抽象函数单调性的证明技巧

合集下载

专题:抽象函数的单调性与奇偶性的证明

专题:抽象函数的单调性与奇偶性的证明

抽象函数单调性与奇偶性1.已知,对一切实数、都成立,且,求证为偶函数。

证明:令=0, 则已知等式变为……①在①中令=0则2=2∵ ≠0∴=1∴∴∴为偶函数。

2.奇函数在定义域(-1,1)内递减,求满足的实数的取值范围。

解:由得,∵为函数,∴又∵在(-1,1)内递减,∴3.如果=(a>0)对任意的有,比较的大小解:对任意有∴=2为抛物线=的对称轴又∵其开口向上∴(2)最小,(1)=(3)∵在[2,+∞)上,为增函数∴(3)<(4),∴(2)<(1)<(4)4. 已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x >0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。

分析:由题设可知,函数f(x)是的抽象函数,因此求函数f(x)的值域,关键在于研究它的单调性。

解:设,∵当,∴,∵,∴,即,∴f(x)为增函数。

在条件中,令y=-x,则,再令x=y=0,则f(0)=(0),∴ f(0)=0,故f (-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=(-1)=-4,∴ f(x)的值域为[-4,2]。

5. 已知函数f(x)对任意,满足条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。

分析:由题设条件可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。

解:设,∵当,∴,则,即,∴f(x)为单调增函数。

∵,又∵f(3)=5,∴f(1)=3。

∴,∴,即,解得不等式的解为-1 < a < 3。

6.设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,对任何x和y,成立。

求:(1)f(0);(2)对任意值x,判断f(x)值的正负。

分析:由题设可猜测f(x)是指数函数的抽象函数,从而猜想f(0)=1且f(x)>0。

专题10 抽象函数大题单调性奇偶性归类

专题10 抽象函数大题单调性奇偶性归类

专题10 抽象函数大题单调性奇偶性归类目录【题型一】保和函数:f (a+b )=f (a )+f (b )单调性与奇偶性 ...................................................................... 2 【题型二】类对数积函数:形如f (axb )=f (a )+f (b )单调性与奇偶性 ..................................................... 3 【题型三】类指数函数:形如f (a+b )=f (a )f (b )单调性 ........................................................................... 4 【题型四】类对数商函数:形如f (a/b )=f (a )-f (b )单调性 ..................................................................... 5 【题型五】类线性函数:f (a-b )=f (a )-f (b )单调性与奇偶性 .................................................................. 6 【题型六】保积函数:f (a*b )=f (a )*f (b )单调性与奇偶性 ...................................................................... 6 【题型七】恒“截距”线性函数:f (a+b )=f (a )+f (b )-1单调性 ............................................................. 7 【题型八】形如f (a*b )=f (a )+f (b )+t 单调性与奇偶性 ............................................................................ 8 【题型九】形如f (a+b )+f (a-b )=2f (a )f (b )奇偶性 ............................................................................... 8 【题型十】形如f (a )+f (a )=f (a b1ab++)单调性与奇偶性 ........................................................................... 9 【题型十一】形如f (a )+f (a )=f (a b)[1f (a)f (b)]+±单调性与奇偶性 ...................................................... 9 【题型十二】形如f (a-b )=1f (a)f (bf (a)f (b)+-单调性与奇偶性 (10)【题型十三】其他形式的抽象函数汇总 (11)综述一、赋值思维:抽象函数求解或者证明奇偶性和单调性基础。

证明函数单调性的方法总结

证明函数单调性的方法总结

证明函数单调性的方法总结函数的单调性是函数的一个重要性质,下面是小编整理的证明函数单调性的方法总结,希望对大家有帮助!1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1<x2;②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性。

2、导数法:设函数y=f(x)在某区间D内可导。

如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)<0,则f(x)在区间D内为减函数。

注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数。

(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1、若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数。

2、若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3、互为反函数的两个函数有相同的.单调性。

4、y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数。

简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反。

函数单调性的应用(1)求某些函数的值域或最值。

(2)比较函数值或自变量值的大小。

(3)解、证不等式。

(4)求参数的取值范围或值。

(5)作函数图象。

函数单调性的判定方法

函数单调性的判定方法

函数单调性的判定方法1.判断具体函数单调性的方法对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种:1.1 定义法1x 、x 2)时,称f )2 )(x 在给(1)设元,任取1x ,D x ∈2且21x x <;(2)作差)()(21x f x f -;(3)变形(普遍是因式分解和配方);(4)断号(即判断)()(21x f x f -差与0的大小);(5)定论(即指出函数 )(x f 在给定的区间D 上的单调性)。

例1.用定义证明)()(3R a a x x f ∈+-=在),(+∞-∞上是减函数。

证明:设1x ,),(2+∞-∞∈x ,且21x x <,则 由于043)2(22221212221>++=++x x x x x x x ,012>-x x则f )上是例(=又0当x 当x 综上函数xk x x f +=)( )0(>k 在区间],0(k 内为减函数;在区间),(+∞k 内为增函数。

此题函数)(x f 是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于k x x -21与0的大小关系)0(>k 不是明确的,因此要分段讨论。

用定义法判定函数单调性比较适用于那种对于定义域内任意两个数21,x x 当21x x <时,容易得出)(1x f 与)(2x f 大小关系的函数。

在解决问题时,定义法是最直接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。

1.2 函数性质法函数性质法是用单调函数的性质来判断函数单调性的方法。

函数性质法通常与我们常见的简单函数的单调性结合起来使用。

对于一些常见的简单函数的单调性如下表:是增(减)函数;当)f)g(x(xg在D上都是增(减)函数且两者都恒小于0时,)(xf、)(x在D上是减(增)函数。

⑹.设)(xy=,Dfx∈为严格增(减)函数,则f必有反函数1-f,且1-f在其定义域)(D f 上也是严格增(减)函数。

抽象函数单调性的判断

抽象函数单调性的判断

抽象函数单调性的判断 例1 已知函数()f x 对任意实数x ,y 均有)()()(y f x f y x f +=+.且当x >0时,)(x f >0,试判断)(x f 的单调性,并说明理由.解析:根据题目所给条件,原型函数为y =k x ,(k >0).此为增函数.类比其证明方法可得:设12,x x ∈R ,且21x x <,则2x -1x >0,故 )(12x x f ->0.∴ )(2x f -)(1x f =[]112)(x x x f +--)(1x f=)(12x x f -+)(1x f -)(1x f=)(12x x f ->0.∴)(1x f <)(2x f . 故)(x f 在(-∞,+∞)上为增函数.例2 已知函数()y f x =在R 上是奇函数,而且在(0)+∞,上为增函数,证明()y f x =在(0)-∞,上也是增函数.解析:此函数原型函数同样可以为(0)y kx k =>,而奇函数这个条件正是转化的媒介.设12(0)x x ∈-∞,,,且12x x <, ()f x 为奇函数,11()()f x f x ∴-=-,22()()f x f x -=-.由假设可知1200x x ->->,,即12(0)x x --∈+∞,,,且12x x ->-, 由于()f x 在(0)+∞,上是增函数,于是有12()()f x f x ->-,即12()()f x f x ->-,从而12()()f x f x <,()y f x ∴=在(0)-∞,上是增函数.例3 已知函数)(x f 对于任意正数x ,y 都有)(xy f =)(x f ·)(y f ,且)(x f ≠0,当x >1时, )(x f <1.试判断)(x f 在(0,+∞)上的单调性,并说明理由.解析:此函数的原型函数可以为x y 1=.显然此函数在(0,+∞)上是减函数.对于x ∈(0,+∞)有)(x f =[]0)()(2≥=⋅x f x x f又)(x f ≠0, ∴)(x f >0设1x ,2x ∈(0,+∞),且1x <2x .则 221121121111()()()()()()()()x x f x f f x f x x x x f f x f x f x x ===<1, ∴ )(1x f >)(2x f , 故)(x f 在(0,+∞)上为减函数.一般形式为 y=f(x)且无法用数字和字母表示出来的函数,一般出现在题目中,或许有定义域、值域等。

高中数学函数单调性的判定和证明方法(详细)

高中数学函数单调性的判定和证明方法(详细)
④定号,判断 的正负符号,当符号不确定时,需进行分类讨论;
⑤下结论,根据函数单调性的定义下结论。
作差法:
例1.判断函数 在(-1,+∞)上的单调性,并证明.
解:设-1<x1<x2,
则f(x1)-f(x2)= -


∵-1<x1<x2,
∴x1-x2<0,x1+1>0,x2+1>0.
∴当a>0时,f(x1)-f(x2)<0, 即f(x1)<f(x2),
根据(1)可知 f(x1-x2)>1,f(x2)>0.
∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),
∴函数f(x)在R上单调递减.
(二)、运算性质法.
函数
函数表达式
单调区间
特殊函数图像
一次函数
当 时, 在R上是增函数;
当 时, 在R上是减函数。
二次函数
当 时, 时 单调减,
⑷若两个基本初等函数在对应区间上的单调性是同时单调递增或同单调递减,则 为增函数,若为一增一减,则 为减函数(同增异减);
⑸求出相应区间的交集,既是复合函数 的单调区间。
以上步骤可以用八个字简记“一分”,“二求”,“三定”,“四交”。利用“八字”求法可以解决一些复合函数的单调性问题。
例7.求 ( 且 )的单调区间。
减函数的区间
函数
表达式
单调性
解:列表如下
由表知 是减函数的区间 , 。
所以函数的单调增区间为
减区间为 .
(四)、同增异减法(复合函数法).
定理1:若函数 在 内单调, 在 内单调,且集合{ ︳ , }
(1)若 是增函数, 是增(减)函数,则 是增(减)函数。(2)若 是减函数, 是增(减)函数,则 是减(增)函数。

(6)函数的单调性的证明以及典型题型

(6)函数的单调性的证明以及典型题型

函数单调性的证明一、定义法证明普通函数的单调性1、求证函数y=x ³+x 在R 上是增函数。

3、求证:函数x x f -=)(在定义域上是减函数.4、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.5、证明函数xx x f 1)(+=在)1,0(上是减函数。

6、求证:函数x x x f --=21)(在R 上是单调减函数.7、指出f(x)=2x ²+4x 的单调区间,并对减区间的情况给予证明。

8、求12)(2--=x x x f 的单调区间一、定义法证明带字母的函数的单调性1、 用定义证明:(1)函数f(x)=kx+b(k<0,k 、b 为常数)在R 上是减函数。

(2)函数xk x g =)((k<0,k 为常数)在)0,(-∞上是增函数。

2、 求证函数x a x x f +=)((a>0)在(0,a )上是减函数,在(a ,+∞)上是增函数。

3、 讨论1)(2-=x ax x f (-1<x<1,a ≠0)的单调性 4、 设函数(a >b>0),求b x a x x f ++=)(的单调区间,并证明f(x)在其单调区间上的单调性。

二、定义法证明抽象函数的单调性:1、已知函数f(x)的定义域为R ,满足f(-x)= 0)(1>x f ,且g(x)=f(x)+c(c 为常数),在区间[a,b]上是减函数,判断并证明g(x)在区间[-b,-a]上的单调性。

2、已知g(x)在[m,n]上的减函数,且a ≤g(x)≤b,f(x)是[a,b]上的增函数,求证f[g(x)]在[m,n]上也是减函数。

三、利用单调性求函数的值域:求下列函数的值域:1、 y=-+2x x -6 2、 y=+x 1-x3、 y=+3-x 2x +四、利用函数单调性比较大小1、 如果函数f(x)=x ²+bx+c,对于任意实数t 都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。

抽象函数单调性的证明和应用实例

抽象函数单调性的证明和应用实例





















强I 南省内黄一中 李文旭 ; 可
摘要: 函数是 中学 数 I I
学 重 内 函 的 = 的 点 容,数 单 I : 甫 调 是 数 重 性 ,二 性 函的 要 质
工 高中证 委 篓用数学的基本 南 具定 明 单 义 譬 I , 函 数 调 性是
1) n 1= … — )… 1 )
处理含参不等式恒成立的某些问题时, 若能适时地把主元变量和 y x o = #O 参数变量进行“ 换位” , 思考 往往会使问题降次、 简化。 证 明 :1 当 y O  ̄x O ( ) = 时 l+ ) 例 4 对于满足 0 ≤4的所 有实数 a求使不 等式 +舛 > ≤口 0 ) 4 o 3都成立的 的取值范围。 + _ 因为存在 1 使得 ≠ ) 解: 不等式变形为 +(- + > 。 x1 k一 3 0 2所以 ) ) , 不恒为 0 。 设, ( 一4 + , =(一1 k+ x 3 则其是关于 a 的一个一次函数 : 是单 所以 , ) 。 《 =1 0 调函数。 ( ) ' ≠0 2令 , , 结 胍有 △ 二 得 1 或 则有 7 ) ) { ) 因为存在 X≠孙 使得 l 总之, 含参不等式恒成立问题 因其覆盖知识点多, 方法也多种多 2 ) , 样, 但其核心思想还是等价转化 , 抓住 了这点 , 才能 以“ 不变应万变” , 所 以对任 意值 ,判断 ) 掌握解题方法和技巧。 的值的符号为正号。
( ) 1 :
‘ .
’ .

从而,对任意的 ∈ 都 R, 有 ) ) 0 ) 即 ) ) 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档