拟合优度检验和假设检验

合集下载

计量经济学的统计检验

计量经济学的统计检验

统计检验
区间估计
• ������2
•R • 调整���ത���2
拟合优度
显著性检验
• 方程的显著性检验 • 参数的显著性检验
拟合优度
拟合优度(Goodness of Fit)是指回归直线对观测值的拟合程度。 度量拟合优度的统计量是可决系数(亦称判定系数)������2。 拟合优度是样本回归线对数据的拟合有多么好的一个度量。 ������2是双变量情形下的表示,������2是多变量情况下的表示。 维恩图: (a) ������2=0 (f) ������2=1
如例子中一样,置信水平一般用百分比表示,因此置信水平0.95 上的置信区间也可以表达为:95%置信区间。置信区间的两端被 称为置信极限。对一个给定情形的估计来说,置信水平越高, 所对应的置信区间就会越大。
缩小置信区间
由于置信区间一定程度地给出了样本参数估计值与总体参数真 值的“接近”程度,因此置信区间越小越好。 要缩小置信区间,需 1. 增大样本容量n,因为在同样的样本容量下,n越大,t分布表
k
1)
F与���ത���2同方向变化,���ത���2=0时,F=0,F越大,���ത���2越大,���ത���2=1时,F为 无穷大。
F检验是检验回归方程总显著性的,也是检验���ത���2的显著性的。
➢通过F值的取值范围算出���ത���2的取值范围,与实值比较,满足取值范 围说明模型在该置信水平下成立。
������2
������2 公式
������2 性质
R2 =
ESS TSS
= (Y^ i - Y)2 (Yi - Y)2
=
y^i2 yi2
R 2 ESS 1 RSS
TSS

泊松回归的假设检验方法

泊松回归的假设检验方法

泊松回归的假设检验方法
泊松回归(Poisson regression)通常用于建模计数数据的回归分析,其中因变量是计数型变量。

在泊松回归中,假设检验用于确定自变量对因变量的影响是否显著。

以下是常见的泊松回归中的假设检验方法:
假设检验类型:
1.回归系数的显著性检验:对每个自变量的回归系数进行检验,判断它们对因变量的影响是否显著。

通常使用t 检验或Wald 统计量来评估回归系数的显著性。

2.全局模型的拟合优度检验:评估整个模型的拟合情况和自变量的整体影响。

通常采用拟合优度检验,如对数似然比检验(Likelihood Ratio Test)或Wald 测试来比较拟合了自变量的模型和未拟合自变量的模型。

进行假设检验的步骤:
1.确定假设:在进行检验之前,首先明确要检验的假设。

典型情况下,假设为“自变量对因变量没有显著影响”。

2.计算相关统计量:对每个回归系数进行检验,计算相应的统计量,如t 值、Wald 统计量或对数似然比统计量。

3.设定显著性水平:确定显著性水平,通常为0.05 或0.01,用于判断检验结果是否显著。

4.假设检验:使用所选的统计量和显著性水平,进行假设检验。

如果计算得到的统计量的p 值小于显著性水平,就可以拒绝原假设,即认为自变量对因变量有显著影响。

正态性检验的几种方法

正态性检验的几种方法

正态性检验的几种方法一、引言正态分布是自然界中一种最常见的也是最重要的分布。

因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验。

目前,正态性检验主要有三类方法:一是计算综合统计量,如动差法、Shapiro-Wilk 法(W 检验)、D ’Agostino 法(D 检验)、Shapiro-Francia 法(W ’检验)。

二是正态分布的拟合优度检验,如2χ检验、对数似然比检验、Kolmogorov-Smirov 检验。

三是图示法(正态概率图Normal Probability plot),如分位数图(Quantile Quantile plot ,简称QQ 图)、百分位数(Percent Percent plot ,简称PP 图)和稳定化概率图(Stablized Probability plot ,简称SP 图)等。

而本文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,还进行了应用。

二、正态分布2.1 正态分布的概念定义1若随机变量X 的密度函数为()()()+∞∞-∈=--,,21222x e x f x σμπσ其中μ和σ为参数,且()0,,>+∞∞-∈σμ则称X 服从参数为μ和σ的正态分布,记为()2,~σμN X 。

另我们称1,0==σμ的正态分布为标准正态分布,记为()1,0~N X ,标准正态分布随机变量的密度函数和分布函数分别用()x ϕ和()x Φ表示。

引理1 若()2,~σμN X ,()x F 为X 的分布函数,则()⎪⎭⎫⎝⎛-Φ=σμx x F由引理可知,任何正态分布都可以通过标准正态分布表示。

2.2 正态分布的数字特征引理2 若()2,~σμN X ,则()()2,σμ==x D x E 引理3 若()2,~σμN X ,则X 的n 阶中心距为()()N k kn k k n kn ∈⎩⎨⎧=-+==2,!!1212,02σμ定义2 若随机变量的分布函数()x F 可表示为:()()()()x F x F x F 211εε+-= ()10<≤ε其中()x F 1为正态分布()21,σμN 的分布函数,()x F 2为正态分布()22,σμN 的分布函数,则称X 的分布为混合正态分布。

一元线性回归模型的统计检验

一元线性回归模型的统计检验

注意英文缩写的含义
TSS: Total Sum of Squares / 总离差平方和
RSS: Regression Sum of Squares / 回归平方和 Residual Sum of Squares / 残差平方和
ESS: Error Sum of Squares / 误差平方和(残差平方和) Explained Sum of Squares / 解释平方和(回归平方和)
(2)变量的显著性检验
对于最小二乘估计量ˆ1,已经知道它服从正态分布
ˆ1 ~ N(1,
2
xБайду номын сангаас2 )
由于真实的 2未知,在用它的无偏估计量ˆ 2
ei2 (n 2)替代时,可构造如下统计量
t ˆ1 1 ˆ1 1 ~ t(n 2)
ˆ 2 xi2
假设检验采用的是具有概率性质的反证法。先 假定原假设正确,然后根据样本信息,观察由此 假设而导致的结果是否合理,从而判断是否接受 原假设。判断结果合理与否,依据是小概率事件 原理。
假设检验的步骤: (1)提出原假设和备择假设; (2)根据已知条件选择检验统计量; (3)根据显著性水平确定拒绝域或临界值; (4)计算出统计量的样本值并作出判断。
其中X 和Y 分别是变量X与Y的样本均值。 r的取值范围是:[-1,1]
(4)样本可决系数与样本相关系数的关系 联系:
在数值上, 一元线性回归模型的样本可决系 数等于被解释变量与解释变量之间样本相关系数 的平方:
r2
yˆi2 yi2

ˆ12
xi2 yi2

( (
xi yi )2 xi2 )2
所以有
yi2 yˆi2 ei2

回归模型的统计检验

回归模型的统计检验
n 为样本容量。 为样本容量。
分布。 F 统计量服从自由度为 ( k , n − k − 1) 的 F 分布。选定 分布表(见本书附录) 一个显著性水平 α ,查 F 分布表(见本书附录) , 可以得到一个临界值 Fα ( k , n − k − 1) 。
F检验与R2的关系
根据二者关系,有需注意的几个问题: ⑴F检验实际上也是判定系数的显著性检验。 ⑵如果模型对样本有较高的拟合优度,F检 验一般都能通过。 ⑶实际应用中不必过分苛求R2值的大小, 重要的是考察模型的经济意义是否合理。
∑ x ∑ x − (∑ x x ) ∑ x σˆ ∑ x ∑ x − (∑ x x )
2 1 2 2 1 2 2 1 2 2 1 2 2 1 2
2 x2 σ 2 ∑ ˆ
2
2
然后根据样本观测值和估计值,构造计算统计量: 然后根据样本观测值和估计值,构造计算统计量:
ˆ βi − βi t= ˆ S βi
ˆ ˆ ∑(y − y) = ∑ (y − y) + ∑ (y − y )
2 2 i i i i 2
y
yi
ei
yi − y
ˆ ( yi − y )
SRF
y
xi
x
TSS = Σ ( y i − y ) 2 ˆ ESS = Σ ( y i − y ) 2 ˆ RSS = Σ ( y i − y i ) 2
拟合优度检验统计量:可决系数( 2、拟合优度检验统计量:可决系数(判
定系数) 定系数)R2和校正可决系数 R2
(1)可决系数 )
R 2 进行拟合优度检验,可决系 用可决系数 进行拟合优度检验,
数的计算公式为: 数的计算公式为:
( yi − y )2 ∑ˆ 2 R = ( yi − y )2 ∑

二项分布拟合优度检验

二项分布拟合优度检验

二项分布拟合优度检验
二项分布拟合优度检验是一种用于检验观察数据是否符合二项分布的统计方法。

二项分布拟合优度检验的步骤如下:
1. 假设检验:
- 零假设H0:观察数据符合二项分布。

- 备择假设H1:观察数据不符合二项分布。

2. 计算期望频数:
- 计算每个类别的期望频数,期望频数等于总样本量乘以对
应类别的理论概率。

3. 计算卡方统计量:
- 计算卡方统计量,公式为:X² = Σ((观察频数-期望频数)²/期望频数),其中Σ表示对所有类别求和。

4. 查表计算P值:
- 根据类别数减去1和给定的显著性水平,查询卡方分布表,得到拒绝域的卡方值。

- 如果计算得到的卡方统计量大于表中的卡方值,则拒绝零
假设,否则不能拒绝零假设。

- 根据卡方分布表,还可以计算拒绝域的P值,如果计算得
到的P值小于给定的显著性水平,则拒绝零假设。

如果拒绝了零假设,则可以认为观察数据不符合二项分布;如果不能拒绝零假设,则可以认为观察数据符合二项分布。

第八章拟合优度检验

第八章拟合优度检验

142 149 142 137 134 144 146 147 140 142
140 137 152 145
解 为粗略了解数据的分布情况,先画出直方图。
步骤如下: 1.找出数据的最小值、最大值为126、158,取区 间[124.5, 159.5],它能覆盖[126, 158]; 2.将区间[124.5, 159.5]等分为7个小区间,小区间的 长度Δ=(159.5-124.5)/7=5, Δ称为组距,小区 间的端点称为组限,建立下表:
Y 50 31 26
17
10
8
6
6
8
试检验相继两次地震间隔天数 X 服从指数分布.
解 所求问题为: 在水平 0.05下检验假设
H0 : X 的概率密度
f
(
x)
1
x
e
,
0,
x 0, x 0.
由于在 H0 中参数 未具体给出, 故先估计 .
由最大似然估计法得 ˆ x 2231 13.77,
A5 :19.5 x 24.5 10
A6 : 24.5 x 29.5 8
A7 : 29.5 x 34.5 6
A8 : 34.5 x 39.5 A9 : 39.5 x
6
8
pˆ i
npˆ i
fi2 / npˆi
0.2788 45.1656
55.3519
0.2196 35.5752
27.0132
A7 :154.5 x
npˆ i
0.73
4.36 5.09
14.72
26.21
23.61
11.22
3.15 14.37
fi2 / npˆi
4.91
6.79 41.55 24.40 10.02 =87.67

一元线性回归模型的统计检验

一元线性回归模型的统计检验

3. 怎样进行拟合优度检验 (1)总离差平方和的分解 已知有一组样本观测值( Xi ,Yi )(i 1, 2, , n),得到 如下样本回归直线:
Yˆi ˆ0 ˆ1Xi
Y的第i个观测值与样本均值的离差yi Yi Y 可分 解为两部分之和:
yi Yi Y Yi Yˆi Yˆi Y ei yˆi (1)
规则:p值越小,越能拒绝原假设H0.
三、回归系数的置信区间
对参数作出的点估计虽然是无偏估计,但一 次抽样它并不一定等于真实值,所以需要找到包 含真实参数的一个范围,并确定这个范围包含参 数真实值的可靠程度。
在变量的显著性检验中已经知道:
t ˆi i ~ t(n 2) i=0,1
Sˆi
给出置信度1,查自由度为(n 2)的t分布表,
假设检验的步骤: (1)提出原假设和备择假设; (2)根据已知条件选择检验统计量; (3)根据显著性水平确定拒绝域或临界值; (4)计算出统计量的样本值并作出判断。
(2)变量的显著性检验
对于最小二乘估计量ˆ1,已经知道它服从正态分布
ˆ1 ~ N(1,
2
xi2 )
由于真实的 2未知,在用它的无偏估计量ˆ 2
在上述收入——消费支出的例子中,如果给定
=0.01,查表得:
t 2 (n 2) t0.005 (8) 3.355
由于
Sˆ1 0.042
Sˆ0 98.41
于是,计算得到1、0的置信区间分别为:
(0.6345,0.9195)
(-433.32,226.98)

TSS RSS ESS
Y的观测值围绕其均值的总离差可分解为两部 分:一部分来自回归线(RSS),另一部分则来自随 机势力(ESS)。因此,我们可以用回归平方和RSS 占Y的总离差平方和TSS的比例来度量样本回归线 与样本观测值的拟合优度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于 (Yi Yˆ)(Yˆi Y ) ei (Yˆi Y )
ˆ0 ei ˆ1 ei X 1i ˆk ei X ki - Y ei
=0
所以有:
TSS (Yi Yˆi )2
(Yˆi
2
Y)
RSS
ESS
注意:一个有趣的现象
Yi Y Yi Yˆi Yˆi Y
H1: j不全为0
F检验的思想来自于总离差平方和的分解式: TSS=ESS+RSS
由于回归平方和 ESS yˆi2 是解释变量 X的联合体对被解
释变量 Y 的线性作用的结果,考虑比值
ESS / RSS

2 i
ei2
如果这个比值较大,则X的联合体对Y的解释程度 高,可认为总体存在线性关系,反之总体上可能不存 在线性关系。
因此,可通过该比值的大小对总体线性关系进行推 断。
根据数理统计学中的知识,在原假设H0成立 的条件下,统计量
F ESS / k RSS /(n k 1)
服从自由度为(k , n-k-1)的F分布
给定显著性水平,可得到临界值F(k,n-k-1), 由样本求出统计量F的数值,通过
F F(k,n-k-1) 或 FF(k,n-k-1) 来拒绝或接受原假设H0,以判定原方程总体上的 线性关系是否显著成立。
我们有:
(1) R 2 R 2
(2)仅当K=0时,等号成立。即 R2 R 2
(3)当K增大时,二者的差异也随之增大
(4) R 2 可能出现负值。
例1 以前面的数据为例,Yt = 1 + 2X2 t + 3X3 t + u t
设观测数据为:Y: 3 1 8 3 5 X2:3 1 5 2 4 X3:5 4 6 4 6
故回归方程为:
Yˆ 4 2.5X 2 1.5X3
R2
Y Xˆ nY 2
Y Y nY 2
3
Y Xˆ 20
76
109
4 2.5
106.5
Y Y
3
1
8
3
1
5
8
108
1.5
nY
2
5
3 1 8 3
5 2
80
3
5
5
R2 106.5 80 26.5 0.9464 108 80 28
Yi Y
2
Yi Yˆi
2
Yˆi Y
2
Yi Y 2
Yi Yˆi 2
Yˆi Y 2
为方便计算,我们也可以用矩阵形式表示R2
我们有:残差 e Y Yˆ Y Xˆ
残差平方和:
e 2 ee (Y ˆX )(Y Xˆ)
Y Y ˆX Y Y Xˆ ˆX Xˆ Y Y ˆX Y Y Xˆ ˆX X ( X X )1 X Y Y Y ˆX Y Y Xˆ ˆX Y Y Y Y Xˆ
R 2 1 (n 1)(1 R2 ) 1 4 (1 0.9464) 0.8928
(n k 1)
(5 3)
习题. 设 n = 20, k = 3, R2 = 0.70 , 求R 2。 当n = 10,n = 5 时, R又2 是多少。
例2. 设 n = 20, k = 3, R2 = 0.70 , 求R 2。

Y Y 2 Y 2 nY 2 Y Y nY 2
将上述结果代入R2的公式,得到:
R2 1 e2 (Y Y )2
Y
Y
nY Y
2 (Y Y Y Y nY 2
Xˆ )
ቤተ መጻሕፍቲ ባይዱ
Y Xˆ nY 2
Y Y nY 2
这就是决定系数R2 的矩阵形式。
判定系数
R 2 ESS 1 RSS
TSS
TSS
该统计量越接近于1,模型的拟合优度越高。
问题:在应用过程中发现,如果在模型中增加一个 解释变量, R2往往增大(Why?)
这就给人一个错觉:要使得模型拟合得好,只要增 加解释变量即可。—— 但是,现实情况往往是,由增 加解释变量个数引起的R2的增大与拟合好坏无关,R2 需调整。
调整的判定系数(adjusted coefficient of determination)
对于中国居民人均消费支出的例子:
一元模型:F=985.6616(P54)
二元模型:F=560.5650 (P72) 给定显著性水平 =0.05,查分布表,得到临界 值:
一元例:F(1,30)=4.17 二元例: F(2,28)=3.34 显然有 F F(k,n-k-1) 即二个模型的线性关系在95%的水平下显著成立。
第三章 多元线性回归模型
------- 拟合优度检验与假设检验
一、拟合优度检验
1、可决系数与调整的可决系数 总离差平方和的分解

TSS (Yi Y )2
((Yi Yˆi ) (Yˆi Y )) 2
(Yi Yˆi )2 2(Yi Yˆi )(Yˆi Y ) (Yˆi Y )2
试求 R2和R 2 。
解:我们有
3 1
Y
8
3
5
1 3 5 1 1 4
X 1
5
6
1 2 4
1
4
6
ˆ
( X X )1
X Y
5 15
15 55
25
1
20
81 76
25 81 129 109
267 /10 45 /10
8
45 /10 1
3/2
8 20 4 3 / 2 76 2.5 10 / 4 109 1.5
二、方程的显著性检验(F检验)
方程的显著性检验,旨在对模型中被解释变量 与解释变量之间的线性关系在总体上是否显著成 立作出推断。
1、方程显著性的F检验
即检验模型
Yi=0+1X1i+2X2i+ +kXki+i
i=1,2, ,n
中的参数j是否显著不为0。 可提出如下原假设与备择假设:
H0: 0=1=2= =k=0
解:
R 2 1 (n 1)(1 R2 ) 1 19 (1 0.70) 0.644
(n k 1)
(20 4)
下面改变n的值,看一看 R 2 的值如何变化。我们有
若n = 10,则 R 2= 0.55 若n = 5, 则 R 2 = - 0.20
由本例可看出,R 2有可能为负值。 这与R2不同 ( 0 R2 1 )。
在样本容量一定的情况下,增加解释变量必定使得自 由度减少,所以调整的思路是:将残差平方和与总离差平 方和分别除以各自的自由度,以剔除变量个数对拟合优度 的影响:
R 2 1 RSS /(n k 1) TSS /(n 1)
其中:n-k-1为残差平方和的自由度,n-1为总 体平方和的自由度。
R是2 经过自由度调整的决定系数,称为修正决定系数。
相关文档
最新文档