数学1模拟试题及答案

合集下载

2020-2021学年最新云南省中考数学模拟试卷(一)及答案解析

2020-2021学年最新云南省中考数学模拟试卷(一)及答案解析

云南省中考数学模拟试卷(一)一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 .2.在函数y=中,自变量x 的取值范围是. 3.若x 、y 为实数,且|x+3|+=0,则的值为 . 4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 (只需添加一个即可)5.已知A (0,3),B (2,3)是抛物线y=﹣x 2+bx+c 上两点,该抛物线的顶点坐标是 .6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M ﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是( )A .237B .2370C .23700D .237000 8.下列运算正确的是( )A .3a+2a=5a 2B .3﹣3=C .2a 2•a 2=2a 6D .60=0 9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是( )A .2B .3C .4D .510.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A ′B ′,若点A ′的坐标为(﹣2,2),则点B ′的坐标为( )A .(4,3)B .(3,4)C .(﹣1,﹣2)D .(﹣2,﹣1)11.下面空心圆柱形物体的左视图是( )2019x y ()A.B.C.D.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.514.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5无所谓0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.参考答案与试题解析一、填空题(本大题共6小题,每小题3分,满分18分)1.|﹣2|的相反数是 ﹣2 .【考点】15:绝对值;14:相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:|﹣2|的相反数是-2,故答案为:﹣2.2.在函数y=中,自变量x 的取值范围是 x≥1 .【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x ﹣1≥0,解不等式可求x 的范围.【解答】解:根据题意得:x ﹣1≥0,解得:x ≥1.故答案为:x ≥1.3.若x 、y 为实数,且|x+3|+=0,则的值为 ﹣1 . 【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】首先根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得:x+3=0,且y ﹣3=0,解得x=﹣3,y=3.则原式=﹣1.故答案是:﹣1.4.如图,平行四边形ABCD 的对角线互相垂直,要使ABCD 成为正方形,还需添加的一个条件是 ∠ABC=90° (只需添加一个即可)【考点】LF :正方形的判定;L5:平行四边形的性质.2019x y ()【分析】此题是一道开放型的题目,答案不唯一,添加一个条件符合正方形的判定即可.【解答】解:条件为∠ABC=90°,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,故答案为:∠ABC=90°.5.已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是(1,4).【考点】H3:二次函数的性质;H5:二次函数图象上点的坐标特征.【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可.【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,∴代入得:,解得:b=2,c=3,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,顶点坐标为(1,4),故答案为:(1,4).6.为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是.【考点】1E:有理数的乘方.【分析】根据题目信息,设M=1+5+52+53+…+52015,求出5M,然后相减计算即可得解.【解答】解:设M=1+5+52+53+ (52015)则5M=5+52+53+54 (52016)两式相减得:4M=52016﹣1,则M=.故答案为.二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.一个数用科学记数法表示为2.37×105,则这个数是()A.237 B.2370 C.23700 D.237000【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.把2.37的小数点向右移动5位,求出这个数是多少即可.【解答】解:2.37×105=237000.故选:D.8.下列运算正确的是()A.3a+2a=5a2 B.3﹣3=C.2a2•a2=2a6D.60=0【考点】49:单项式乘单项式;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=5a,故A不正确;(C)原式=2a4,故C不正确;(D)原式=1,故D不正确;故选(B)9.在正方形,矩形,菱形,平行四边形,正五边形五个图形中,中心对称图形的个数是()A.2 B.3 C.4 D.5【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各图形分析判断即可得解.【解答】解:正方形,是中心对称图形;矩形,是中心对称图形;菱形,是中心对称图形;平行四边形,是中心对称图形;正五边形,不是中心对称图形;综上所述,是中心对称图形的有4个.故选C.10.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A.(4,3)B.(3,4)C.(﹣1,﹣2)D.(﹣2,﹣1)【考点】Q3:坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.11.下面空心圆柱形物体的左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找出从几何体的左边看所得到的视图即可.【解答】解:从几何体的左边看可得,故选:A.12.如图,下列哪个不等式组的解集在数轴上表示如图所示()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】根据不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.,可得答案.【解答】解:由数周轴示的不等式的解集,得﹣1<x≤2,故选:A.13.某鞋店一天卖出运动鞋12双,其中各种尺码的鞋的销售量如下表:则这12双鞋的尺码组成的一组数据中,众数和中位数分别是()码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 2A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.5【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的定义求解可得.【解答】解:由表可知25出现次数最多,故众数为25;12个数据的中位数为第6、7个数据的平均数,故中位数为=25,故选:A.14.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()A.B.2C.3D.4【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,得出∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,∵BO⊥AE,∴AO=OE,在Rt△AOB中,AO===,∴AE=2AO=2.故选B.三、解答题(本大题共9个小题,满分70分)15.先化简,再求值:(1+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=,当x=﹣1时,原式=.16.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:AB=DE.【考点】KD:全等三角形的判定与性质;JA:平行线的性质.【分析】首先利用平行线的性质可以得到∠A=∠EDF,∠F=∠BCA,由AD=CF可以得到AC=DF,然后就可以证明△ABC≌△DEF,最后利用全等三角形的性质即可求解.【解答】证明:∵AB∥DE,∴∠A=∠EDF而BC∥EF,∴∠F=∠BCA,∵AD=CF,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF,∴AB=DE.17.当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理:频数分布表看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8(1)请求出共调查了多少人;并把小文整理的图表补充完整;(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;VB:扇形统计图.【分析】(1)首先用反对的频数除以反对的频率得到调查的总人数,然后求无所谓的人数和赞成的频率即可;(2)赞成的圆心角等于赞成的频率乘以360°即可;(3)根据题意列式计算即可.【解答】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:故答案为:5.0.1;(2)∵赞成的频率为:0.1,∴扇形图中“赞成”的圆心角是360°×0.1=36°;(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.18.学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.【考点】B7:分式方程的应用.【分析】设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,根据甲种矿泉水比乙种矿泉水多20瓶,列出分式方程,然后求解即可.【解答】解:设甲种矿泉水的价格为x元,则乙种矿泉水价格为1.5x,由题意得:﹣=20,解得:x=2,经检验x=2是原分式方程的解,则1.5x=1.5×2=3,答:甲、乙两种矿泉水的价格分别是2元、3元.19.有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率.【考点】X6:列表法与树状图法.【分析】(1)根据概率公式可得;(2)先画树状图展示12种等可能的结果数,再找到符合条件的结果数,然后根据概率公式求解.【解答】解:(1)∵随机抽取一张卡片有4种等可能结果,其中抽到数字“﹣1”的只有1种,∴抽到数字“﹣1”的概率为;(2)画树状图如下:由树状图可知,共有12种等可能结果,其中第一次抽到数字“2”且第二次抽到数字“0”只有1种结果,∴第一次抽到数字“2”且第二次抽到数字“0”的概率为.20.某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求0到2小时期间y随x的函数解析式;(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时?【考点】GA:反比例函数的应用;FH:一次函数的应用.【分析】(1)根据自变量与函数值的对应关系,可得B点坐标,根据待定系数法,可得答案;(2)根据自变量与函数值的对应关系,可得相应的自变量的值,根据有理数的减法,可得答案.【解答】解:(1)当x=12时,y==20,B(12,20),∵AB段是恒温阶段,∴A(2,12),设函数解析式为y=kx+b,代入(0,10),和(2,20),得,解得,0到2小时期间y随x的函数解析式y=5x+10;(2)把y=15代入y=5x+10,即5x+10=15,解得x1=1,把y=15代入y=,即15=,解得x2=16,∴16﹣1=15,答:恒温系统在一天内保持大棚内温度不低于15℃的时间有15小时.21.如图,在▱ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,cos∠CAB=,求线段OE的长.【考点】LA:菱形的判定与性质;L5:平行四边形的性质;T7:解直角三角形.【分析】(1)根据∠CAB=∠ACB利用等角对等边得到AB=CB,从而判定平行四边形ABCD是菱形,根据菱形的对角线互相垂直即可证得结论;(2)分别在Rt△AOB中和在Rt△ABE中求得AO和AE,从而利用OE=AE﹣AO求解即可.【解答】解:(1)∵∠CAB=∠ACB,∴AB=CB,∴▱ABCD是菱形.∴AC⊥BD;(2)在Rt△AOB中,cos∠CAB==,AB=14,∴AO=14×=,在Rt△ABE中,cos∠EAB==,AB=14,∴AE=AB=16,∴OE=AE﹣AO=16﹣=.22.如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF.(1)求证:FG=FB.(2)若tan∠F=,⊙O的半径为4,求CD的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理;T7:解直角三角形.【分析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.【解答】(1)证明:∵OA=OB,∴∠OAB=∠OBA,∵OA⊥CD,∴∠OAB+∠AGC=90°.∵FB与⊙O相切,∴∠FBO=90°,∴∠FBG+OBA=90°,∴AGC=∠FBG,∵∠AGC=∠FGB,∴∠FGB=∠FBG,∴FG=FB;(2)如图,设CD=a,∵OA⊥CD,∴CE=CD=a.∵AC∥BF,∴∠ACF=∠F,∵tan∠F=tan∠ACF==,即=,解得AE=a,连接OC,OE=4﹣a,∵CE2+OE2=OC2,∴(a)2+(4﹣a)2=4,解得a=,CD=.23.如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.(1)求△ACD的面积(用含a的代数式表示);(2)求点D到射线BN的距离(用含有a的代数式表示);(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.【考点】KY:三角形综合题.【分析】(1)先根据勾股定理得出AC,进而得出CD,最后用三角形的面积公式即可;(2)先判断出∠FDC=∠ACB,进而判断出△DFC∽△CBA,得出,即可求出DF,即可;(3)分两种情况利用相似三角形的性质建立方程求解即可得出结论.【解答】解:(1)在Rt△ABC中,AB=4,BC=a,∴AC==,∴CD=AC=,∵∠ACD=90°,∴S△ACD=AC•CD=(2)如图1,过点D作DF⊥BN于点F,∵∠FDC+∠FCD=90°,∠FCD+∠ACB=180°﹣90°=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴∠FDC=∠ACB,∵∠B=∠DFC=90°,∴△DFC∽△CBA,∴,∴DF=BC=a,∴D到射线BN的距离为a;(3)存在,①当EC=EA时,∵∠ACD=90°,∴EC=EA=AD,∵AB∥CE∥DF,∴BC=FC=a,由(2)知,△DFC∽△CBA,∴,∴FC=AB=2,∴a=2,②当AE=AC时,如图2,AM⊥CE,∴∠1=∠2,∵AM∥BN,∴∠2=∠4,∴∠1=∠4,由(2)知,∠3=∠4,∴∠1=∠3,∵∠AGD=∠DFC=90°,∴△ADG∽△DCF,∴,∵AD==,AG=a+2,CD=,∴,∴a=4+8,即:满足条件的a的值为2或4+8.。

数学一考研模拟试题及答案

数学一考研模拟试题及答案

数学一考研模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,满足f(-x) = f(x)的是()A. f(x) = x^2B. f(x) = |x|C. f(x) = x^3D. f(x) = sin(x)2. 设函数f(x)在点x=a处连续,且lim (x→a) [f(x) - f(a)]/(x-a) = L,那么f'(a) = ()A. LB. 0C. 不存在D. 13. 曲线y = x^2 在点(1,1)处的切线斜率为()A. 1B. 2C. 4D. 04. 设随机变量X服从参数为λ的泊松分布,P(X=k) = e^(-λ) *λ^k / k!,k=0,1,2,...,则E(X)等于()A. λB. λ^2C. kD. e^λ5. 以下哪个数列是发散的?()A. 1, 1/2, 1/3, ...B. 1, 2, 4, 8, ...C. 1, 0, 1, 0, ...D. -1, 1, -1, 1, ...6. 设A和B是两个n阶方阵,|A| = 2,|B| = 3,则|AB| = ()A. 6B. 5C. 1D. 无法确定7. 以下哪个选项是正确的?()A. ∫(0 to 1) x^2 dx = 1/3B. ∫(0 to 1) x^2 dx = 1/2C. ∫(0 to 1) x^2 dx = 2/3D. ∫(0 to 1) x^2 dx = 3/28. 设函数f(x)在区间[a,b]上可积,且f(x) ≥ 0,则()A. ∫(a to b) f(x) dx ≥ 0B. ∫(a to b) f(x) dx > 0C. ∫(a to b) f(x) dx = 0D. 无法确定9. 以下哪个级数是收敛的?()A. 1 + 1/2 + 1/3 + ...B. 1 - 1/2 + 1/2 - 1/3 + ...C. 1 + 1/4 + 1/9 + ...D. 1 - 1/2 + 1/4 - 1/8 + ...10. 设函数f(x)在点x=a处可导,且f'(a) = 2,则曲线y = f(x)在点(x=a, y=f(a))处的切线方程为()A. y = 2x - aB. y = 2x - 2aC. y = 2x + f(a)D. y = 2x - f(a)/2二、填空题(每题4分,共20分)11. 若函数f(x) = 2x^3 - 3x^2 + 5在点x=1处取得极小值,则f'(1) = ____。

九年级第一次数学模拟考试试题含答案

九年级第一次数学模拟考试试题含答案

九年级第一次数学模拟考试(考试总分:150 分)一、单选题(本题共计10小题,总分40分)1.(4分)1.抛物线y=x2﹣1的顶点坐标是()A.(0,1)B.(0,﹣1)C.(1,0)D.(﹣1,0)2.(4分)2.若,则等于()A.B.C.D.3.(4分)3.下列各组线段(单位:cm)中,是成比例线段的是()A.3,5,7,9B.2,5,6,8C.1,3,4,7D.3,6,9,18 4.(4分)4.线段AB=8,P是AB的黄金分割点,且AP<BP,则BP的长度为()A.4﹣4B.8+8C.8﹣8D.4+45.(4分)5.如图,AB∥CD∥EF,AD=4,BC=DF=3,则BE的长为()A.B.C.4D.66.(4分)6.二次函数y=ax2+bx+c的图象如图所示,下列说法错误的是()A.a<0,b>0B.b2﹣4ac>0C.方程ax2+bx+c=0的解是x1=5,x2=﹣1D.不等式ax2+bx+c>0的解集是0<x<57.(4分)7.如图,在Rt△ABC中,∠ACB=90°,D是AB边的中点,AF⊥CD于点E,交BC边于点F,连接DF,则图中与△ACE相似的三角形共有()A.2个B.3个C.4个D.5个8.(4分)8.如图,点A在反比例函数y=−4x(x<0)的图象上,点B在反比例函数的图象上,且AB∥y轴,BC⊥AB于点B,交y轴于点C.若△ABC的面积为3,则k的值为()A.﹣3B.﹣2C.2D.3第8题图第9题图第10题图9.9.(4分)已知反比例函数y=的图象如图所示,则二次函数y=bx2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.10.(4分)10.如图,在正方形ABCD中,点O是对角线AC、BD的交点,过点O作射线OM、ON分别交BC、CD于点E、F,且∠EOF=90°,OC、EF交于点G.给出下列结论:①△COE≌△DOF;②△OGE∽△FGC;③四边形CEOF的面积为正方形ABCD面积的;④DF2+BE2=OG•OC.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本题共计4小题,总分25分)11.(8分)11.线段a=2cm,线段b=8cm,则线段a、b的比例中项是cm.12.(8分)12.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)第12题图13.(5分)13.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=4cm,则线段BC=cm.14.(4分)14.如图,在△ABC中,∠A=90°,∠BCD=∠BCA,BD⊥DC于点D,DC交AB于点E,请完成下列探究.(1)若∠BCD=n°,那么∠EBD=°;(结果用含n的代数式表示)(2)若=m,那么=.(结果用含m的代数式表示)三、解答题(本题共计9小题,总分90分)15.(8分)15.已知==,且x+2y+3z=﹣46,求x,y,z的值.16.(8分)16.如图,已知DE∥BC,FE∥CD,AF=3,AD=5,AE=4.(1)求CE的长;(2)求AB的长.17.(8分)17.在△ABC中,点D、E分别在边AB、AC上,且AD:DB=3:2,AE:EC=1:2,直线ED和CB的延长线交于点F,求:FB:FC.18.(8分)18.如图,已知一次函数y=ax+b与反比例函数的图象相交于点A(1,3)和B(m,1).(1)求反比例函数与一次函数的解析式;(2)当反比例函数的值小于一次函数的值时,请直接写出实数x的取值范围;(3)求△OAB 的面积.19.(10分)19.如图,在等边△ABC 中,P 为BC 上一点,D 为AC 上一点,且∠APD =60°,2BP =3CD ,BP =1. (1)求证△ABP ∽△PCD ; (2)求△ABC 的边长.20.(10分)20.如图,在四边形ABCD 中,AC ,BD 相交于点E ,点F 在BD 上,且∠BAF =∠DBC ,.(1)求证:△ABC ∽△AFD ; (2)若AD =2,BC =5,求AE BE的值.21.(12分)21.如图,AC 为平行四边形ABCD 的对角线,∠ABE =∠ACB ,BE 交边AD 于点E ,交AC 于点F . (1)求证:AE 2=EF •BE ;(2)若EF =1,E 是边AD 的中点,求边BC 的长.22.(12分)22.攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市.某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量y(千克)与该天的售价x(元/千克)之间的数量满足如表所示的一次函数关系.销售量y(千克)…32.53535.538…售价x(元/千克)…27.52524.522…(1)求芒果一天的销售量y与该天售价x之间的一次函数关系式,写出x的取值范围.(2)设某天销售这种芒果获利m元,写出m与售价x之间的函数关系式,并求出最大利润.23.(14分)23.如图,在RT△ABC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.(1)设△APQ的面积为S,求S与t的函数关系式;(2)当t为何值时,△APQ与△ABC相似?(3)在P、Q的运动过程中,△APQ能否构成等腰三角形?如能,直接写出t的值,如不能,说明理由.答案一、 单选题 (本题共计10小题,总分40分)1.(4分)B2.(4分)A3.(4分)D4.(4分)A5.(4分)A6.(4分)D7.(4分)B8.(4分)C 9.(4分)C10.(4分)C二、 填空题 (本题共计4小题,总分25分)11.(8分)11. 4,12.(8分)12. 答案不唯一, 略,13.(5分)13. 12,14.(4分) 14.(1)n,(2)2m 三、 解答题 (本题共计9小题,总分90分) 15.(8分)15.X=-4,Y=-6,Z=-10 16.(8分)16.325,38==AB CE 17.(8分)17. 过B 作BM ‖AC ,交DF 于M 因为BM ‖AC 所以BM/AE =BD/AD 因为AD/DB =3/2 所以BM/AE =2/3 因为AE/EC =1/2 所以BD/EC =1/3 所以FB/FC =BM/EC =1/3即FB:FC=1:318.18.(8(2)1<x<3,或x<0(4)419.(10分)19(1)∵△ABC是等边三角形,∴∠DCP=∠PBA=60°.∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∴∠BAP=∠CPD.∴△ABP∽△PCD.(2)设△ABC的边长为x,易得:△ABP∽△PCD;故可得:=;即=,解得△ABC的边长为3.解答:解:设△ABC的边长为x,由(1)得,△ABP∽△PCD.∴=,∴=.∴x=3.即△ABC的边长为3.20.(10分)20(1)∵∠BAF=∠DBC∴∠BAE=∠DBF,△ABC∽△AFD(2)AEBE =5221.(12分)21.(1)可证△ABE ∽△F AE ,AE 2=EF •BE (2)23=BC22. 22.(12分)(1)y=-x+60(15≤x ≤40).(2)m=y(x-10)=(-x+60)(x-10)=-2x +70x-600. 当x=35时,m 取最大值625. 23. 23.(14分)(1)28.0-4t t s = (2)13501130或=t (3)8251760310或或=t。

专业科目考试:2022数学1真题模拟及答案(1)

专业科目考试:2022数学1真题模拟及答案(1)

专业科目考试:2022数学1真题模拟及答案(1)共670道题1、微分方程y ″-y =e x+1的一个特解应具有形式( )。

(单选题) A. ae x+b B. axe x +b C. ae x +bx D. axe x +bx 试题答案:B2、设(a →×b →)·c →=2,则[(a →+b →)×(b →+c →)]·(c →+a →)=( )。

(单选题)A. 2B. 4C. 1D. 0 试题答案:B3、平行于平面5x -14y +2z +36=0且与此平面距离为3的平面方程为( )。

(单选题)A. 5x -14y +2z +36=0或5x -14y +2z -18=0B. 5x -14y +2z +36=0或5x -14y +2z -9=0C. 5x -14y +2z +81=0或5x -14y +2z -9=0D. 5x -14y +2z +81=0或5x -14y +2z -18=0 试题答案:C4、设0<x n<1,n=1,2,…,且有x n+1=-x n2+2x n,则()。

(单选题)A.B. 不存在C.D.试题答案:C5、设f(x)是以T为周期的可微函数,则下列函数中以T为周期的函数是()。

(单选题)A.B.C.D.试题答案:D6、下列结论正确的是()。

(单选题)A. z=f(x,y)在点(x0,y0)处两个偏导数存在,则z=f(x,y)在点(x0,y0)处连续B. z=f(x,y)在点(x0,y0)处连续,则z=f(x,y)在点(x0,y0)处两个偏导数存在C. z=f(x,y)在点(x0,y0)处的某个邻域内两个偏导数存在且有界,则z=f(x,y)在点(x0,y0)处连续D. z=f(x,y)在点(x0,y0)处连续,则z=f(x,y)在点(x0,y0)处两个偏导数有界试题答案:C7、设函数f(x)在x=0处连续,下列命题错误的是()。

01小升初数学模拟试题一(北师大)(含答案+解析)

01小升初数学模拟试题一(北师大)(含答案+解析)

小升初数学模拟试题一(北师大)一、选择题。

1.商场搞促销活动,原价80元的商品,现在八折出售,可以便宜()元.A.100B.64C.162.下面各数中,最接近1000的数是()A.899B.987C.10023.与数对(3,5)在同一行的是()A.(5,3)B.(3,4)C.(4,5)D.(5,6)4.从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从它里面至少拿出()个苹果。

A.1B.2C.3D.45.把一个圆柱削成一个与它等底等高的圆锥,削去的体积是90立方厘米,这个圆柱的体积是多少立方厘米?列式正确的是()A.90÷3=30B.90÷2×3=135C.90×3=270D.90÷2=456.一辆客车从甲地到乙地,第一天行驶了全程的15,第二天行驶了450千米,这时已行路程和剩下路程的比是3:7.甲乙两地相距()千米.A.750B.900C.2250D.45007.小明看一本书,已经看的与没看的比是3:7,那么已看的占全书的()A.37B.310C.710D.138.数学书厚7()A.毫米B.厘米C.分米9.小明在桌子上用小正方体摆了一个几何体,从上面看到的图形是,从左面看到的图形是,小明最多用了个小正方体,最少用了个小正方体.10.在下面各比中,和15:12比值相等的是()A.5:2B.1.5:0.6C.14:58D.15:211.六年级某班男生人数与女生人数的比是3:2,男生比女生多()A.60%B.50%C.40%D.66.6%二、判断题12.真分数就是最简分数。

()13.两个完全一样的梯形一定能拼成一个长方形.()14.一种商品先涨价10%,再降价10%,原价不变.( )15.36只鸽子飞进5个鸽笼,总有一个笼子至少飞进了8只鸽子.( ) 16.圆锥的体积等于圆柱体积的 13,圆柱与圆锥一定等底等高。

( )三、填空题17.在笔直的公路两旁栽树(两端都栽),每隔5米栽一棵,一共栽了36棵树.这条公路长 米. 18.小于60的数中,7的所有倍数有 . 19.以下四个说法中正确的是 (填序号).①两位小朋友独立操作,共编了7个中国结,有一个小朋友至少编了4个;②若一个圆锥的底面半径扩大到原来的3倍,则底面周长扩大到原来的3倍,体积扩大到原来的27倍; ③在美术本上画一栋50米高的房子,比较合适的比例尺是1:50; ④正方形的周长与边长成正比例关系.20.将2016颗黑子,201颗白子排成一条直线,至少会有 颗黑子连在一起.21.一个外表涂色的正方体木块,切成8个一样大的小正方体,只有一个面涂色的正方体有 块;如果切成一样大的27块,那么只有一面涂色的正方体有 块.22.五(1)班教室在4楼,每层楼有20级台阶,从一楼回到教室需要走 级台阶. 23.计算:(2.25÷0.375﹣0.3×2)÷(2.3×0.25+0.27×2.5)= .24.一个圆柱的底面周长是12.56厘米,高是5厘米,它的侧面积是 平方厘米,表面积是平方厘米,体积是 立方厘米.四、计算题25.下面各题,怎样简便就怎样算.(1)517÷9+ 19 × 1217(2)2﹣ 613 ÷ 926 ﹣ 23(3)87× 386(4)511 - 57+ 611 -2726.解比例(1)3:5=x :15(2)7x = 2124(3)35 : 47 = 78 :x五、应用题27.学校新进150本《童话故事》,《科技书》比《童话故事》的 45少15本,新进《科技书》多少本?28.如图,一个棱长8厘米的正方体,在它的前面的正中间画一个边长2厘米的正方形,再由正方形向对面挖一个长方体洞,剩下物体的表面积是多少平方厘米?29.有A,B,C,D,E五个朋友相聚在一起,互相握手致意.B握了4次手,A握了3次手,C握了2次手,D握了1次手,那么E握了几次手?30.餐厅买了面粉和大米各12袋,面粉每袋83元,大米每袋62元,一共需要多少元?31.甲乙两辆汽车同时从相距630千米的两地相对开出,经过4.2小时两车相遇.已知乙车每小时行70千米,甲车每小时行多少千米?答案解析部分1.【答案】C【解析】【解答】80×(1﹣80%)=80×0.2=16(元),所以可以便宜16元。

中考数学2022年上海市中考数学第一次模拟试题(含答案及解析)

中考数学2022年上海市中考数学第一次模拟试题(含答案及解析)

2022年上海市中考数学第一次模拟试题 考试时间:90分钟;命题人:教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分数中,最简分数是( )A .69B .24C .46D .292、下列说法中,正确的是( ) A .整数包括正整数和负整数 B .自然数都是正整数C .一个数能同时被2、3整除,也一定能被6整除D .若0.3m n ÷=,则n 一定能整除m3、下列四条线段为成比例线段的是 ( )A .a =10,b =5,c =4,d =7B .a =1,bc,dC .a =8,b =5,c =4,d =3D .a =9,bc =3,d4、关于x 的方程5264x a a x -=+-的解是非负数,则a 的取值范围是( ) A .1a ≥ B .1a ≤- C .1a ≥- D .0a ≥ ·线○封○密○外5、二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为()A.B.C.D.6、下列说法中正确的是()A.符号相反的两个数互为相反数B.0是最小的有理数C.规定了原点、方向和单位长度的射线叫做数轴D.0既不是正数,也不是负数〈〉=,不超过7的素数有2、3、5、7共4 7、x是正整数,x〈〉表示不超过x的素数的个数.如:74〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉的值是()个,那么2395134188A.9 B.10 C.11 D.128、下列命题正确的有几个()①如果整数a能被整数b(不为0)除尽,那么就说a能被b整除;②任何素数加上1都成为偶数;③一个合数一定可以写成几个素数相乘的形式;④连续的两个正整数,它们的公因数是1.A.0 B.1 C.2 D.39、下列哪个数不能和2,3,4组成比例()A .1B .1.5C .223D .6 10、下面分数中可以化为有限小数的是( ) A .764 B .730 C .7172 D .1272 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、若3423x =,则x =______. 2、一个扇形面积等于这个扇形所在圆面积的25,则这个扇形的圆心角是______. 3、若23a b =,则a a b =+________. 4、13小时=________分钟. 5、求比值:125克:0.5千克=_______________ 三、解答题(5小题,每小题10分,共计50分) 1、已知::2:3a b =,(5):()2:3a b x ++=,求x 的值 2、计算:1743.51 1.252 3.84105⨯+⨯-÷. 3、一条公路长1500米,已修好900米,还需修全长的几分之几? 4、将6本相同厚度的书叠起来,它们的高度为14厘米,再将15本这样相同厚度的书叠在上面,那么这叠书的总高度是多少厘米? 5、求19962的末三位是多少.-参考答案- 一、单选题·线○封○密○外1、D【分析】根据最简分数是分子,分母只有公因数1的分数即可得出答案.【详解】∵622142=== 934263,,,∴29是最简分数,故选:D.【点睛】本题主要考查最简分数,掌握最简分数的定义是解题的关键.2、C【分析】根据整数的分类,自然数的定义,倍数与约数,可得答案.【详解】解:A、整数包括正整数、零和负整数,故A错误;B、自然数都是非负整数,故B错误;C、一个数能同时被2、3整除,也一定能被6整除,故C正确;D、m÷n=整数,则n一定能整除m,故D错误;故选:C.【点睛】本题考查了有理数,整数包括正整数、零和负整数,注意自然数都是非负整数.3、B【详解】A .从小到大排列,由于5×7≠4×10,所以不成比例,不符合题意; B1=,所以成比例,符合题意; C .从小到大排列,由于4×5≠3×8,所以不成比例,不符合题意; D故选B . 【点睛】 本题考查线段成比例的知识.解决本类问题只要计算最大最小数的积以及中间两个数的积,判断是否相等即可,相等即成比例,不相等不成比例. 4、C 【分析】 先求出方程的解,然后根据题意得到含参数的不等式求解即可. 【详解】 解:由5264x a a x -=+-,方程的解为1x a =+, ∴10a +≥,即1a ≥-. 故选C . 【点睛】 本题主要考查一元一次方程的解及一元一次不等式的解,熟练掌握运算方法是解题的关键. 5、D 【分析】 观察两图象,分别确定,a c 的取值范围,即可求解. 【详解】·线○封○密○外解:A 、抛物线图象,开口向下,即0a < ,而一次函数图象自左向右呈上升趋势,则0a > ,相矛盾,故本选项错误,不符合题意;B 、抛物线图象与y 轴交于负半轴,即0c < ,而一次函数图象与y 轴交于正半轴,0c > ,相矛盾,故本选项错误,不符合题意;C 、抛物线图象,开口向上,即0a > ,而一次函数图象自左向右呈下降趋势,即0a < ,相矛盾,故本选项错误,不符合题意;D 、抛物线图象,开口向下,即0a < ,一次函数图象自左向右呈下降趋势,即0a < ,两图象与y 轴交于同一点,即c 相同,故本选项正确,符合题意;故选:D .【点睛】本题主要考查了二次函数、一次函数的图象和性质,熟练掌握二次函数20y ax bx c a ++≠=() a 决定抛物线的开口方向,c 决定抛物线与y 轴的交点位置是解题的关键.6、D【分析】根据有理数的相关概念直接进行排除选项即可.【详解】A 、符号相反的两个数不一定是相反数,如4和-3,故错误;B 、0不是最小的有理数,还有负数比它小,故错误;C 、规定了原点、正方向和单位长度的直线叫做数轴,故错误;D 、0既不是正数也不是负数,故正确.故选D .【点睛】本题主要考查相反数、数轴及零的意义,熟练掌握各个知识点是解题的关键.7、C【分析】根据题意所给定义新运算及素数与合数的概念直接进行求解.【详解】解:23〈〉表示不超过23的素数有2、3、5、7、11、13、17、19、23共九个,则23=9〈〉;95〈〉表示不超过95的素数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89共24个,则有95=24〈〉, 由1=0〈〉可得134188=0〈〉⨯〈〉⨯〈〉; 2395134188=33=11∴〈〈〉+〈〉+〈〉⨯〈〉⨯〈〉〉〈〉; 故选C . 【点睛】 本题主要考查素数与合数,熟练掌握素数与合数的概念是解题的关键. 8、C 【分析】 ①除尽是指被除数除以除数(除数≠0),除到最后没有余数,就说一个数能被另一个数除尽;而整除是指一个整数除以一个非0整数,得到的商是整数还没有余数,就说一个数能被另一个数整除; ②根据质数的定义,2为最小的质数,但是2+1=3,3为质数; ③根据合数的定义:一个数除了1和它本身以外还有别的因数,这样的数叫做合数,分解质因数就是把一个合数写成几个质数的连乘积形式,所以任何一个合数都可以写成几个质数相乘的形式; ④相邻的两个正整数是互质数,互质数的公因数是1,由此即可解答. 【详解】 ①根据“整除”和“除尽”概念的不同,可知能被b 除尽的数不一定能被b 整除. 如:15÷2=7.5,15能被2除尽,但不能被2整除,故①错误; ②由于2为最小的质数,2+1=3,3为奇数,所以任何质数加1都成为偶数的说法是错误的,故②错误;·线○封○密○外③任何一个合数都可以写成几个质数相乘的形式,故③正确;④根据相邻的两个自然数是互质数,互质数的公因数是1,故④正确;综上,正确的是③和④,共2个.故选:C.【点睛】本题考查了数的整除,合数的定义以及分解质因数的意义,因数、公因数的概念,解题的关键是理解“整除”和“除尽”的意义以及两个数互质,最大公因数是1,最小公倍数是它们的积.9、A【分析】根据比例的基本性质,两内项之积等于两外项之积逐一分析即可.【详解】解:根据比例的基本性质,两内项之积等于两外项之积,则:A.1423⨯≠⨯,不可以组成比例;B.1.5423⨯=⨯,可以组成比例;C.223243⨯=⨯,可以组成比例;D.2634⨯=⨯,可以组成比例;故选:A.【点睛】本题考查比例,掌握比例的基本性质:两内项之积等于两外项之积是解题的关键.10、A【分析】根据题意可直接进行分数化简小数,然后排除选项即可.【详解】A 、7=0.10937564,故符合题意;B 、7=0.2330,故不符合题意; C 、71=1.097272,故不符合题意; D 、72=2.58312,故不符合题意; 故选A .【点睛】 本题主要考查分数化小数,熟练掌握分数化小数是解题的关键. 二、填空题 1、89 【分析】 根据等式的基本性质解方程即可. 【详解】 解:3423x = 34232233x ⨯=⨯ 89x = 故答案为:89. 【点睛】 此题考查的是解方程,掌握等式的基本性质是解题关键. ·线○封○密○外2、144°【分析】由题意可知:扇形面积占圆面积的25,则其圆心角也占圆的度数的25,而整圆是360°,所以就能求出圆心角是多少度.【详解】解:360°×25=144°故答案为:144°.【点睛】此题主要考查圆的面积的计算方法以及在同圆或等圆中,扇形面积与圆面积的比等于扇形圆心角与圆周角度数的比.3、2 5【分析】根据23ab=,得到23a b=,代入式子计算即可.【详解】解:∵23ab=,∴23a b =,∴2233232553aa b b bb bb+===+,故答案为:25.【点睛】此题考查分式的求值以及比例式恒等变形能力,掌握等式的性质变形得到23a b =是解题的关键. 4、20 【分析】 根据1小时等于60分钟换算即可.【详解】 13小时=160=203⨯分钟, 故答案为:20. 【点睛】 本题主要考查单位的换算,掌握小时和分钟之间的换算是解题的关键. 5、14 【分析】 先统一单位,再用比的前项除以比的后项,据此解答. 【详解】 解:125克:0.5千克 =125克:500克 =125÷500 =14 故答案为:14. 【点睛】 本题主要考查了求比值方法的掌握情况,注意要先统一单位. ·线○封○密○外三、解答题1、152【分析】根据:2:3a b =可用a 表示b 并代入(5):()2:3a b x ++=中化简即可抵消a ,解出x .【详解】解:因为:2:3a b =, 所以32b a =, 所以3(5):()2:32a a x ++=, 即33(5)2()2a a x +=⋅+ 31532a a x +=+ 解得152x =. 【点睛】本题考查比的性质.化简过程中注意内项之积等于外项之积.2、3【分析】把分数统一成小数,除法运算转化成乘法运算,再利用乘法分配律计算.【详解】1743.51 1.252 3.84105⨯+⨯-÷ 3.5 1.25 1.25 2.7 3.8 1.25=⨯+⨯-⨯1.25(3.52.73.8)=⨯+-1.252.4=⨯3=. 【点睛】 本题考查了有理数的加减乘除混合运算,运用乘法分配律能使计算简便. 3、25 【分析】 先求出剩下的米数,再用剩下的米数除以公路的总长度即可. 【详解】 解:(1500-900)÷1500, =600÷1500, =25, 答:还需修全长的25. 【点睛】 本题属于求一个数是另一个数几分之几,只要找准对应量,用除法计算即可.4、49厘米【分析】先算出每本书的厚度,再乘以书的总本数即可得到解答.【详解】 解:由题意得:()14615496⨯+=,∴这叠书的总高度是49厘米, 答:这叠书的总高度是49厘米. 【点睛】 ·线○封○密·○外本题考查乘除法的综合应用,根据不同的问题情境采用不同的列式计算方法是解题关键.5、336.【分析】末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环.因此199631993-=,1993/100余93,因此从008向前找7个即为336,依此即可求解.【详解】解:末三位从2的一次方开始:002,004,008,016,032,064,128,256,512,024,048,096,192,,384,768,536,072,144,288,576,152,304,608,216,432,……504,008,因此找到一个规律就是:末位数有008的循环,即从2的3次方开始,到2的103次方,每100次出现末三位008的循环.因此199631993-=,1993/100余93,因此从008向前找7个即为336.故答案为:336.【点睛】本题主要考查了数字类规律探索,解题的关键是从简单的乘方运算开始,通过运算找出规律解决问题.。

高考数学(理科)模拟试题含答案(一)精编版

高考数学(理科)模拟试题含答案(一)精编版

高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。

如需改动,先擦干净再涂其他答案。

不得在试卷上作答。

2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。

如需改动,先划掉原答案再写新答案。

不得用铅笔或涂改液。

不按要求作答无效。

3.答题卡需整洁无误。

考试结束后,交回试卷和答题卡。

第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。

3B。

4C。

7D。

82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。

iB。

-iC。

2iD。

-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。

80B。

85C。

90D。

954.XXX每天上学都需要经过一个有交通信号灯的十字路口。

已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。

如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。

4/5B。

3/4C。

2/3D。

3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。

120B。

160C。

200D。

2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。

3.119B。

小学数学一年级上册竞赛模拟提高试题(附答案解析)

小学数学一年级上册竞赛模拟提高试题(附答案解析)

小学数学一年级上册竞赛模拟提高试题(附答案解析)1.请你把0、1、2、3、4、5 这六个数字填在苹果里,使算式成立,每个数字只能用一次。

2.按规律填上括号里的数。

2,5,8,11,( ),17,20。

3.按规律填出空缺的项。

1,9,2,8,3,( ),4,6,5,5。

4.把一根粗细均匀的木头锯成6段,需要锯( )次。

如果锯一次需要2分钟,一共要锯( )分钟。

5.大牛从1楼走到5楼需要4分钟,那么用同样的速度,他从1楼走到8楼需要( )分钟。

6.雁雁有10颗巧克力,旦旦有8颗巧克力。

雁雁给旦旦一些巧克力后,旦旦有15颗巧克力,那么此时雁雁有( )颗巧克力。

7.计算:10+9-8+7-6+5-4+3-2+1=_______。

8.小军喝一杯牛奶,第一次喝了半杯,用水加满,第二次喝了半杯后又用水加满,然后全部喝完。

小军一共喝了( )杯牛奶,( )杯水。

9.有一个教室里的桌子上放着9支蜡烛,点着了3只,突然一阵风吹来,吹灭了2支,过了一天后教室里还有( )支蜡烛。

10.有16位小朋友在玩游戏,后来有3位小朋友加入,又有6位小朋友回家去了,现在有__位小朋友在玩。

11.下面五角星里的数字都是按一定规律排列的,你能填出“?”里的数吗?12.小华和爸爸、妈妈为植树节义务植树,小华植了1棵,爸爸植了5棵,妈妈比爸爸少植2棵,妈妈植了多少棵,他们一共植了多少棵?13.下面每幅图中各有几个小正方体?( )个 ( )个14.同学们排队做操,从前面数,小明排第4,从后面数,小明排第5,这一队一共有多少人?15.小红有9只铅笔,小明有5只铅笔,小红给小明( )支铅笔两人的铅笔同样多。

16.小化过生日,请来5个小朋友一起吃饭。

每人一个饭碗,2人一个菜碗,3人一个汤碗,请你算一算,他们一共用了( )个碗。

17.一只小猫5分钟吃完一条小鱼,5只小猫同时吃5条同样的小鱼要( )分钟。

18.一根电线,对折后从中间剪开,剪开的电线一共有( )段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年河北省对口招生考试模拟试题数学试卷说明:一. 本试卷共三道大题37道小题,共120分。

二. 答题前请仔细阅读答题卡上的“注意事项”,按照要求的规定答题。

选择题用2B 铅笔填涂在机读卡上,第二卷用黑色签字笔写在答题卡规定地方,在试卷和草稿纸上答题无效。

三. 做选择题时,如需改动,请用橡皮将原答案擦干净,再选涂其它答案。

考试结束后,将机读卡和答案卡一并交回。

第I 卷(选择题 共45分)一、选择题(本大题有15个小题,每小题3分,共45分。

在每小题所给出的四个选项中,只有一个符合题目要求)1.已知集合A={1,3,x},B={1,x 2},A ∪B={1,3,x},则满足条件的实数x 的不同值有 ( )A .3B .2C .1D .4 2.已知a>b,且ab>0,则有( )A . a 2>b 2B . a 2<b 2C .a 1>b 1 D . a 1<b13.|x-1|>2是|x|>3的 ( ) A . 充分但不必要条件 B .必要但不充分条件C .充分且必要条件D .既不充分也不必要条件4.如果奇函数F(x)在[2,5]上是增函数且最小值是3,那么F(x)在区间[-5,-2]上是( )A .增函数且最小值为-3B .增函数且最大值为-3C .减函数且最小值为-3D .减函数且最小值为-55.函数y=-ax-a 和y=ax 2在同一直角坐标系中的图像只能是 ( )A B C D 6.把函数y =sinx 的图像向左或向右平移2π个单位,得到的函数是( ) A. y=cosx B. y =-cosx C. y=|cosx| D. y=cosx 或y =-cosx 7.在等比数列{a n }中,若a 1,a 9是方程2x 2-5x+2=0的两根,则a 4a 6=( ) A .5 B . C .2 D .18.若向量a 与向量b 的长度分别为4和3,其夹角60,则|a- b |的值为 ( ) A .37 B .13 C.5 D.19.若sin(π-α)=log 4116,且∈α(-2π,0),则tan(2π-α)=( ) A .-33 B . 33C .-3D .3 10.直线2x+3y-6=0关于Y 轴对称的直线方程是( )A . 2x-3y-6=0B . 2x-3y+6=0C . 2x+3y+6=0D . 2x+3y-6=011.点M 在圆(x-5)2+(y-3)2=9上运动,则点M 到直线3x+4y-2=0的最短距离为( )A .2B .5C .8D .912.若抛物线y 2=4x 上一点P 到该抛物线焦点的距离为5,则经过点P 和原点的直线OP 的倾斜角等于 ( ) A.45B. 60C. 45或135 D. 60或12013.已知边长为a 的菱形ABCD,∠A=60,将菱形沿对角线BD 折成直二面角,则AC 的长为( ) A. 2a B.22a C.26a D.以上结论都不对 14.5个不同的球放入不同的4个盒子中,每个盒子中至少放一球,若甲球必须放入A盒,则不同的放法种数是( )A. 120B. 72C.60D. 3615.从1到9这9个自然数中任取两个数,取出的两个数之和是偶函数的概率为( ) A.94 B.61 C. 185 D. 31第Ⅱ卷(非选择题 共75分)二、填空题(本大题有15个小题,每小题2分,共30分。

请将正确答案填在题中的横线上,不填、少填、错填均不得分)16.若函数f(x)= ⎩⎨⎧≥<6,log 6,23x x x x ,则f(f(2)等于 .17.log 327+ (279)0+ (1251)31_+sin 3π + tan π49=________.18.函数y=log 2(|x-1|-2)+1621-x 定义域是________________ .19.在∆ABC 中,若sinA=2sinBcosC ,则∆ABC 是_____________三角形. 20.已知A(5,-2),B(-5,-1),且AP =21AB ,则P 点的坐标是__________. 21.在[-,]上,使sinx ≥21的x 的范围是22.已知等差数列{a n }中,a 4+a 6+a 15+a 17=30,求S 20= .23.方程k x -32+ky +22=1表示椭圆,则k 的取值范围是 .24.若点P(2,m)到直线3x-4y+2=0的距离为4,则m 的值为 . 25.不等式(51)82-x <5x 2-的解集是 . 26.正方体ABCD-A 1B 1C 1D 1中,AC 1与平面BB 1D 1D 所成的角的正切值为27.点P 是椭圆1002x +642y =1上的一点,F 1,F 2是其焦点,若∠ F 1P F 2=90゜,则∆F 1P F 2的面积为____________.28.在(3x-x2)n 的展开式中,第9项为常数项,则n=________.29.由数字1、2、3、4、5组成无重复数字且数字1与2不相邻的五位数的个数有 种.30.将3个不同的球随机放入3个盒子中,则恰有一个盒子空着的概率是_________.三、解答题(本大题共7个小题,共45分。

请在答题卡中对应题号下面指定的位置作答,要写出必要的文字说明、证明过程和演算步骤):31.(5分)设M={x|x 2-4x ≥0},N={x||x-1|<a},若M ∩N=Φ,求实数a 的取值范围.32.(6分)若数列{a n }满足:log 2a 1+n =1+log 2a n ,且a 1+a 2+…+a 5=62,求a 1033.(5分)已知tan(4π+θ)=2,求(1)tan θ的值;(2)sin2θ-2cos 2θ的值34.(7分)某产品生产厂家的月生产能力不超过一千件。

根据以往的生产销售经验得到下面有关生产销售的规律:每生产产品x (百件)其总成本为G(x)万元,其中固定成本2万元,并且每生产一百件产品的生产成本为1万元(总成本=固定成本+生产成本)。

而销售收入R(x)满足R(x)=-0.4x 2+4.2x-0.8,假定该产品的产销平衡,那么根据上述统计规律,求:(1)使工厂有盈利,产量应控制在什么范围?(2)生产多少件产品时,盈利最多?最多盈利是多少?35.(8分)设抛物线对称轴为坐标轴,顶点在原点,焦点在圆x 2+y 2-2x-3=0的圆心,过焦点作倾斜角为45゜的直线与抛物线交于A,B.(1)求直线和抛物线的方程。

(2)求∆OAB 的面积36.(8分)如图:已知四边形ABCD 为正方形,P 是平面ABCD 外一点,三角形PDC 为等边三角形,且平面PDC ⊥平面ABCD ,E 为PC 的中点.(1)求证:平面EDB ⊥平面PBC ;(2)求二面角B- DE - C 的平面角的正切值.37.(6分)一个袋中装有6个红球和4个白球,它们除了颜色外,其他地方没有差别,采用无放回的方式从袋中任取3个球,取到白球的数目用ξ表示.(1)求离散型随机变量ξ的概率分布. (2)求P(ξ≥2).22001133年年对对口口高高考考数数学学模模拟拟试试题题参参考考答答案案一一,,选择题(共15题,每小题3分,共45分)1.A 2.D 3.B 4.B 5.C 6.D 7.D 8.B 9.B 10.B 11.A 12.C 13.C 14.C 15.A 二.填空题(共15小题,每小题2分,共30分)16. 3 17. 10 18.(-∞,-1)∪(3,4) ∪(4,+ ∞) 19.等腰 20.(0,-23) 21.[6π,65π] 22. 150 23. (-2,21)∪(21,3) 24. -3或7 25. (-∞,-2)∪(4,+ ∞) 26.2 27. 64 28. 12 29. 72 30.32三.解答题(共7小题,共45分)解答应写出文字说明、演算步骤或推证过程。

31.(本小题满分5分) 解:M={x| x 2-4x ≥0}={x|x ≤0或x ≥4}. 当a ≤0时,得N=Φ,则M ∩N=Φ成立. 当a>0时,N={x||x-1|<a}={x|1-a<x<1+a},由M ∩N=Φ,可得⎪⎩⎪⎨⎧->+≤+≥-a a a a 114101,解得0<a ≤1.综上所述,实数a 的取值范围为a ≤1 32.(本小题满分6分)解: 因为log 2a 1+n =1+log 2a n ,即log 2a 1+n - log 2a n =1, log 2n n a a 1+=1,求得nn a a1+=2,所以{a n }是等比数列,公比为2. 又a 1+a 2+…+a 5=62,S 5=21)21(51--a =62,得a 1=2所以a 10= a 1q 9=2⨯29=102433.(本小题满分5分)解:(1)由tan(4π+θ)=2得,θθtan 1tan 1-+=2 解得tan θ=31(2)sin2θ-2cos 2θ=2sin θcos θ-2cos 2θ=θθθθθ222cos sin cos 2cos sin 2+-∙=1tan 2tan 22+-θθ=1)31(23122+-⨯=- 5634.(7分)解:(1)使工厂有盈利,则R(x)>G(x) 即-0.4x 2+4.2x-0.8> 2+x 整理得x 2- 8x+7< 0解得 1<x<7故 产量应该控制在大于100件而小于700件的范围内。

(2)设生产x 百件并销售后盈利为y,则 y=R(x)- G(x)=( -0.4x 2+4.2x-0.8)- (2+x)=-52x 2+516x-514=-52(x-4)2+518 当x=4时,y 取得最大值为518即 生产400件产品时,盈利最多为3.6万元35.(8分)解:圆的方程x 2+y 2-2x-3=0,即(x-1)2+ y 2=4.知圆心为(1,0),r=2. 抛物线的焦点坐标为F(1,0),p=2,抛物线方程为y 2=4x. 过焦点F(1,0)的直线的倾斜角为45゜,所以直线方程,y=x-1.(2)由⎩⎨⎧-==14y 2x y x得x 2-6x+1=0,x 1+x 2=6, x 1x 2=1,则|AB|=]4))[(k 1(212212x x x x -++=8, 圆心(0,0)到直线x-y-1=0的距离为d=21=22, 所以∆OAB 的面积S=21|AB|d=21⨯8⨯22=2236.(8分)(1)证明:因为四边形ABCD 为正方形所以DC ⊥BC因为平面PDC ⊥平面ABCD,交线为DC 所以BC ⊥面PDC ,而DE 在平面PDC 内, 所以BC ⊥DE因为三角形PDC 为等边三角形,E 为PC 的中点, 所以DE ⊥PC又PC ∩BC=C,PC 、BC 都在平面PBC 内 所以DE ⊥面PBC 又DE ⊆面EDB所以平面EDB ⊥平面PBC.(2)由(1)的证明可知:DE ⊥面PBC所以∠BEC 就是二面角B- DE - C 的平面角 因为BC ⊥面PDC,而PC 在面PDC 内 所以BC ⊥PC在R t ∆ECB 中,CE=21BC则tan ∠BEC=CEBC=2.37.(6分)解:(1)随机变量ξ的可能取值为0,1,2,3. 相应的概率依次为P(ξ=0)=31036C C =61 , P(ξ=1)= 3102614C C C =21P(ξ=2)= 3101624C C C =103, P(ξ=3)= 31034C C =301故随机变量ξ的概率分布为(2)P(ξ≥2)= P(ξ=2)+ P(ξ=3)= 103+301=31。

相关文档
最新文档