初三概率知识点及练习

合集下载

概率知识点总结及题型汇总-统计概率知识点总结

概率知识点总结及题型汇总-统计概率知识点总结

概率知识点总结及题型汇总一、确定事件:包括必然事件和不可能事件1、在一定条件下必然要发生的事件,叫做必然事件。

必然事件是指一定能发生的事件,或者说发生的可能性是100%;如:从一包红球中,随便取出一个球,一定是红球。

2、在一定条件下不可能发生的事件,叫做不可能事件。

不可能事件是指一定不能发生的事件,或者说发生的可能性是0,如:太阳从西边出来。

这是不可能事件。

3、必然事件的概率为1,不可能事件的概率为0二、随机事件在一定条件下可能发生也可能不发生的事件,叫做随机事件。

一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一个随机事件发生的可能性的大小用概率来表示。

三、例题:指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件,哪些是确定事件?①一个玻璃杯从一座高楼的第10层楼落到水泥地面上会摔破;②明天太阳从西方升起;③掷一枚硬币,正面朝上;④某人买彩票,连续两次中奖;⑤今天天气不好,飞机会晚些到达.解:必然事件是①;随机事件是③④⑤;不可能事件是②.确定事件是①②三、概率1、一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) .(1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。

(2)概率指的是事件发生的可能性大小的的一个数值。

2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件 A 包含其中的m种结果,那么事件A 发生的概率为P(A) = mn.(1)一般地,所有情况的总概率之和为1。

(2)在一次实验中,可能出现的结果有限多个.(3)在一次实验中,各种结果发生的可能性相等.(4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。

(5)一个事件的概率取值:0≤P(A)≤1当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1不可能事件的概率为0,即P(不可能事件)=0随机事件的概率:如果A为随机事件,则0<P(A)<1(6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.3、求概率的步骤:(1)列举出一次试验中的所有结果(n个);(2)找出其中事件A发生的结果(m个);(3)运用公式求事件A的概率:P(A) = mn.5、在求概率时,一定要是发生的可能性是相等的,即等可能性事件等可能性事件的两种特征:(1)出现的结果有限多个; (2)各结果发生的可能性相等;例1:图1指针在转动过程中,转到各区域的可能性相等,图3中的第一个图,指针在转动过程中,转到各区域的可能性不相等,由上图可知,在求概率时,一定是出现的可能性相等,反映到图上来说,一定是等分的。

中考数学专题复习16概率(原卷版)

中考数学专题复习16概率(原卷版)

概率复习考点攻略考点一 概率的定义与事件的分类1.概率:率的统计定义:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

即()p A P = . 概率各种情况出现的次数某一事件发生的次数=2.必然事件:在一定条件下一定会发生的事件,它的概率是1. 3.不可能事件:在一定条件下一定不会发生的事件,它的概率是0.4.随机事件:在一定条件下可能发生,也可能不发生的事件,它的概率是0~1之间. 【例1】下列事件中是不可能事件.....的是( ) A .守株待兔B .瓮中捉鳖C .水中捞月D .百步穿杨考点二 概率的计算1.公式法:P (A )=mn,其中n 为所有事件的总数,m 为事件A 发生的总次数. 2.列举法(1)列表法:当一次试验要涉及两个因素,并且可能出现的结果数目较多时,应不重不漏地列出所有可能的结果,通常采用列表法求事件发生的概率.(2)画树状图法:当一次试验要涉及2个或更多的因素时,通常采用画树状图来求事件发生的概率.【注意】当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

【例2】不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是______.【例3】如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是( )A .13B .14C .16D .18考点三 利用频率估计概率1.定义:一般地,在大量重复试验中,如果事件发生的频率稳定在某个常数P 附近,因此,用一个事件发生的频率mn来估计这一事件发生的概率. 2.适用条件:当试验的所有可能结果不是有限个,或各种结果发生的可能性不相等时,我们一般要通过统计频率来估计概率.3.方法:进行大量重复试验,当事件发生的频率越来越靠近一个常数时,该常数就可认为是这个事件发生的概率.【例4】为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下. 身高/cm x 160x <160170x ≤<170180x ≤<180x ≥人数60260550130的概率是( ) A .0.32B .0.55C .0.68D .0.87考点四 概率的应用概率是和实际结合非常紧密的数学知识,可以对生活中的某些现象做出评判,如解释摸奖、评判游戏活动的公平性、数学竞赛获奖的可能性等等,还可以对某些事件做出决策. 【例5】今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A 、B 、C 、D 、E 五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B 、D 两位患者的概率.【例6】某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为,图①中m的值为;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1 h的学生人数.第一部分选择题一、选择题(本题有10小题,每题3分,共30分)1. 下列事件中,是必然事件的是()A.掷一枚质地均匀的硬币,一定正面向上B.车辆随机到达一个路口,遇到红灯C.如果a2=b2,那么a=bD.将花生油滴在水中,油会浮在水面上2.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A.13B.14C.16D.183.如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关4.小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.21015.小李与小陈做猜拳游戏,规定每人每次至少出一个手指,两人出拳的手指之和为偶数时小李获胜,那么小李获胜的概率为()A.1325B.1225C.425D .126.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a,b.那么方程x2+ax+b=0有解的概率是()A.B.C.D.7.如图,电路图上有四个开关A、B、C、D和一个小灯泡,则任意闭合其中两个开关,小灯泡发光的概率是A.12B.13C.14D.168.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160 160≤x<170 170≤x<180 x≥180人数 5 38 42 15 根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是A.0.85 B.0.57 C.0.42 D.0.159.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.3410.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率0.900.850.820.840.820.82(结果保留两位小数))A.0.90 B.0.82C.0.85D.0.84第二部分填空题二、填空题(本题有6小题,每题4分,共24分)11.在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a ______.12.表中记录了某种苹果树苗在一定条件下移植成活的情况:由此估计这种苹果树苗移植成活的概率约为_____.(精确到0.1)13.同时掷两枚质地均匀的骰子,每枚骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面出现的点数相同的概率为_______________.14.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________2cm.15.在一个不透明布袋里装有3个白球、2个红球和a个黄球,这些球除颜色不同其它没有任何区别.若从该布袋里任意摸出1个球,该球是黄球的概率为,则a等于.16.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是_____.第三部分解答题三、解答题(本题有6小题,共46分)17. 一个不透明的布袋中有4个红球、5个白球、11个黄球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个黄球,并放入相同数量的红球,搅拌均匀后,要使从袋中摸出一个球是红球的概率不小于13,问至少需取走多少个黄球?18. 某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.频数分布表组别销售数量(件)频数频率A20≤x<4030.06B40≤x<6070.14C60≤x<8013aD80≤x<100m0.46E100≤x<12040.08合计b1请根据以上信息,解决下列问题:(1)频数分布表中,a=,b=;(2)补全频数分布直方图;(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.19. 为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.(1)八(1)班抽中歌曲《我和我的祖国》的概率是__________;(2)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率.20.今年2﹣4月某市出现了200名新冠肺炎患者,市委根据党中央的决定,对患者进行了免费治疗.图1是该市轻症、重症、危重症三类患者的人数分布统计图(不完整),图2是这三类患者的人均治疗费用统计图.请回答下列问题.(1)轻症患者的人数是多少?(2)该市为治疗危重症患者共花费多少万元?(3)所有患者的平均治疗费用是多少万元?(4)由于部分轻症患者康复出院,为减少病房拥挤,拟对某病房中的A、B、C、D、E五位患者任选两位转入另一病房,请用树状图法或列表法求出恰好选中B、D两位患者的概率.21.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:代号活动类型A经典诵读与写作B数学兴趣与培优C英语阅读与写作D艺体类E其他每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.22. 如图是某商场第二季度某品牌运动服装的S 号,M 号,L 号,XL 号,XXL 号销售情况的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)求XL 号,XXL 号运动服装销量的百分比;(2)补全条形统计图;(3)按照M 号,XL 号运动服装的销量比,从M 号、XL 号运动服装中分别取出x 件、y 件,若再取2件XL 号运动服装,将它们放在一起,现从这()2x y ++件运动服装中,随机取出1件,取得M 号运动服装的概率为35,求x ,y 的值.。

3.1.3-概率的基本性质知识点试题及答案

3.1.3-概率的基本性质知识点试题及答案

一、知识要点及方法1、基本概念:(2)若A∩B为不可能事件,即A∩B=ф,即不可能同时发生的两个事件,那么称事件A与事件B互斥;(3)若A∩B为不可能事件,A∪B为必然事件,即不能同时发生且必有一个发生的两个事件,那么称事件A与事件B互为对立事件;概率加法公式:当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A 不发生,对立事件互斥事件的特殊情形。

二、试题课时训练1.如果事件A、B互斥,记错误!、错误!分别为事件A、B的对立事件,那么()A.A∪B是必然事件B.A∪错误!是必然事件C.错误!与错误!一定互斥D.A与错误!一定不互斥2.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有1个白球;都是白球B.至少有1个白球;至少有1个红球C.恰有1个白球;恰有2个白球D.至少有1个白球;都是红球3.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,由甲、乙两人下成和棋的概率为()A.60%B.30%C.10% D.50%4.掷一枚骰子的试验中,出现各点的概率均为错误!。

最新初三概率知识点及练习

最新初三概率知识点及练习

初三概率知识点及练习1、 确定事件和随机事件。

(1)“必然事件”是指事先可以肯定一定会发生的事件。

P (A )=1 (2)“不可能事件”是指事先可以肯定一定不会发生的事件。

P (A )=0 (3)“不确定事件”或“随机事件”是指结果的发生与否具有随机性的事件。

0<P (A )<1 例1、在一个袋子中装有50个黄色乒乓球,小明在里面随便摸出一个来,他摸到黄球的可能性是( ),摸到白球的可能性是( )。

例2、在括号中填上“必然发生”或“不可能发生”或“可能发生”;掷两个普通的正方体筛子,把两个筛子的点数相加:(1)和为1( );(2)和为7( ); (3)和为12( );(4)和为17( ); (5)和大于2( );(6)和小于2( ); (7)和小于20( )。

例3、下列事件中,必然发生的事件是( )A 明天会下雨B 小明考试得99分C 今天是星期一,明天就是星期二D 明年有370 天2、可能性的大小(1)事件的频数、频率。

设总共做n 次重复实验,而事件A 发生了m 次,则称事件A 发生的次数m 为频数。

称比值m/n 为A 发生的频率。

(3)概率:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

例4、有10张大小相同的卡片,分别写有0至9十个数字,将它们背面朝上洗匀后任抽一张,则P (是一位数)=____________,P (是3的倍数)=____________。

例5、小明所在年级共10个班,每班45名同学,现从每个班中任意抽一名学生,共10名学生参加课外活动,问小明被抽到的概率是多少?例6、一个口袋中装有4个白球,1个红球,7个黄球,除颜色外,完全相同,充分搅匀后随机摸出一球,恰好是白球的概率是_______。

例7、下表是高三某班被录取到高一级学校的学生情况统计表:1、完成表格;2、求下列各事件的概率:①P(录取到重点学校的学生)②P(录取到普通学校的学生)③P (录取到非重点学校的学生)3、频率与概率的关系。

人教版九年级数学上册《概率初步》知识点和题型

人教版九年级数学上册《概率初步》知识点和题型

概率初步知识点和题型【知识梳理】1.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件,那么0<P(A)<12.随机事件发生的可能性(概率)的计算方法:①理论计算又分为如下两种情况:第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算。

②实验估算又分为如下两种情况:第一种:利用实验的方法进行概率估算。

要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率。

第二种:利用模拟实验的方法进行概率估算。

如,利用计算器产生随机数来模拟实验。

综上所述,目前掌握的有关于概率模型大致分为三类;第一类问题没有理论概率,只能借助实验模拟获得其估计值;第二类问题虽然存在理论概率但目前尚不可求,只能借助实验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率。

这里要引起注意的是,虽然我们可以利用公式计算概率,但在学习这部分知识时,更重要的是要体会概率的意义,而不只是强化练习套用公式进行计算。

3.概率应用:通过设计简单的概率模型,在不确定的情境中做出合理的决策;概率与实际生活联系密切,通过理解什么是游戏对双方公平,用概率的语言说明游戏的公平性,并能按要求设计游戏的概率模型,以及结合具体实际问题,体会概率与统计之间的关系,可以解决一些实际问题。

【练习】随机事件与概率:一.选择题1.下列事件必然发生的是()A.一个普通正方体骰子掷三次和为19B.一副洗好的扑克牌任抽一张为奇数。

C.今天下雨。

D.一个不透明的袋子里装有4个红球,2个白球,从中任取3个球,其中至少有2球同色。

概率论知识点整理及习题答案

概率论知识点整理及习题答案

概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。

(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。

(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。

而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。

特别地,=A、AU= 、AI=φ。

2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。

我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。

而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。

3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。

其中基本事件也称为样本点。

而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。

通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。

在每次试验中,一定发生的事件叫做必然事件,记作。

而一定不发生的事件叫做不可能事件,记作φ。

为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。

这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。

条件发生变化,事件的性质也发生变化。

例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。

而样本空间中的样本点是由试验目的所确定的。

例如:(1)={3,4,5,L,18}。

(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。

九年级数学上册第二十五章概率初步全部重要知识点(带答案)

九年级数学上册第二十五章概率初步全部重要知识点单选题1、有4张分别印有实数0,-0.5,−√2,-2的纸牌,除数字外无其他差异。

从这4张纸牌中随机抽取2张,恰好抽到2张均印有负数的纸牌的概率为( ).A .12B .34C .35D .23答案:A分析:利用画树状图的方法计算即可.解:画树状图如下:一共有12种等可能性,其中同时负数的等可能性由6种,故恰好抽到2张均印有负数的纸牌的概率为612=12,故选:A .小提示:本题考查了概率的计算,熟练掌握画树状图法计算概率是解题的关键.2、某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等,某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )A .15B .14C .13D .12答案:C分析:用树状图表示所有等可能的结果,再求得甲和乙从同一节车厢上车的概率.解:将3节车厢分别记为1号车厢,2号车厢,3号车厢,用树状图表示所有等可能的结果,共有9种等可能的结果,其中,甲和乙从同一节车厢上车的有3可能,即甲和乙从同一节车厢上车的概率是39=13,故选:C .小提示:本题考查概率,涉及画树状图求概率,是重要考点,难度较易,掌握相关知识是解题关键.3、小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是( )A .13B .16C .19D .127答案:B分析:根据题意, 分析可得三个只有颜色不同的有盖茶杯,将茶杯和杯盖随机搭配在一起, 共3×2×1=6种情况,结合概率的计算公式可得答案.解: 根据题意, 三个只有颜色不同的有盖茶杯, 将茶杯和杯盖随机搭配在一起, 共3×2×1=6种情况,而三个茶杯颜色全部搭配正确的只是其中一种;故三个茶杯颜色全部搭配正确的概率为16.故选B.小提示:本题主要考查概率的计算,用到的知识点为: 概率=所求情况数与总情况数之比.4、A 、B 、C 、D 四个人玩扑克牌游戏,他们先取出两张红桃和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色扑克牌的两个人为游戏搭档,若A 、B 两人各抽取了一张扑克牌,则两人恰好成为游戏搭档的概率为( )A .16B .13C .12D .34 答案:B分析:利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.解:根据题意画图如下:共有12种情况,从4张牌中任意摸出2张牌花色相同颜色有4种可能,所以两人恰好成为游戏搭档的概率=412=13. 故选:B小提示:此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.5、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是( )A .12B .23C .16D .56答案:C分析:利用列表法或树状图即可解决.分别用r 、b 代表红色帽子、黑色帽子,用R 、B 、W 分别代表红色围巾、黑色围巾、白色围巾,列表如下:1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16. 故选:C .小提示:本题考查了简单事件的概率,常用列表法或画树状图来求解.6、不透明袋中装有除颜色外完全相同的a 个白球、b 个红球,则任意摸出一个球是红球的概率是( )A .b a+bB .b aC .a a+bD .ab答案:A分析:根据概率公式直接求解即可.∵共有(a +b)个球,其中红球b 个∴从中任意摸出一球,摸出红球的概率是b a+b .故选A .小提示:本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.7、如图所示,甲乙两个转盘被等分成五个扇形区域,上面分别标有数字,同时自由转动两个转盘,转盘停止后,两个指针同时落在偶数上的概率是( ).A .425B .45C .35D .925 答案:A分析:根据题意列表,然后根据表格即可求得所有等可能的结果数与两个指针同时落在偶数上的情况数,再根据概率公式求解即可求得答案.解:列表得:∴一共有25种等可能的结果,两个指针同时落在偶数上的有4种情况,∴两个指针同时落在偶数上的概率是425. 故选:A .小提示:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.8、在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在0.25附近,则估计口袋中大约共有白球( )A .10B .15C .20D .都不对答案:B分析:由摸到红球的频率稳定在0.25附近,可以得出摸到红球的概率,即可求出白球个数.∵摸到红球的频率稳定在0.25附近,∴摸到红球的概率为0.25,∴总球数:5÷0.25=20(个)∴白球个数:20-5=15(个)所以答案是:B .小提示:本题考查了用频率估计概率、已知概率求数量,得出摸到红球的概率是本题的关键.9、如图,已知正六边形ABCDEF 内接于半径为r 的⊙O ,随机地往⊙O 内投一粒米,落在正六边形内的概率为( )A .3√32πB .√32πC .√34πD .以上答案都不对答案:A分析:连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得△OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出△OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.解:如图:连接OB ,过点O 作OH ⊥AB 于点H ,∵六边形ABCDEF 是正六边形,∴∠AOB =60°,∵OA =OB =r ,∴△OAB 是等边三角形,∴AB =OA =OB =r ,∠OAB =60°,在Rt △OAH 中,OH =OA ⋅sin∠OAB =r ×√32=√32r , ∴S △OAB =12AB ⋅OH =12r ×√32r =√34r 2, ∴正六边形的面积=6×√34r 2=3√32r 2, ∵⊙O 的面积=πr 2, ∴米粒落在正六边形内的概率为:3√32r 2πr 2=3√32π, 故选:A . 小提示:本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出△OAB 的面积是解决问题的关键.10、某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .19B .16C .13D .23 答案:C分析:将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为A 、B 、C ,列表如下:3种,所以两个组恰好抽到同一个小区的概率为39=13.故选C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.填空题11、如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.答案:13 分析:利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.解:由题意可得,投掷在阴影区域的概率是:39=13. 所以答案是:13. 小提示:此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.12、小明将飞镖随意投中如图所示的正方体木框中,那么投中阴影部分的概率为_____.答案:518 分析:根据题意,设每个小正方形面积为1,观察图形并计算可得阴影部分的面积与总面积之比即为所求的概率.设小正方形面积为1,观察图形可得,图形中共36个小正方形,则总面积为36,其中阴影部分面积为:2+2+3+3=10,则投中阴影部分的概率为:1036=518.故答案为5.18小提示:本题考查几何概率,解题的关键是熟练掌握几何概率的求法.13、在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有____个.答案:6分析:球的总数乘以红球所占球的总数的比例即为红球的个数.红球个数为:40×15%=6个,所以答案是:6.小提示:本题主要考查频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.14、小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方_____.(填“公平”或“不公平”).答案:公平分析:根据题意画出符合要求的树状图,列出所有等可能的结果,并由此计算出两人各自获胜的概率进行比较,即可得到结论.详解:根据题意画出树状图如下:由图可知:共有四种等可能结果出现,其中小明获胜的有两种,小亮获胜的也有两种,∴P(小明获胜)=24=12,P(小亮获胜)=24=12,∴P(小明获胜)=P(小亮获胜),∴该游戏是“公平”的.故答案为公平.点睛:本题的解题要点有两点:(1)能够画出符合题意的树状图;(2)在一个游戏中,当游戏双方获胜的概率相等时,游戏是公平的;当游戏双方获胜的概率不等是,游戏是不公平的.15、为减轻“新冠”带来的影响,西城天街商场决定在国庆期间开展促销活动,方案如下:在负二楼兑奖区旁放置一个不透明的箱子,箱子里有大小、形状、质地等完全相同的黑、白、红球各一个,顾客购买的商品达到一定金额可获得一次摸球机会,摸中黑、白、红三种颜色的球可分别返还现金100元、60元、20元.商场分上午、下午和晚上三个时间段统计摸球次数和返现金额,汇总统计结果如下:下午摸到黑球次数为上午的3倍,摸到白球次数为上午的2倍,摸到红球次数为上午的4倍;晚上摸到黑球次数与上午相同,摸到白球次数为上午的4倍,摸到红球次数为上午的2倍,三个时间段返现总金额共为5020元,晚上返现金额比上午多840元,则下午返现金额为_______元.答案:2460分析:根据题意表示出上午、下午、晚上摸到黑、白、红的次数,列数返现的金额式子,确定出a,b,c的值代入计算即可;设上午黑、白、红摸到的次数分别是a,b,c,则下午摸到黑、白、红的次数是3a,2b,4c,晚上摸到黑、白、红的次数是a,4b,2c,晚上返现金额比上午多840,∴3b×60+c×20=840,∴180b+20c=840,总返现为:500a+420b+140c=5020,根据题意:a,b,c是大于零的正整数,当b=4时满足条件a,b,c为正整数,∴b=4,c=6,a=5,即下午返现的金额为15×100+8×60+24×20=2460元;故答案是2460.小提示:本题主要考查了三元一次方程的应用,理解题意,找准题目间数量关系,准确分析计算是解题的关键.解答题16、据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.答案:(1)200,7.2(2)3360(3)35分析:(1)先用“基本了解”的人数除以其所对应的百分比,可得调查的总人数,再求出“非常了解”的人数,进而得到“不太了解”的人数,最后用“不太了解”的人数所占的百分比乘以360°,即可求解;(2)用12000乘以“非常了解”的人数所占的百分比,即可求解;(3)根据题意,列出表格,可得一共有20种等可能结果,其中恰好抽到一男一女的有12种,再根据概率公式,即可求解.(1)解:根据题意得:m=40÷20%=200人,∴“非常了解”的人数为200×28%=56人,∴“不太了解”的人数为200−56−100−40=4人,∴“不太了解”所对应扇形的圆心角4200×360°=7.2°,即n=7.2;(2)解:“非常了解”的人数有12000×28%=3360人;(3)解:根据题意,列出表格,如下:∴恰好抽到一男一女的概率为1220=35.小提示:本题主要考查了扇形统计图和条形统计图,用样本估计总体,利用树状图和列表法求概率,明确题意,准确从统计图中获取信息是解题的关键.17、盒中装有红球、黄球共10个,每个球除颜色外其余都相同,每次从盒中摸到一个球,摸三次,不放回,请你按要求设计出摸球方案:(1)“摸到三个球都是红球”是不可能事件;(2)“摸到红球”是必然事件;(3)“摸到两个黄球”是随机事件;(4)“摸到两个黄球”是确定事件.答案:(1)盒中装有红球2个、黄球8个(答案不唯一);(2)盒中装有红球8个、黄球2个(答案不唯一);(3)盒中装有红球8个、黄球2个(答案不唯一);(4)盒中装有红球9个、黄球1个(答案不唯一).分析:(1)要使“摸出的3个球都是红球”是不可能事件,只要盒子中的红球数不足3个即可;(2)要使“摸出红球”是必然事件,只要盒子中的黄球数最多为2个,则摸三次,必然会摸到红球;(3)要使“摸出2个黄球”是随机事件,即可能摸出2个黄球,也可能摸不出2个黄球,则黄球最少有2个,才能保证摸出2个黄球,但是最多有8个,否则一定可以摸出2个黄球;(4)确定事件包含不可能事件和必然事件,要使“摸出2个黄球”是必然事件,即一定可以摸出2个黄球,要使“摸出2个黄球”是不可能事件,即一定摸不出2个黄球.(1)解:盒中装有红球2个、黄球8个,则“摸到三个球都是红球”是不可能事件;(2)解:盒中装有红球8个、黄球2个,则“摸到红球”是必然事件;(3)解:盒中装有红球8个、黄球2个,则“摸到两个黄球”是随机事件;(4)解:盒中装有红球9个、黄球1个,则“摸到两个黄球”是不可能事件,属于确定事件.小提示:本题主要考查了随机事件、必然事件以及不可能事件,解答此题要注意:不可能事件的概率为0,必然事件的概率为1,随机事件的概率在0和1之间.18、某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了________名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α=________度;(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.答案:(1)①200;②见解析;③54(2)1120(3)16分析:(1)①由B组的人数及其所占百分比可得样本容量;②由总人数减去除C组的人数即可得到C组的人数;③用360°乘以C组人数所占比例即可;(2)用3200乘以D组人数所占比例即可;(3)根据题意列出树状图即可求解(1)解:(1)①50÷25%=200;②C组人数=200−30−50−70−20=30,补全的条形统计图如图所示:③360°×30200=54°;(2)解:3200×70200=1120;(3)解:画树状图如下:从甲、乙、丙、四位学生中随机抽取两人共有12种等可能性的结果,恰好抽中甲、乙两人的所有等可能性结果有2种,因此,P(恰好抽中甲、乙两人)=212=16.小提示:本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.。

人教版九年级数学概率初步知识梳理及能力测试(含答案)-

概率初步【课标要求】知识与技术目标考点课标要求认识理解掌握事件能划分可能与确立事件∨认识概率的意义∨运用列举法计算简单事件发生的概率∨概率认识用实验法求概率∨能解决实质问题∨【知识梳理】1.生活中的随机事件分为确立事件和不确立事件,确立事件又分为必定事件和不行能事件,此中,①必定事件发生的概率为 1 ,即 P(必定事件)=1 ;②不行能事件发生的概率为0,即 P(不行能事件)=0 ;③假如 A 为不确立事件,那么0<P(A)<12.随机事件发生的可能性(概率)的计算方法:①理论计算又分为以下两种状况:第一种:只波及一步实验的随机事件发生的概率,如:依据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:经过列表法、列举法、树状图来计算波及两步或两步以上实验的随机事件发第二种:利用模拟实验的方法进行概率估量。

如,利用计算器产生随机数来模综上所述,当前掌握的有对于概率模型大概分为三类;第一类问题没有理论概率,只能借助实验模拟获取其预计值;第二类问题固然存在理论概率但当前尚不行求,只好借助实验模拟获取其预计值;第三类问题则是简单的古典概型,理论上简单求出其概率。

这里要惹起注意的是,固然我们能够利用公式计算概率,但在学习这部分知识时,更重的是要领会概率的意义,而不不过加强练习套用公式进行计算。

3.你知道概率有哪些应用吗?经过设计简单的概率模型,在不确立的情境中做出合理的决议;概率与实切,经过理解什么是游戏对两方公正,用概率的语言说明游戏的公正性,并能按要求设计游戏的概率模型,以及联合详细实质问题,领会概率与统计之间的关系,能够解决一些实质问题。

【能力训练】一、填空题:1.一个口袋中装有 4 个白球, 2 个红球, 6 个黄球,摇匀后随机从中摸出一个球是概率是。

2.若1000 张奖券中有200 张能够中奖,则从中任抽 1 张能中奖的概率为_3.一只袋内装有 2 个红球、 3 个白球、 5 个黄球(这些球除颜色外没有其余差别),从中任意拿出一球,则获得红球的概率是___________ 。

中学初三数学概率试卷试题总结计划大全含答案

一、概率基础知识1.随机事件的定义:在相同条件下,可能发生也可能不发生的事件叫做随机事件。

2.必然事件的定义:在一定条件下一定发生的事件叫做必然事件。

3.不可能事件的定义:在一定条件下一定不发生的事件叫做不可能事件。

4.概率的定义:一个事件发生的可能性叫做这个事件的概率,用0到1之间的实数表示,其中0表示不可能发生,1表示必然发生。

二、概率计算方法1.直接计算法:如果一个事件包含的样本点数是有限的,可以直接计算每个样本点发生的可能性,然后求和得到事件的概率。

2.间接计算法:如果一个事件不包含所有样本点,可以通过计算不发生这个事件的概率,然后用1减去这个概率得到事件的概率。

3.条件概率:在条件B发生的条件下,事件A发生的概率叫做A 在B条件下的条件概率,用P(A|B)表示。

4.独立事件的概率:如果两个事件A和B相互独立,那么事件A 发生的条件下事件B发生的概率等于事件B发生的概率,即P(B|A)=P(B)。

三、典型题型及解题方法1.求一个事件的概率:直接根据定义计算,或者利用间接计算法。

例1:抛一枚硬币,求正面向上的概率。

解:因为硬币只有正反两面,所以正面向上和反面向上的概率都是1/2。

2.求条件概率:利用条件概率的定义,即P(A|B)=P(A∩B)/P(B)。

例2:抛两枚硬币,求第一枚硬币正面向上,第二枚硬币反面向上的条件概率。

解:第一枚硬币正面向上,第二枚硬币反面向上的样本点有(正,反)和(反,正),总共4个样本点,所以P(A∩B)=2/4=1/2。

第一枚硬币正面向上的概率是1/2,所以P(B)=1/2。

所以P(A|B)=(1/2)/(1/2)=1。

3.求独立事件的概率:利用独立事件的定义,即P(A∩B)=P(A)P(B)。

例3:抛两枚硬币,求第一枚硬币正面向上,第二枚硬币反面向上同时发生的概率。

解:第一枚硬币正面向上的概率是1/2,第二枚硬币反面向上的概率是1/2,所以P(A∩B)=1/2×1/2=1/4。

北师版初三数学上册第三章概率知识点讲解附作业

北师版初三数学上册第三章概率知识点讲解附作业九年级(上册)第三章概率的进一步认识一.频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。

即 频数频率总次数概率的意义和大小:概率就是表示每件事情发生的可能性大小,即一个时间发生的可能性大小的数值。

必然事件发生的概率为1;不可能事件发生的概率为0;不确定事件发生的概率在0与1之间。

频率与概率的区别:随着实验次数的增加,实验结果出现的频率逐渐趋于一个常数,则把这个常数看做实验结果的概率。

注意:①频率就是频率,频率不是概念②频率是通过实验得到的,概率就通过计算得到的③通过频率估计概率时,只看最多实验次数一项的频率,此项的频率即等于概率,而不是求所有频率的平均值二.通过实验运用稳定的频率来估计某一时间的概率在进行试验的时候,当试验的次数很大时,某个事件发生的频率稳定在相应的概率附近。

我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的频率。

三.利用画树状图或列表法求概率(重难点)①树状图的画法有两钟,可以横画也可以竖着画,其中树状图在画法上要写“开始”然后是“第一次”“第二次”“结果”②列表法的使用必须保证是两个元素的才方便使用,因为表格最方便的是使用两个轴向。

其中表格的类型有三种,一种是标准型,第二种是中间有一条斜线型,第三种是中间加数据型,比如和,奇数,偶数等四.概率题型①公平题②方程题③用频率估计概念④画树状图列表求概率(重点)⑤游戏设定1、在抛一枚质地均匀的硬币的实验中,如果没有硬币,则下列实验不能作为替代物的是()A、一枚均匀的骰子,B、瓶盖,C、两张相同的卡片,D、两张扑克牌2、密码锁的密码是一个四位数字的号码,每位上的数字都可以是0到9中的任一个,某人忘了密码的最后一位号码, 此人开锁时,随意拔动最后一位号码正好能把锁打开的概率是______.若此人忘了中间两位号码,随意拔动中间两位号码正好能把锁打开的概率是______.3、某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是.4、从一个装有2黄2黑的袋子里有放回地两次摸到的都是黑球的概率是 .5、如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是……( )A.1925; B.1025; C.625;D.5 256、为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.7、在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球()A、28个B、30个C、36个D、42个8、有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中小学课外专业化辅导随机事件的概率知识点总结1、 确定事件和随机事件。

(1)“必然事件”是指事先可以肯定一定会发生的事件。

P (A )=1 (2)“不可能事件”是指事先可以肯定一定不会发生的事件。

P (A )=0 (3)“不确定事件”或“随机事件”是指结果的发生与否具有随机性的事件。

0<P (A )<1 例1、在一个袋子中装有50个黄色乒乓球,小明在里面随便摸出一个来,他摸到黄球的可能性是( ),摸到白球的可能性是( )。

例2、在括号中填上“必然发生”或“不可能发生”或“可能发生”;掷两个普通的正方体筛子,把两个筛子的点数相加:(1)和为1( );(2)和为7( ); (3)和为12( );(4)和为17( ); (5)和大于2( );(6)和小于2( ); (7)和小于20( )。

例3、下列事件中,必然发生的事件是( )A 明天会下雨B 小明考试得99分C 今天是星期一,明天就是星期二D 明年有370 天2、可能性的大小(1)事件的频数、频率。

设总共做n 次重复实验,而事件A 发生了m 次,则称事件A 发生的次数m 为频数。

称比值m/n 为A 发生的频率。

(3)概率:一般地,在大量重复试验中,如果事件A 发生的频率mn会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。

例4、有10张大小相同的卡片,分别写有0至9十个数字,将它们背面朝上洗匀后任抽一张,则P (是一位数)=____________,P (是3的倍数)=____________。

例5、小明所在年级共10个班,每班45名同学,现从每个班中任意抽一名学生,共10名学生参加课外活动,问小明被抽到的概率是多少?例6、一个口袋中装有4个白球,1个红球,7个黄球,除颜色外,完全相同,充分搅匀后随机摸出一球,恰好是白球的概率是_______。

例7、下表是高三某班被录取到高一级学校的学生情况统计表:重点 普通 其他 合计 男生 18 7 1 女生16102中小学课外专业化辅导合计1、完成表格;2、求下列各事件的概率:①P(录取到重点学校的学生)②P(录取到普通学校的学生)③P (录取到非重点学校的学生)3、频率与概率的关系。

(1)事件发生的频率会呈现逐渐稳定的趋势。

(2)频率和概率可以非常接近,但不一定相等 (3)如何用频率估计机会的大小。

4、树状图与列表法求解概率列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.特别注意放回去与不放回去的列表法的不同.如:一只箱子中有三张卡片,上面分别是数字1、2、3,第一抽出一张后再放回去再抽第二次,两次抽到数字为数字1和2或者2和1的概率是多少?若不放回去,两次抽到数字为数字1和2或者2和1的概率是多少?放回去 P (1和2)=92 不放回去P (1和2)=62(3,3)(3,2)(3,1)3(2,3)(2,2)(2,1)2(1,3)(1,2)(1,1)1第一次结果321第二次(3,2)(3,1)3(2,3)(2,1)2(1,3)(1,2)1第一次结果321第二次树状图法:当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.例8、小颖为学校联欢会设计了一个“配紫色”的游戏:图1是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形。

游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色。

中小学课外专业化辅导( )( )( )白白白白红红白白红(1)利用树状图或列表的方法表示游戏所有可能出现的结果。

(2)游戏者获胜的概率是多少? 解析:(1)所有可能出现的结果可用表1或图2表示。

(2)所有可能出现的结果共有6种,配成紫色的结果只有1种,故游戏获胜的概率为61。

基础练习 一、填空题1、如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为 (填“甲”或“乙”)获胜的可能性更大.2、10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)= ,P(摸到奇数)= .3、一个口袋中装有4个白球,1个红球,7个黄球,除颜色外,完全相同,充分搅匀后随机摸出一球,恰好是白球的概率是_______。

4、袋中有一个红球和两个白球,它们除了颜色外都相同。

任意摸出一个球,记下球的颜色,放回袋中;搅匀后再任意摸出一个球,记下球的颜色。

为了研究两次摸球出现某种情况的概率,画出如下树状图。

(1)请把树状图填写完整。

(2)根据树状图可知,摸到一红一白两球的概率是________。

5、初三(1)班50名学生中有35名团员,他们都积极报名参加志愿者活动,根据要求,该班从团员中随机选取1名团员参加,则该班团员李明被选中的概率是_________。

BA黄蓝 绿 红 (红,黄) (红,蓝) (红,绿) 白 (白,黄)(白,蓝)(白,绿)中小学课外专业化辅导二、选择题6、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是( )A .121 B .13 C .125 D .127、在“抛一枚均匀硬币”的实验中,如果现在没有硬币,则下面各个试验中哪个不能代替 A 、 两张扑克,“黑桃” 代替“正面”,“红桃” 代替“反面” B 、 两个形状大小完全相同,但一红一白的两个乒乓球C 、 扔一枚图钉D 、 人数均等的男生、女生,以抽签的方式随机抽取一人8、一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( )A 、61B 、31C 、21D 、329、如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ) A .52 B .103 C .203 D .5110、在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( )A 、12个 B 、9个 C 、7个 D 、6个 三、解答题11、四张大小质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张。

(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两张卡片上的数字之和为奇数的概率是多少?(3)如果抽取第一张后放回,再抽第二张,(2)的问题答案是否改变?如果改变,变为多少?(只写出答案,不写过程)中小学课外专业化辅导12、某校八年级1、2班联合举行晚会。

组织者为了使晚会气氛活跃,策划时计划整台晚会以转盘游戏的方式进行:每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负责表演一个节目。

1班的文娱委员利用分别标有数字1、2、3和4、5、6、7的两个转盘(如图)设计了一种游戏方案:两人同时各转动一个转盘一次,将得到的数字相乘,积为偶数时,1班代表胜,否则2班代表胜。

你认为该方案对双方是否公平?为什么?如果你认为不公平,你能在此基础上设计一个公平的方案吗?提高训练: 一、选择题。

1. 下列成语所描述的事件是必然发生的是 ( )A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖 2.一个事件的概率不可能是( )A.0 B.21 C.1 D.233.小明和三个女生,四个男生玩丢手绢的游戏,小明随意将手绢丢在一名同学后面,那么这名同学不是女生的概率( )A.43 B.83 C.74 D.734.有六张卡片:上面各写有1、1、2、3、4、4六个数,从中任意摸一张,摸到奇数的概率是( )A.61 B.21 C.31 D.32中小学课外专业化辅导5.用1、2、3三个数字组成一个三位数,则组成的数是偶数的概率是( )A.31 B.41 C.51 D.61 6.小刚掷一枚硬币,一连9次都掷出正面朝上,当他第十次掷硬币时,出现正面朝上的概率是( )A.0B.1C.21 D.327.下列说法错误的是( )A.彩票的中奖率只有三百八十万分之一,买一张根本不会中奖B.两点确定一条直线C.过一点可画无数条直线D.太阳绕着地球转的概率是08.一个袋中有4个珠子,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个珠子,都是蓝色的概率是( )A.12 B.13 C.14D.169. (2009,荆门市)从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是1,摸到红球的概率是p 2,则( )A.p 1=1,p 2=1.B.p 1=0,p 2=1.C.p 1=0,p 2=14. D.p 1=p 2=1410.如图1所示是用相同的正方形砖铺成的地板,一宝 物藏在某一块下面,宝物在白色区域的概率是( )A.95 B.92 C.61D.21 二、填空题。

11.任意掷二枚均匀的骰子(六个面分别标有1到6个点)朝上面的点数之和是数字7的概率是____________.12.为了促销,厂家在每一件纯净水中放有两瓶在瓶盖反面写有“再来一瓶”的奖励,每件纯净水24瓶,小冬任买一瓶,获奖的概率是____________.13.小明有两件上衣,三条长裤,则他有几种不同的穿法______________.14.1、3、5、8路公共汽车都要停靠某个站口(假设这个站只能停靠一辆汽车),小华每天都要在此等候1路或5路公共汽车上学(假设当时各路车首先到站的可能性相等),则首先到站的正好是小华要乘坐的公共汽车的概率是_____.15.从一个不透明的口袋中任意摸出一球是白球的概率为61,已知袋中白球有3个,则袋中球的总数是____________. 16.(2009,凉山州,6分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个白球的概率是14, y 与x 之间的函数关系式 ___________.三、解答题。

17.小明所在年级共10个班,每班45名同学,现从每个班中任意抽一名学生,共10名学生参加课外活动,问小明被抽到的概率是多少?图1中小学课外专业化辅导18. (杭州) 在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为多少?19.(2009,江苏)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?20.小明与小亮玩摸球游戏,在一个袋子中放有5个完全一样的球,分别标有1、2、3、4、5五个数字,小明从袋中摸出一球,记下号码,然后放回由小亮摸,规定:如果摸到的球号码大于3则小明胜,否则小亮胜,你认为这个游戏公平吗?请说明理由21.一口袋中装有四根长度分别为1cm,3cm,4cm和5cm的细木棒,小明手中有一根长度为3cm的细木棒,现随机从袋内取出两根细木棒与小明手中的细木棒放在一起,回答下列问题:(1)求这三根细木棒能构成三角形的概率;(2)求这三根细木棒能构成直角三角形的概率;(3)求这三根细木棒能构成等腰三角形的概率.中小学课外专业化辅导22. (2009,济南市)有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(注:本题的第三张背面的-3应该是3)(1)写出k为负数的概率;=+的图象经过二、三、四象限的概率.(用树状图或列表法求解)(2)求一次函数y kx b23.(2009,威海)除颜色外完全相同的六个小球分别放到两个袋子中,一个袋子中放两个红球和一个白球,另一个袋子中放一个红球和两个白球.随机从两个袋子中分别摸出一个小球,试判断摸出两个异色小球的概率与摸出两个同色小球的概率是否相等,并说明理由.1-2-3-正面背面。

相关文档
最新文档