°,MQ=NQ,如图4,过点Q作QH⊥MN于H,则MH=HN,∴H(t,262t t--),∴Q(26t t-+,262t t--),∴QH=|t﹣26t t-+|=16|t2+5t|,∵MQ=NQ,∴MN=2QH,∴|t2﹣3t|=2×16|t2+5t|,解得:t=7或1,∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);综上所述,点M及其对应点Q的坐标为:154 (,) 33M-,154 (,)93Q--;2134 (,) 33M,2134 (,)93Q-;M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).13.解:(1)△抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(-3,0),△OB=3,△OC=OB,△OC=3,△c=3,△30 9330a ba b++=⎧⎨-+=⎩,解得:12ab=-⎧⎨=-⎩,△所求抛物线解析式为:223y x x=--+;(2)如图2,连接BC,过点E作EF△x轴于点F,设E(a,-a2-2a+3)(-3<a<0),△EF=-a2-2a+3,BF=a+3,OF=-a,△S△BEC=S四边形BOCE-S△BOC=12BF•EF+12(OC+EF)•OF-12•OB•OC=1 2(a+3)•(-a2-2a+3)+12(-a2-2a+6)•(-a)-92=-32a2-92a=-32(a+32)2+278,△当a=-32时,S△BEC最大,且最大值为278.。
初中数学压轴题--动态几何证明及实验题

动态几何证明及实验题所谓动态几何是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.此类题目注重对几何图形运动变化能力的考查.动态几何问题是近几年各地试题中常见的压轴试题,它能考查学生的多种能力,有较强的选拔功能。
解这类题目要“以静制动〞,即把动态问题,变为静态问题来解。
解动态几何题一般方法是针对这些点在运动变化的过程中相伴随着的数量关系〔如等量关系、变量关系〕、图形位置关系〔如图形的特殊状态、图形间的特殊关系〕等进行研究考察.抓住变化中的“不变量〞,以不变应万变.实验操作【要点导航】通过实验操作——观察猜想——科学论证,使我们体验和学到了发现、获得知识的过程和方法. 实验操作探索——理解题意、实验操作是根本保证,观察猜想、探索结论是关键,论证猜想的结论是落实.【典例精析】例1 取一张矩形纸片进行折叠,具体操作过程如下:第一步:先把矩形ABCD 对折,折痕为MN ,如图1;第二步:再把B 点叠在折痕线MN 上,折痕为AE ,点B 在MN 上的对应点为B ',得R t △AB 'E ,如图2;第三步:沿EB '线折叠得折痕EF ,使A 点落在EC 的延长线上,如图3.利用展开图4探究: 〔1〕△AEF 是什么三角形?证明你的结论;〔2〕对于任一矩形,按照上述方法能否折出这种三角形?请说明你的理由.【思路分析】1.图形翻折后能重叠局部的图形全等,所以∠BEA =∠AEB '=∠FEC ,它们都是60°角,所以△AEF 是等边三角形.2.由操作可知AF >AD 时,不能完整折出这种三角形.当图3中的点F 、D 重合时,便可求得矩形的长与宽的比例为2︰3.解〔1〕△AEF 是等边三角形.由折叠过程可得:60BEA AEF FEC ∠=∠=∠=︒.因为BC ∥AD ,所以60AFE FEC ∠=∠=︒.所以△AEF 是等边三角形.图1图2图3图4〔2〕不一定.当矩形的长恰好等于等边△AEF 的边AF 时,即矩形的宽∶长=AB ∶AF =2:3时正好能折出.如果设矩形的长为A ,宽为B ,可知当a b 23≤时,按此种方法一定能折叠出等边三角形;当a b a <<23时,按此法无法折出完整的等边三角形. 〖方法点睛〗要从操作实验题中抽象出数学模型来,并借助图形运动的根本性质求解.例2 :在△ABC 中,∠BAC =90°,M 为BC 中点.操作:将三角板的90°角的顶点与点M 重合,并绕着点M 旋转,角的两边分别与边AB 、AC 相交于点E 、F .〔1〕探究1:线段BE 、EF 、FC 是否能构成三角形?如果可以构成三角形,那么是什么形状的三角形?请证明你的猜想.〔2〕探究2:假设改变为:“角的两边分别与边AB 、直线AC 相交于点E 、F .〞其它条件都不变的情况下,那么结论是否还存在?请画出对应的图形并请证明你的猜想. 〖思路分析〗1.由点M 是BC 中点,所以构造绕点M 旋转180°重合的全等三角形,将线段BE 、EF 、FC 移到同一个三角形中.2.当角的两边分别与边AB 、直线AC 相交于点E 、F 时,构造和证明的方法不变.证明〔1〕线段BE 、EF 、FC 可以构成直角三角形.如图1,延长EM 到G ,使得EM =M G ,联结GC 、FG .因为M 为BC 中点,所以BM =CM ,又因为∠EMB =∠GMC ,EM =M G ,所以△EMB ≌△GMC ,所以BE =GC ,EM =MG ,∠B =∠MCG .因为FM 垂直平分EG ,所以FE =FG .又因为∠BAC =90°,所以∠B +∠ACB =90°,所以∠MCG +∠ACBFCG =90°,所以222FG FC GC =+,所以22FC BE =+〔2〕如图2,当点F 在CA 的延长线上时,延长EM 到G ,联结GC 、FG .因为M 为BC 中点,所以BM =CM ,又因为∠=∠GMC ,EM =EG ,所以△EMB ≌△GMC ,所以BE =GC ,EM =∠B =∠MCG .因为FM 垂直平分EG ,所以FE =FG ∠BAC =90°,所以∠B +∠ACB =90°,所以∠MCG +∠ACB =90M即∠FCG =90°,所以222FG FC GC =+,所以222EF FC BE =+.如图3,当点F 在AC 的延长线上时,同理可证222EF FC BE =+.〖方法点睛〗线段之间常见的关系是和差关系或者满足勾股定理.假设能将所要求线段移动到同一条直线上,那么线段之间是和差关系的可能性较大,假设能将所要求线段移动后能构成三角形,那么线段之间满足勾股定理的可能性较大.【星级训练】第 天 ,年 月 日1. ★★★如图,在正方形ABCD 中,点E 在边AB 上〔点E 与点A 、B 不重合〕,过点E 作FG ⊥DE ,FG 与边BC 相交于点F ,与边DA 的延长线相交于点G .〔1〕操作:由几个不同的位置,分别测量BF 、AG 、AE 的长,从中你能发现BF 、AG 、AE 的数量之间具有怎样的关系?并证明你所得到的结论;〔2〕连结DF ,如果正方形的边长为2,设AE=x ,△DFG 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;〔3〕如果正方形的边长为2,FG 的长为25,求点C 到直线DE 的距离.2. ★★★操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q . 探究:设A 、P 两点间的距离为x .〔1〕当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到结论; 〔2〕当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域;〔3〕当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由.〔图5、图6、图7的GF D ACBD ACB供试验操作用形状大小相同,图5供操作、实验用,图6和图7备用〕3. ★★★在△ABC 中,AB =AC ,CG ⊥BA 交BA 的延长线于点G .一等腰直角三角尺按如图1所示的位置摆放,该三角尺的直角顶点为F ,一条直角边与AC 边在一条直线上,另一条直角边恰好经过点B .〔1〕在图1中请你通过观察、测量BF 与CG 的长度,猜想并写出BF 与CG 满足的数量关系,然后证明你的猜想;〔2〕当三角尺沿AC 方向平移到图2所示的位置时,一条直角边仍与AC 边在同一直线上,另一条直角边交BC 边于点D ,过点D 作DE ⊥BA 于点E .此时请你通过观察、测量DE 、DF 与CG 的长度,猜想并写出DE +DF 与CG 之间满足的数量关系,然后证明你的猜想;〔3〕当三角尺在〔2〕的根底上沿AC 方向继续平移到图3所示的位置〔点F 在线段AC 上,且点F 与点C 不重合〕时,〔2〕中的猜想是否仍然成立?〔不用说明理由〕4. ★★如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. 实验与探究:〔1〕由图观察易知A 〔0,2〕关于直线l 的对称点A '的坐标为〔2,0〕,请在图中分别标明B (5,3) 、C (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标:B ' 、C ' ;归纳与发现:〔2〕结合图形观察以上三组点的坐标,你会发现:坐DACB图5DACB图6DACB图7图3图1标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '的坐标为 〔不必证明〕; 运用与拓广:〔3〕两点D (1,-3)、E (-1,-4),试在直线l 上确定一点Q ,使点Q 到D 、E 两点的距离之和最小,并求出Q 点坐标.探索性问题探索性问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的题型.探索性问题一般有三种类型:〔1〕条件探索型问题;〔2〕结论探索型问题;〔3〕探索存在型问题.条件探索型问题是指所给问题中结论明确,需要完备条件的题目;结论探索型问题是指题目中结论不确定,不唯一,或题目结论需要类比,引申推广,或题目给出特例,要通过归纳总结出一般结论;探索存在型问题是指在一定的前提下,需探索发现某种数学关系是否存在的题目.条件探索【要点导航】“探索〞是人类认识客观世界过程中最生动、最活泼的思维活动,探索性问题存在于一切学科领域之中,数学中的“条件探索〞题型,是指命题中缺少一定的题设,需经过推断、补充并加以证明的命题,因而必须利用题设大胆猜想、分析、比较、归纳、推理,由结论去探索未给予的条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C专题二:动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F .(1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时, 求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE 的长. [题型背景和区分度测量点]本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E 点在AB 边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系(相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系和圆与圆的位置关系,从而利用方程思想来求解. [区分度性小题处理手法]1.直线与圆的相切的存在性的处理方法:利用d=r 建立方程.2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R ±r(r R >)建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段.解:(1) 证明CDF ∆∽EBD ∆∴BE CDBDCF =,代入数据得8=CF ,∴AF=2 (2) 设BE=x ,则,10==AC d ,10x AE -=利用(1)的方法x CF 32=,相切时分外切和内切两种情况考虑: 外切,x x 321010+-=,24=x ;内切,x x 321010--=,17210±=x .100<<x∴当⊙C 和⊙A 相切时,BE 的长为24或17210-.AB CDEOlA ′ABCDEO lF (3)当以边AC 为直径的⊙O 与线段DE 相切时,320=BE .类题 ⑴一个动点:09杨浦25题(四月、五月)、09静安25题、⑵两个动点:09闸北25题、09松江25题、09卢湾25题、09青浦25题. (二)线动问题在矩形ABCD 中,AB =3,点O 在对角线AC 上,直线l 过点O ,且与AC 垂直交AD 于E .(1)若直线l 过点B ,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心A '重合,求BC 的长;(2)若直线l 与AB 相交于点F ,且AO =41AC ,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l相切,若存在,请求出x 的值;若不存在,请说明理由. [题型背景和区分度测量点]本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线l 沿AB 边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二. [区分度性小题处理手法]1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法.2.直线与圆的相切的存在性的处理方法:利用d=r 建立方程. 3.解题的关键是用含x 的代数式表示出相关的线段.(1)∵A ’是矩形ABCD 的对称中心∴A ’B =AA ’=21AC∵AB =A ’B ,AB =3∴AC =6 33=BC(2)①92+=x AC ,9412+=x AO ,)9(1212+=x AF ,x x AE 492+= ∴AF 21⋅=∆AE S AEFx x 96)9(22+=,x x x S 96)9(322+-=,x x x S 968127024-+-=(333<<x ) ②若圆A 与直线l 相切,则941432+=-x x ,01=x (舍去),582=x ∵3582<=x ∴不存在这样的x ,使圆A 与直线l 相切.(三)面动问题如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.[题型背景和区分度测量点]本题改编自新教材九上《相似形》24.5(4)例七,典型的共角相似三角形问题,试题为了形成坡度,在原题的基础上改编出求等腰三角形面积的第一小题,当D 点在AB 边上运动时,正方形DEFG 整体动起来,GF 边落在BC 边上时,恰好和教材中的例题对应,可以说是相似三角形对应的小高比大高=对应的小边比大边,探寻正方形和三角形的重叠部分的面积与线段AD 的关系的函数解析式形成了第三小题,仍然属于面积类习题来设置区分测量点一,用等腰三角形的存在性来设置区分测量点二. [区分度性小题处理手法]图3-5图3-4图3-3图3-1C C C CC1.找到三角形与正方形的重叠部分是解决本题的关键,如上图3-1、3-2重叠部分分别为正方形和矩形包括两种情况.2.正确的抓住等腰三角形的腰与底的分类,如上图3-3、3-4、3-5用方程思想解决. 3.解题的关键是用含x 的代数式表示出相关的线段.解:(1)12=∆ABCS . (2)令此时正方形的边长为a ,则446a a -=,解得512=a.(3)当20≤x 时, 22253656xx y =⎪⎭⎫⎝⎛=,当52 x 时,()2252452455456x x x x y -=-⋅=. (4)720,1125,73125=AD .C[类题] 改编自09奉贤3月考25题,将条件(2)“当点M 、N 分别在边BA 、CA 上时”,去掉,同时加到第(3)题中.已知:在△ABC 中,AB=AC ,∠B=30º,BC=6,点D 在边BC上,点E 在线段DC 上,DE=3,△DEF 是等边三角形,边DF 、EF 与边BA 、CA 分别相交于点M 、N .(1)求证:△BDM ∽△CEN ; (2)设BD=x ,△ABC 与△DEF 重叠部分的面积为y ,求y 关于x 的函数解析式,并写出定义域.(3)当点M 、N 分别在边BA 、CA 上时,是否存在点D ,使以M 为圆心, BM 为半径的圆与直线EF 相切, 如果存在,请求出x 的值;如不存在,请说明理由.例1:已知⊙O 的弦AB 的长等于⊙O 的半径,点C 在⊙O 上变化(不与A 、B )重合,求∠ACB 的大小 . 分析:点C 的变化是否影响∠ACB 的大小的变化呢?我们不妨将点C 改变一下,如何变化呢?可能在优弧AB 上,也可能在劣弧AB 上变化,显然这两者的结果不一样。
那么,当点C 在优弧AB 上变化时,∠ACB 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,因此很自然地想到它的圆心角,连结AO 、BO ,则由于AB=OA=OB ,即三角形ABC 为等边三角形,则∠AOB=600,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=21∠AOB=300,当点C 在劣弧AB 上变化时,∠ACB 所对的弧是优弧AB ,它的大小为优弧AB 的一半,由∠AOB=600得,优弧AB 的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500, 因此,本题的答案有两个,分别为300或1500.反思:本题通过点C 在圆上运动的不确定性而引起结果的不唯一性。
从而需要分类讨论。
这样由点C 的运动变化性而引起的分类讨论在解题中经常出现。
变式1:已知△ABC 是半径为2的圆内接三角形,若32=AB ,求∠C 的大小.本题与例1的区别只是AB 与圆的半径的关系发生了一些变化,其解题方法与上面一致,在三角形AOB 中,232121sin ==∠OB ABAOB ,则06021=∠AOB ,即0120=∠AOB ,从而当点C 在优弧AB 上变化时,∠C 所对的弧是劣弧AB ,它的大小为劣弧AB 的一半,即060=∠C ,当点C 在劣弧AB 上变化时,∠C 所对的弧是优弧AB ,它的大小为优弧AB的一半,由∠AOB=1200得,优弧AB 的度数为3600-1200=2400,则由同弧所对的圆心角与圆周角的关系得出:∠C=1200,A BF EM N因此060=∠C 或∠C=1200.变式2: 如图,半经为1的半圆O 上有两个动点A 、B ,若AB=1,判断∠AOB 的大小是否会随点A 、B 的变化而变化,若变化,求出变化范围,若不变化,求出它的值。
四边形ABCD 的面积的最大值。
解:(1)由于AB=OA=OB ,所以三角形AOB 为等边三角形,则∠AOB=600,即∠AOB 的大小不会随点A 、B 的变化而变化。
(2)四边形ABCD 的面积由三个三角形组成,其中三角形AOB 的面积为43,而三角形AOD 与三角形BOC 的面积之和为)(212121BG AF BG OC AF OD +=⨯+⨯,又由梯形的中位线定理得三角形AOD 与三角形BOC 的面积之和EH BG AF =+)(21,要四边形ABCD 的面积最大,只需EH 最大,显然EH ≤OE=23,当AB ∥CD 时,EH=OE ,因此 四边形ABCD 的面积最大值为43+23=433.对于本题同学们还可以继续思考:四边形ABCD 的周长的变化范围. 变式3: 如图,有一块半圆形的木板,现要把它截成三角形板块.三角形的两个顶点分别为A 、B ,另一个顶点C 在半圆上,问怎样截取才能使截出的三角形的面积最大?要求说明理由(广州市2000年考题)分析:要使三角形ABC 的面积最大,而三角形ABC 的底边AB 为圆的直径为常量,只需AB 边上的高最大即可。
过点C 作CD ⊥AB 于点D ,连结CO ,由于CD ≤CO ,当O 与D 重合,CD=CO ,因此,当CO 与AB 垂直时,即C 为半圆弧的中点时,其三角形ABC 的面积最大。